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Abstract: Vehicle detection is an indispensable part of environmental perception technology for smart
cars. Aiming at the issues that conventional vehicle detection can be easily restricted by environmental
conditions and cannot have accuracy and real-time performance, this article proposes a front vehicle
detection algorithm for smart car based on improved SSD model. Single shot multibox detector (SSD)
is one of the current mainstream object detection frameworks based on deep learning. This work
first briefly introduces the SSD network model and analyzes and summarizes its problems and
shortcomings in vehicle detection. Then, targeted improvements are performed to the SSD network
model, including major advancements to the basic structure of the SSD model, the use of weighted
mask in network training, and enhancement to the loss function. Finally, vehicle detection experiments
are carried out on the basis of the KITTI vision benchmark suite and self-made vehicle dataset to
observe the algorithm performance in different complicated environments and weather conditions.
The test results based on the KITTI dataset show that the mAP value reaches 92.18%, and the average
processing time per frame is 15 ms. Compared with the existing deep learning-based detection
methods, the proposed algorithm can obtain accuracy and real-time performance simultaneously.
Meanwhile, the algorithm has excellent robustness and environmental adaptability for complicated
traffic environments and anti-jamming capabilities for bad weather conditions. These factors are of
great significance to ensure the accurate and efficient operation of smart cars in real traffic scenarios
and are beneficial to vastly reduce the incidence of traffic accidents and fully protect people’s lives
and property.

Keywords: computer vision; autonomous vehicle; SSD; deep learning; vehicle detection

1. Introduction

Automobiles have become an indispensable and commonly used means of transportation for many
families because of their huge traffic convenience, with the rapid development of the global economy
and the gradual improvement of people’s living standards. However, the continuous growth of car
ownership has also brought a series of traffic safety issues, thereby seriously affecting people’s quality
of life and hindering the further development of society. Studies have shown that in an emergency,
if the driver can be reminded to take effective driving manipulation one second in advance, then 90%
of road traffic accidents can be avoided [1–4]. Many experts and scholars have turned their attention
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to smart cars with the vigorous development of modern information and automotive technologies.
Considering that smart cars can autonomously drive, they have become an important way to eliminate
hidden dangers of traffic safety [5,6]. Vehicle detection is an indispensable part of environmental
perception technology for smart cars. Whether the front vehicle can be accurately detected is closely
related to whether the autonomous vehicle can safely and steadily run. Intelligent vehicles can
automatically identify the front vehicle objects on the basis of the vehicle detection technology by
taking advantage of vehicle-mounted cameras. The driving vehicle can achieve important functions,
such as vehicle distance maintenance, safe lane change, and collision warning, through timely and
efficient feedback to the driver, which is conducive to prevent the occurrence of major traffic accidents
and fully protect people’s lives and property safety [7–9]. Therefore, an in-depth study of such concepts
is of great significance.

Front vehicles are the road obstacles in the actual driving environment, and vehicle detection
refers to automatically detecting the vehicle in front from the collected pictures or video streams and
making proper positioning. In the actual road scenes, bad weather conditions, complicated traffic
environments, varying degrees of object occlusion, and differences in the vehicle characteristics make
vehicle detection a challenging task [10–12]. Experts and scholars worldwide have shown increasing
interest in the research of vehicle detection, with the development and improvement of intelligent
transportation system and computer vision technology. Vehicle detection research methods are mainly
divided into three types according to the different detection principles: feature-based, conventional
machine learning-based, and deep learning-based detection methods. The feature-based detection
methods mainly realize vehicle detection on the basis of the salient appearance features of the front
vehicle. The common salient features include color, edge, symmetrical, and bottom shadow features of
the vehicle. Teoh et al. [13] selected candidate regions of the front vehicle from the detection image on
the basis of the symmetrical features of the vehicle. They also enhanced the edges of the regions and
finally sent them to the support vector machine (SVM) classifier for verification. However, this method
was easily affected by the viewing angle and natural environment; thus, it can only be applied to
specific road scenes. Wang et al. [14] adopted an adaptive threshold segmentation algorithm to extract
vehicle shadow features, used special masks to obtain vehicle object features at different distances,
and combined with vanishing point constraints to achieve fast detection of front vehicles. He et al. [15]
proposed a vehicle detection method around computer vision, which comprehensively utilized a
variety of salient appearance features, such as edge, bottom shadow, and symmetrical features, and the
detection precision was relatively high. The feature-based detection methods have low algorithm
complexity and high detection efficiency in specific simple environments. However, the detection
performance will be evidently reduced, and the environment adaptability will be poor when the road
environment becomes complicated [16–18].

