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BACKGROUND: The severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) causes COVID-19 disease.
There are concerns regarding limited testing capacity
and the exclusion of cases from unproven screening cri-
teria. Knowing COVID-19 risks can inform testing. This
study derived and assessed a model to predict risk of
SARS-CoV-2 in community-based people.
METHODS: All people presenting to a community-based
COVID-19 screening center answered questions regard-
ing symptoms, possible exposure, travel, and occupation.
These data were anonymously linked to SARS-CoV-2 test-
ing results. Logistic regression was used to derive amodel
to predict SARS-CoV-2 infection. Bootstrap sampling
evaluated the model.
RESULTS: A total of 9172 consecutive people were stud-
ied. Overall infection rate was 6.2% but this varied during
the study period. SARS-CoV-2 infection likelihood was
primarily influenced by contact with a COVID-19 case,
fever symptoms, and recent case detection rates. Internal
validation found that the SARS-CoV-2 Risk Prediction
Score (SCRiPS) performed well with good discrimination
(c-statistic 0.736, 95%CI 0.715–0.757) and very good cal-
ibration (integrated calibration index 0.0083, 95%CI
0.0048–0.0131). Focusing testing on people whose
expected SARS-CoV-2 risk equaled or exceeded the recent
case detection rate would increase the number of
identified SARS-CoV-2 cases by 63.1% (95%CI 54.5–
72.3).
CONCLUSION: The SCRiPS model accurately estimates
the risk of SARS-CoV-2 infection in community-based
people undergoing testing. Using SCRiPS can importantly
increase SARS-CoV-2 infection identification when test-
ing capacity is limited.
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BACKGROUND

Identifying people who are infected with severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), the cause of
COVID-19 disease, is an important component of limiting
its spread in the community.1 The detection and isolation of
community-based people who are infected with the virus
should significantly decrease spread of COVID-19 disease.2

Appropriate testing returns essential information regarding the
pandemic.3

Being able to accurately predict the risk of SARS-CoV-2
infection would be helpful. First, resources to test for SARS-
CoV-2 may be limited,4,5 making the selection of people for
testing essential to infection control.1 In such situations, selec-
tively testing people with higher infection risks will maximize
the number of identified cases for a testing capacity. Second,
expanding SARS-CoV-2 testing to measure its transmission
and current status would benefit from risk stratification to
maximize case identification.
Several models to predict SARS-CoV-2 infection probabil-

ity have been published. Sun et al.6 studied 788 community-
based people in Singapore between January 26 and February
16, 2020 with a SARS-CoV-2 infection rate of 6.8% to gen-
erate a risk prediction model including age, symptomatic
information, and vital signs. Their model had limited discrim-
ination (c-statistic = 0.65), its calibration was not measured,
and no model validation was reported. Meng et al.7 used 620
cases and controls to generate a model having age, sex, and a
panel of 35 laboratory tests to predict SARS-CoV-2 infection.
They cited excellent discrimination (c-statistic = 0.87) in a
validation population of 145 people (having SARS-CoV-2
incidence of 55.2%). However, the model’s requirement for
laboratory information limits its applicability to community
screening since a venipuncture and laboratory processing time
would be required (i.e., a 2-phase screening process). Menni
et al.8 derived and validated a model based on the self-reported
symptoms and test results of 18,401 people. The model had
good discrimination (c-statistic 0.75) and found important
associations between infection risk and anosmia, anorexia,
and fatigue.
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In this study, we derived and assessed a model that returns
the probability of SARS-CoV-2 infection in community-based
people.

METHODS

Study Setting, Study Cohort, and Data Collection. This study
used data from The Ottawa Hospital (TOH) and was approved
by The Ottawa Hospital Research Ethics Board. TOH opened
a community-based COVID-19 testing center on 13
March 2020 to facilitate community testing for SARS-CoV-
2. The center conducted an average (standard deviation) of
229 (73.1) tests per day. Test resulting increased rapidly; in the
first week of the clinic, the median time to resulting was
11 days (interquartile range 3–12); by the start of April
2020, 98.7% of tests were resulted within 24 h. Both nasopha-
ryngeal and throat samples were used based on testing avail-
ability of the former; testing methodology was not influenced
by other factors. Time to test result was not independently
associated with the likelihood of SARS-CoV-2 infection.
Our study included all people who were tested between 13

March (when the clinic opened) and 21 April 2020 (final day
that data were complete when model development started).
People presenting to the testing center were questioned at two
separate times by different registered nurses. Testing screening
criteria were based on current Ontario Public Health testing
guidelines and were used to increase testing coverage in
populations where case identification was a policy priority
(i.e., healthcare workers) while avoiding unnecessary testing
in the general population who were asymptomatic or whose
symptoms could be related to non-COVID-19 disease. Clinic
screening questions elicited the presence of symptoms includ-
ing rhinorrhea; fever symptoms including rigors, chills, per-
ceived fever, or documented fever at home or at the screening
clinic; cough; and shortness of breath. People with any of
these symptoms underwent testing. Testing also occurred if
any infection risk factor was present including close contact
with a person with known or presumed COVID-19 disease or
recent travel outside of Canada (Appendix A). In the absence
of these indications, healthcare workers (or people cohabitat-
ing with a healthcare worker) were tested if they had symp-
toms of sore throat, sputum production, or rhinorrhea. Finally,
testing could be approved in the event of extenuating circum-
stances or if the person was referred to the screening clinic by
public health officials for testing. Explicit criteria were not
used for each factor; we instead relied upon the clinical judg-
ment of screening personnel. Answers to all screening ques-
tions were registered in an electronic medical record along
with the person’s age and sex.

Testing for SARS-CoV-2 Infection. Testing for severe acute
respiratory syndrome coronavirus 2 virus (SARS-CoV-2) was
performed using the Allplex 2019 nCoV reverse transcriptase

polymerase chain reaction (RT-PCR) that targeted the RNA-
dependent RNA polymerase, E and N genes (Seegene, South
Korea). Tests were classified as positive for SARS-CoV-2
infection if at least one of any of the three “targets” were
detected. Prior to implementation, the RT-PCR was evaluated
by testing 113 clinical samples that were negative for other
respiratory viruses. As well, a total of 191 clinical specimens
(including 172 negative and 19 positive samples negative for
SARS-CoV-2 by our RT-PCR) were tested in parallel by the
Public Health Ontario Laboratory (PHOL) using an in-house
developed RT-PCR. Based on this limited evaluation, the
sensitivity and specificity of our testing methodology were
100% and 99% respectively (one sample was indeterminant
by the Allplex 2019 nCoV RT-PCR and negative by PHOL).

Model Covariables. We clustered together individual
covariables described above that were strongly associated
with each other and were thematically related. This resulted
in the creation of cluster variables for fever symptoms
(deemed present if patient reported feverishness, chills,
rigors, or a fever was documented at home or at the
screening clinic) and chest symptoms (deemed present if
patient reported any cough or shortness of breath). We also
included an age-fever interaction because inflammatory exu-
berance decreases as people age9 and we reasoned that the
predictive capacity of these symptoms might change with age.
We wanted our model to account for baseline SARS-CoV-2

prevalence since this would importantly influence the likeli-
hood a particular person tests positive. We summarized this as
the recent case detection rate, calculated as the proportion of
tests from our testing clinic in the previous 3 days that were
SARS-CoV-2 positive:

#tests in previous 3 days indicating SARS−Cov−2 infection
total number of tests in previous 3 days

Model Derivation. Each person’s demographic data and
screening question answers were linked to SARS-CoV-2 test
results. If individuals underwent testing more than once, data
from their first test only were included in the model. There
were no missing data for model covariables.
All analyses used SAS 9.4 and R 3.3.3. Multivariable