The conventional machine learning-based detection methods mainly use the feature description
operator to extract the vehicle features and adopt the machine learning algorithm to train the samples.
These methods select the appropriate feature classifier to realize vehicle detection. Zhang et al. [19]
efficiently combined the multidimensional Haar-like features and Adaboost algorithm, and used a
self-adaptive sky segmentation algorithm to segment the color space and multi-scale sub-window
to scan the image in parallel. This approach effectively improved the efficiency of vehicle detection.
Kim et al. [20] adopted a histogram of oriented gradients (HOG) on the basis of the position and
intensity combined with a search space reduction method, which effectively reduced the overall
calculation and sped up vehicle detection. Neumann et al. [21] used a stereo vision image classifier for
vehicle detection on the basis of Haar-like, LBP (local binary patterns), and HOG fusion features and
achieved good detection effects. The conventional machine learning-based detection methods do not
have to rely on the prior knowledge of vehicle objects but still need the help of artificially designed
image features. These methods cannot be well applied to vehicle detection with multiple working
conditions and objects, and their generalization ability is poor [22–24].
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In recent years, deep learning represented by convolutional neural network (CNN) has become
an emerging development direction for machine learning with the rapid development of artificial
intelligence technology and deep learning algorithms. This mechanism has achieved fruitful application
results in image classification, speech recognition, and natural language processing. The deep
learning-based detection methods mainly use deep convolutional neural networks to automatically
extract vehicle object features and finally complete the vehicle detection task after classification.
Lange et al. [25] adopted a 2D image vehicle detection system by using the depth information of
LiDAR sensors to effectively shorten the calculation time of the algorithm, and finally obtained
high detection precision through network topology optimization. Qu et al. [26] proposed a vehicle
detection method on the basis of multi-scale spatial pyramid pooling (SPP), which can learn the
characteristics of input images of different sizes. Liu et al. [27] proposed a two-stage detector for tiny
vehicle detection. In the first stage, a backward feature enhancement network was used to generate
high-quality region proposals. In the second stage, the spatial layouts of features of the region of
interest (ROI) were obtained through the spatial layout preserving network. The experimental results
showed that this method was helpful in obtaining a high recall rate and performed well in terms of
detection precision. At present, the deep learning-based detection methods are mainly composed of
two-stage and one-stage detection methods. Two-stage detection networks represented by Fast R-CNN,
Faster R-CNN, and Mask R-CNN, generally have high detection precision. However, the algorithms
based on region proposals often have high complexity and long calculation time, which cannot
meet the real-time requirements of vehicle detection in the actual road scenes [28–30]. One-stage
detection network is represented by YOLO, YOLOv2, and SSD. Although the detection speed has
been significantly improved, the detection precision is not as good as the two-stage detection network.
The deep learning-based detection methods are prone to “care for this and lose that”, and they still
cannot simultaneously obtain good detection precision and detection speed [31–33]. All in all, the above
three types of research methods have different drawbacks and disadvantages. The feature-based
detection methods are easily restricted by environmental conditions, and the robustness is insufficient.
The conventional machine learning-based detection methods have high manual dependence and poor
generalization ability. The existing deep learning-based detection methods cannot balance accuracy
and real-time performance. Therefore, this paper aims to improve the vehicle detection algorithm
to obtain an ideal solution, so that the proposed algorithm can not only have good robustness and
generalization ability in complicated environments and working conditions, but also achieve fast and
accurate automatic vehicle detection.

In this research, a front vehicle detection algorithm for smart car based on improved SSD model is
proposed. First, the SSD network model is briefly introduced, and its problems and shortcomings in
vehicle detection are analyzed and summarized. Then, targeted improvements are performed to the
SSD network model, including major advancements to the basic structure of the SSD model, the use of
weighted mask in network training, and enhancement to the loss function. Finally, vehicle detection
experiments are carried out on the basis of the KITTI vision benchmark suite and self-made vehicle
dataset to observe the algorithm performance in different complicated environments and weather
conditions. The proposed algorithm is comprehensively analyzed and evaluated by comparing the
performance with the existing detection algorithms.