binary logistic regression was used to measure the indepen-
dent association of each term with detection of SARS-CoV-2.
Since we had a limited number of covariables and we had
enough cases in the sample to include them all, we did not
conduct any variable selection for the model (thus avoiding the
possibility of “testimation bias”10). Recent case detection rate
was expressed in the model as the natural logarithm of the
odds (i.e., ln(p/[1 − p])). To ensure that this represented the
probability of SARS-CoV-2 positivity in the ‘average’ person,
we centered all other covariables in the model. All continuous
variables (age, age-fever interaction, transformed recent case
detection rate) were expressed using restricted cubic splines
having 5 knots (using knot positions suggested by Harrell11).
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When predicting infection likelihood, the logistic model
intercept returns infection probability of a subject whose
model covariates all have a value of 0. The intercept is
necessary to calculate expected probabilities but its value
changes with infection prevalence. This makes intercept-
based logistic models impractical for predicting infection
likelihood when its prevalence varies, as in our study. We
therefore did not include an intercept in our logistic model
knowing that “recent case detection rate” would capture
baseline prevalence. This ensured that each person’s
expected probability of being infected with SARS-CoV-2
could be calculated without needing to specify an
intercept.
From our final model, we created the SARS-CoV-2

Risk Prediction Score (SCRiPS) by multiplying, for each
factor, the value-coefficient product by 10 and rounding to
a whole number. An individual’s SCRiPS was calculated
by summing up the points associated with the value for
each of their factors.

Model Validation. We used 1000 bootstrap samples (with
replacement) to evaluate the model. In each bootstrap
sample, we measured SCRiPS discrimination (using the c-
statistic) and calibration. The latter was assessed in each
bootstrap sample using three methods: (i) calibration in the
large (observed and expected proportion of SARS-CoV-2
infection was compared in the entire study sample); (ii) cali-
bration slope and intercept (the study sample was separated
into deciles based on the expected risk and a linear model
regressed observed against expected SARS-CoV-2 infection
risk in each group); and (iii) the integrated calibration index12

(which measures the absolute difference between the calibra-
tion curve and the diagonal line of perfect calibration). The
latter was summarized into a calibration curve.
Finally, we measured the potential impact of using SCRiPS

to screen for SARS-CoV-2 testing. We first used the recent
case detection rate as a testing threshold for the SCRiPS-
determined expected infection risk (since thresholds equal to
the case prevalence maximize a predictive model’s impact).13

Within each bootstrap sample, we calculated model sensitivity
and negative likelihood ratio. We compared the net benefit of
using the SCRiPS testing criteria to that from testing all people
and calculated the net benefit increase (the difference between
these testing approaches in the proportion of true positives and
false positives, with the latter weighted by the testing threshold
expressed as an odds term).13We also calculated the change in
the number of identified infections if tests that would have
been applied to people not meeting testing criteria were in-
stead used on those meeting testing criteria. These calculations
were repeated using a more conservative threshold of one-half
of the recent case detection rate. We used the percentile
method to generate point estimates and 95% confidence inter-
vals for all fit statistics.14 We reported our methods and results
using recommendations from TRIPOD15 (Appendix C).

RESULTS

Of all 9611 tests conducted up to 21 April 2020, 9585
(99.7%) had final results reported at the time we created
our analytical dataset (24 April 2020). 413 (4.3%) of these
tests were on people with previous testing and were ex-
cluded leaving 9172 people for model derivation. A total
of 571 tests indicated SARS-CoV-2 infection for an over-
all infection rate of 6.2%. However, this risk changed
notably over time with a peak risk of 15.4% in early April
(Fig. 1). Infected people were slightly older and were less
likely to be female or a healthcare worker (Table 1).
Infected people were also more likely to have contacted
a known or suspected COVID-19 case. Recent case de-
tection rates were slightly higher in SARS-CoV-2 positive
patients. Rhinorrhea was less common in the infected but
fever symptoms were much more prevalent. Chest symp-
toms and travel history did not differ notably by SARS-
CoV-2 status.
The final model included ten covariables and one interac-

tion term (Appendix B). SARS-Cov-2 likelihood increased
most notably by contact with known or suspected COVID-
19 case (48.3% of total model χ2) and the presence of fever or
symptoms thereof (16.6% of total model χ2). Other factors
increasing the likelihood of SARS-CoV-2 infection included
male gender (adjusted odds ratio [adj-OR] 1.28 [95%CI 1.07–
1.54]), non-healthcare worker status (adj-OR 1.83 [1.49–
2.25]), having a throat swab rather than nasopharyngeal sam-
ple (adj-OR 1.36 [1.09–1.69]), and an absence of rhinnorhea
(adj-OR 1.36 [1.13–1.64]). Recent case detection rate also
importantly influenced infection likelihood (9.2% of total
model χ2). Lung symptoms, age, and the interaction of age
and fever had less influence on the likelihood of SARS-CoV-2
infection.
The model was modified to the SARS-CoV-2 Risk Predic-

tion Score (SCRiPS)(Table 2). SCRiPS values for each cova-
riable reflect the extent that term influenced the likelihood of
SARS-CoV-2 infection (Table 2A) with higher values indi-
cating an increased influence on infection probability. Of
categorical factors, contact with known or suspected
COVID-19 case was most influential (12 points). The scoring
system illustrates that SARS-CoV-2 likelihood increased with
recent case detection rates. When fever symptoms were pres-
ent, the likelihood of SARS-CoV-2 increased strongly as
people aged. If fever symptoms were absent, this likelihood
did not change consistently as patients aged.
Values for each model term were summed to calculate an

individual person’s SCRiPS (mean value 34.8 [standard
deviation 8.6]; range 9–70). A 1-unit increase in SCRiPS
increased the odds of infection by 11.3% (odds ratio 1.11,
95%CI 1.10–1.12). In 1000 bootstrap samples, SCRiPS
was moderately discriminative (c-statistic 0.736, 95%CI
0.715–0.757). SCRiPS-derived expected probabilities of
infection were well calibrated to observed probabilities:

Walraven et al.: Predicting Probability of SARS-CoV-2 Infection in Community Patients JGIM164



difference between overall observed and expected infection
probability (i.e., “calibration in the large”) did not exclude
zero (0.005%, 95%CI − 0.46–0.50%); the intercept of the
calibration slope also included zero (− 0.0016, 95%CI −
0.008–0.0052) and the slope did not differ significantly
from 1 (1.025, 95%CI 0.895–1.157); and the integrated
calibration index also indicated very good calibration
(0.0083, 95%CI 0.0048–0.0131). Calibration plots indicat-
ed that SCRiPS-based infection risk did not significantly
differ from expected risk except in the 10–20% range when
SCRiPS slightly underestimated infection risk (Fig. 2).
Using the SCRiPS-based infection risk had a potentially

large impact on test utilization and case identification
(Table 3). Limiting testing to those whose SCRiPS-based

infection risk equaled or exceeded the recent case detec-
tion rate returned a sensitivity of 68.8% and negative
likelihood ratio of 0.524 (Table 3A). This significantly
improved test utilization compared to testing all people
(net benefit increase 0.015, 95%CI 0.012–0.024). If tests
in people not meeting SCRiPS testing criteria were instead
redirected to those who did, the number of identified
SARS-CoV-2 cases would increase 63.1% (95%CI
54.5%–72.3%). Limiting testing to those whose SCRiPS-
based infection risk equaled or exceeded 50% of recent
case detection rates returned a sensitivity of 90.0%, a
significant net benefit increase (0.012, 95%CI 0.010–
0.018), and an increase in the number of identified
SARS-CoV-2 cases of 27.6% (23.3–30.7%).
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Fig. 1 Probability of SARS-CoV-2 detection during study period. This graph presents the probability of SARS-CoV-2 infection (vertical axis)
over time (horizontal axis) at the study COVID-19 testing centre. The blue line indicates the daily percentage of tests positive for SARS-CoV-2.
The red line indicates the proportion of tests positive for SARS-CoV-2 for the three previous days (“recent case detection rate”). The latter

value was used in the SCRiPS model.

Table 1 Description of Study Cohort (n = 9172)

SARS-CoV-2 status

Positive (n = 571, 6.2%) Negative (n = 8601, 93.8%)

Demographics
Mean age (SD) 45.4 ± 15.1 42.5 ± 13.7
Female 317 (55.5%) 5614 (65.3%)
Healthcare worker 226 (39.6%) 4878 (56.7%)
Contacted person with or suspected of having COVID-19 415 (72.7%) 4042 (47.0%)
Recent case detection rate (mean, SD) 6.8% (2.2%) 6.1% (2.5%)

Symptoms
Rhinorrhea 215 (37.7%) 3874 (45.0%)
Fever symptoms 373 (65.3%) 3594 (41.8%)
Temp > 38.0 °C at screening 36 (6.3%) 71 (0.8%)
Feverishness 268 (46.9%) 2089 (24.3%)
Chills 196 (34.3%) 1986 (23.1%)
Rigors 76 (13.3%) 546 (6.3%)
Fever > 38.0 °C at home 81 (14.2%) 407 (4.7%)

Chest symptoms (cough or shortness of breath) 473 (82.8%) 6911 (80.4%)
Recently traveled outside Canada 147 (25.7%) 2085 (24.2%)

The derivation group consisted of people tested in March 2020; the validation group consisted of people tested during the first week of April 2020.
Recent case detection rate was calculated as the proportion tests in previous 3 days SARS-CoV-2 + ve: tests in previous 3 days indicating SARS−Cov−2 infection

total number of tests in previous 3 days
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DISCUSSION

This study derived and assessed a model that accurately esti-
mated the probability of SARS-CoV-2 infection. This
expected probability can be used to importantly increase
SARS-CoV-2 infection identification when testing capacity
is limited.
Accurate case finding is key to resolving the current

COVID-19 epidemic. However, significant limitations in test-
ing capability exist in Canada and elsewhere due to a lack of
analyzers, swabs, transport media, laboratory reagents, trained
staff, or overwhelming demand. Since many healthcare
regions could continue to have testing limitation for many
months, rationing of some form may be necessary. In such

situations, preferentially testing those having the highest in-
fection likelihood will maximize case identification (Table 3).

We found that the likelihood of SARS-CoV-2 infection in
community-based people can be accurately estimated using
relatively easily attained information. Expected SARS-CoV-2
infection probabilities have two potential applications. First,
they would permit healthcare workers to accurately risk-
stratify people regarding infection likelihood. This would
improve utilization of potentially scarce testing resources.
For example, we found that limiting testing to those with an
expected infection probability equal to or exceeding the recent
case detection rates increased case identification by 63%
(Table 3A). Second, the accuracy of SARS-CoV-2 testing is

Table 2 SARS-CoV-2 Risk Prediction Score (SCRiPS). A—Calculation of SCRiPS. B—Expected Probability of SARS-CoV-2 Infection by
SCRiPS

FACTOR VALUE POINTS FACTOR VALUE POINTS
WITH 

FEVER 
SYMPTOMS

WITHOUT 
FEVER 

SYMPTOMS

Sex Male 3 Recent Case Detection .25-.74 0 Age POINTS POINTS

Female 0 Rate (%)† .75-1.24 7 15-19 1 6

Healthcare Worker No 6 1.25-1.74 8 20-24 1 3

Yes 0 1.75-2.24 9 25-29 2 1

Contact with COVID19 Case Yes 12 2.25-2.74 11 30-34 2 0

No 0 2.75-3.24 13 35-39 3 0

Rhinnorhea Yes 0 3.25-3.74 14 40-44 4 1

No 3 3.75-4.24 16 45-49 4 2

Chest Symptoms Yes 2 4.25-4.74 17 50-54 5 3

No 0 4.75-5.74 18 55-60 5 4

Recently Travelled Outside Yes 3 5.75-6.74 19 60-64 6 4

Country No 0 6.75-8.74 20 65-70 8 5

8.75-10.74 21 70-74 10 6

≥10.75 22 75-80 13 8

80-84 17 6

85-90 20 3

90+ 24 0

SCRiPS Score - Ones Column
_0 _1 _2 _3 _4 _5 _6 _7 _8 _9

SC
R

iP
S 

Sc
or

e 
-T

en
s C

ol
um

n 1_ 0.3% 0.4% 0.4% 0.4% 0.5% 0.6% 0.6% 0.7% 0.8% 0.8%

2_ 0.9% 1.0% 1.2% 1.3% 1.4% 1.6% 1.8% 2.0% 2.2% 2.4%

3_ 2.7% 3.0% 3.3% 3.7% 4.1% 4.5% 5.0% 5.6% 6.2% 6.8%

4_ 7.5% 8.3% 9.2% 10.1% 11.1% 12.2% 13.4% 14.7% 16.1% 17.6%

5_ 19.3% 21% 22.8% 24.8% 26.8% 29% 31.2% 33.6% 36.0% 38.5%

6_ 41.1% 43.7% 46.4% 49% 51.7% 54.4% 57.1% 59.7% 62.2% 64.7%

7_ 67.1% 69.4% 71.7% 73.8% 75.8% 77.7% 79.5% 81.2% 82.8% 84.3%

8_ 85.7% 86.9% 88.1% 89.2% 90.2% 91.1% 91.9% 92.7% 93.4% 94.0%

†Recent case detection rate was calculated as the proportion tests in previous 3 days SARS-CoV-2 + ve: #tests in previous 3 days indicating SARS−Cov−2 infection
total number of tests in previous 3 days

The SARS-CoV-2 Risk Prediction Score (SCRiPS) is calculated for a particular person by summing the points associated with the values for all of the
factors in the model. The probability of SARS-CoV-2 infection for each SCRiPS value is presented in this table by score. For example, the risk
associated with a SCRiPS of 14 would be given by the first row (“1_”) and the fifth column (“_4”)
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uncertain. SCRiPS could help clinicians reliably process test-
ing results by incorporating infection likelihood based on
SCRiPS. For example, a negative test result in a person
deemed at high-risk of infection due to an elevated SCRiPS
would suggest a false-negative test result and prompt retesting.
Based on PROBAST criteria, we would rate our model as

having a low risk of bias16: we used an appropriate and
complete patient population; all predictors were available
and determined prior to test results; the model outcome was
clearly defined and determined independent of all predictors;
and our analysis included a reasonable number of participants,
handled covariables appropriately, avoided variable selection
based on univariable testing, included extensive model assess-
ment measures, and avoided overfitting given our lack of
variable selection and large sample size. However, several
issues should be kept in mind when the SCRiPS is used. First,
our model was derived on a single community-based sample
that predominantly met basic COVID-19 screening criteria. Its
applicability to other communities and in hospitalized patients
or people not meeting the testing criteria used at the screening
clinic needs examination. Second, several SCRiPS compo-
nents were based on historical information and were not
explicitly defined a priori or applied by the screening person-
nel in a standardized fashion. This could have limited the
model’s performance. Third, the model requires recent case
detection rates for SARS-CoV-2. To accurately use SCRiPS,
centers will require quick laboratory turn-around times as well

as the capacity to analyze these data quickly. Fourth, it is
noteworthy that the SCRiPS performed well in a bootstrap
sample. Further evaluation of the SCRiPS model in other
populations will be needed to truly evaluate its utility. Fifth,
we found that healthcare workers were significantly less likely
to test positive for SARS-CoV-2 infection (Table 2A,
Appendix B). We do not believe that this has any biological
basis (i.e., healthcare workers are not less likely to become
infected with SARS-CoV-2). Instead, this likely reflects our
screening clinic’s more inclusive testing criteria for healthcare
workers or they having a lower threshold to seek testing. This
highlights that SARS-CoV-2 infection likelihood, and there-
fore, components of its predictive model can be significantly
influenced by testing behavior. Sixth, the SCRiPS model
highlights the importance of disease prevalence when estimat-
ing infection likelihood (Table 2A). Inaccurate estimates for
this parameter could bias probability estimates from SCRiPS.
Seventh, the outcome for our model—i.e., results from a
standard test for SARS-CoV-2—is clinically relevant but
could have some limitations. While the testing methodology
used for our study returned results almost identical to those
from reference laboratories, our test might have missed people
who were truly infected because viral shedding kinetics varies
with disease severity and sampling time from symptom onset.
Finally, while the SCRiPS appears to be an effective model,
further research will be needed to determine how its utility
could be enhanced. This might be achieved by incorporating

Fig. 2 Observed and expected probability of SARS-CoV-2 infection in bootstrap validation. In 1000 bootstrap samples, the observed proportion
of tests that were positive for SARS-CoV-2 (vertical axis) were plotted against the expected proportion based on the SCRiPS (horizontal axis).
The heavy black line is median LOESS regression value; it is flanked by 95% confidence interval (gray, dotted lines). The dashed diagonal line

represents perfect agreement between observed and expected probabilities.
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additional historical data identified by Menni et al.8 to be
strongly associated with infection likelihood including anos-
mia and anorexia or incorporating symptom duration or
severity.
In summary, SCRiPS accurately estimates the likelihood of

SARS-CoV-2 positivity in community-based people. This
model could be used to risk-stratify people being screened
for infection and improve COVID-19 identification.

Corresponding Author: Carl Walraven, MD MSc; Medicine and
Epidemiology & Community Medicine, University of Ottawa, ASB1-
003 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada
(e-mail: carlv@ohri.ca).

Compliance with Ethical Standards:

Conflict of Interest: The authors declare that they do not have a
conflict of interest.

REFERENCES
1. WHO = World Health Organization; WHO reference number: WHO/2019-

nCoV/lab_testing/2020.1. 2020
2. Day M. Covid-19: identifying and isolating asymptomatic people helped

eliminate virus in Italian village. BMJ (Clinical research ed) )
2020;368:m1165.

3. Fineberg HV. Ten Weeks to Crush the Curve. N Engl J Med
2020;NEJMe2007263.

4. Jones R. Poor supply of COVID-19 test kits restrained testing, but
province still running out. 2020. CBC News. Ref Type: Online
Source. https://www.cbc.ca/news/canada/new-brunswick/nb-covid-
19-test-supplies-1.5519944.

5. Baird RP. Why widespread Coronavirus testing isn't coming anytime
soon. The New Yorker . 2020. Ref Type: Online Source. https://www.
newyorker.com/news/news-desk/why-widespread-coronavirus-testing-
isnt-coming-anytime-soon.

6. Sun Y, Koh V, Marimuthu K et al. Epidemiological and Clinical
Predictors of COVID-19. Clinical Infectious Diseases 2020;1-31.

7. Meng Z, Wang M, Song H et al. Development and utilization of an
intelligent application for aiding COVID-19 diagnosis. medRxiv
2020;2020. https://www.medrxiv.org/content/10.1101/2020.03.18.
20035816v1.

8. Menni C, Valdes AM, Freidin MB et al. Real-time tracking of self-
reported symptoms to predict potential COVID-19. Nature Medicine
2020; 26: 1037–1040.

Table 3 Potential Impact of SCRiPS on SARS-CoV-2 Test Utilization and Case Identification

a b

The impact of using SCRIPS to select people for testing was measured in 1000 bootstrap samples. Two probability thresholds were used to identify
candidates for testing: the percentage of tests in previous 3 days that were SARS-CoV-2 positive (Table A) and one-half the percentage of tests in
previous 3 days that were SARS-CoV-2 positive (Table B). Median cell counts (with 95% confidence intervals) from the bootstrap sample are presented.
Median (95%CI) operating characteristics and estimates of model impact are presented below each table. Note that all counts and statistics are median
values from the bootstrap sample; as a result, some values do not exactly match those one would get from direct calculation (for example, model
sensitivity from direct calculation in Table A is 68.7% but the median value from the bootstrap sample was 68.8%)
†This is the risk of SARS-CoV-2 infection being identified on testing in previous 3 days and was calculated as:
#tests in previous 3 days indicating SARS−Cov−2 infection

total number of tests in previous 3 days
††If tests done on people not meeting model testing criteria were redirected to people who did meet criteria. This was calculated in each bootstrap
sample as:
# people not meeting testing criteria (Cells C + D)*Infection probability for tests meeting criteria (Cell A/(Cells A + B)
†††Relative change in number of identified cases if tests in people not meeting testing criteria were applied to those who did. This was calculated in
each bootstrap sample as: #cases identified using SCRiPS Cell AþAdditional Cases Identifiedð Þ

Original#cases identified Cells AþCð Þ
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