The remaining parts of this article are organized as follows: Section 2 determines the shortcomings
of SSD in vehicle detection. Section 3 initiates targeted improvements to SSD. Section 4 conducts
vehicle detection experiments by using appropriate datasets and observes and discusses the algorithm
performance. Section 5 summarizes the conclusions and provides the possible work in the future.
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2. SSD Network Model

2.1. Brief Introduction of SSD

SSD, which stands for “single shot multibox detector,” is one of the current mainstream object
detection frameworks based on deep learning. SSD was originally raised by Wei Liu at the 14th
European Conference on Computer Vision (ECCV) in 2016, and has become another one-stage object
detection algorithm that attracted great attention after YOLO [34,35]. SSD not only draws on the
anchor mechanism and feature pyramid structure of the Faster R-CNN, but also inherits the regression
idea of YOLO and realizes the detection and classification of multiple bounding boxes on the basis of
the simple end-to-end network. In comparison with Faster R-CNN, SSD does not require candidate
region extraction, and the detection speed is faster. SSD does not use a fully-connected layer, and the
detection precision is improved compared with YOLO.

The SSD network model is mainly composed of three parts, including the basic network,
feature extraction network, and detection network. The basic network is improved on the basis of
VGG16 (visual geometry group 16). Considering that the fully-connected layer will interfere with
the location information of the features, the last two fully-connected layers, namely, FC6 and FC7,
are replaced by convolutional layers Conv6 and Conv7. Then, the following four sets of convolutional
layers are added: Conv8, Conv9, Conv10, and Conv11. In each layer, 1 × 1 convolutional kernels are
used for dimension reduction, and 3 × 3 convolutional kernels are utilized for feature extraction. Next,
the feature maps of Conv4_3 and Conv7 are combined with those of Conv8_2, Conv9_2, Conv10_2,
and Conv11_2 to form a multi-scale feature extraction network in the form of feature pyramids. Finally,
two convolutional kernels with a size of 3 × 3 are used to perform convolutional operations on each
feature map in the detection network. One convolutional kernel outputs category confidences, and the
other provides the object location information for regression. All the calculation results are combined
and transferred to the loss layer. The final detection result is outputted by using the non-maximum
suppression (NMS) algorithm. Figure 1 shows the basic structure of the SSD network model, and Table 1
illustrates the main parameters of the SSD network model.
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Figure 1. The basic structure of the SSD network model.

Table 1. The main parameters of the SSD network model.

Layer Convolutional
Kernel Size

Convolutional
Kernel Number Step Size Filling Feature Map Size

Conv1_1 3 × 3 64 1 1 300 × 300
Conv1_2 3 × 3 64 1 1 300 × 300

Maxpool1 2 × 2 1 2 0 150 × 150
Conv2_1 3 × 3 128 1 1 150 × 150
Conv2_2 3 × 3 128 1 1 150 × 150

Maxpool2 2 × 2 1 2 0 75 × 75
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Table 1. Cont.

Layer Convolutional
Kernel Size

Convolutional
Kernel Number Step Size Filling Feature Map Size

Conv3_1 3 × 3 256 1 1 75 × 75
Conv3_2 3 × 3 256 1 1 75 × 75
Conv3_3 3 × 3 256 1 1 75 × 75

Maxpool3 2 × 2 1 2 0 38 × 38
Conv4_1 3 × 3 512 1 1 38 × 38
Conv4_2 3 × 3 512 1 1 38 × 38
Conv4_3 3 × 3 512 1 1 38 × 38

Maxpool4 2 × 2 1 2 0 19 × 19
Conv5_1 3 × 3 512 1 1 19 × 19
Conv5_2 3 × 3 512 1 1 19 × 19
Conv5_3 3 × 3 512 1 1 19 × 19

Maxpool5 3 × 3 1 1 1 19 × 19
Conv6 3 × 3 1024 1 1 19 × 19
Conv7 1 × 1 1024 1 0 19 × 19

Conv8_1 1 × 1 256 1 0 19 × 19
Conv8_2 3 × 3 512 2 1 10 × 10
Conv9_1 1 × 1 128 1 0 10 × 10
Conv9_2 3 × 3 256 2 1 5 × 5
Conv10_1 1 × 1 128 1 0 5 × 5
Conv10_2 3 × 3 256 1 0 3 × 3
Conv11_1 1 × 1 128 1 0 3 × 3
Conv11_2 3 × 3 256 1 0 1 × 1

The SSD network model adopts multitask loss function, which mainly includes positioning and
confidence errors. The total loss function is equal to the weighted sum of position and confidence
losses, which can be expressed by the following formula:

L(x, c, l, g) =
1
N
(Lcon f (x, c) + αLloc(x, l, g)) (1)

where l represents the detection box; g represents the real box; c represents the confidence of multi-class
object; N represents the number of detection boxes that can effectively match the real box; Lcon f is the
confidence loss; Lloc is the position loss; α is the weight coefficient of position loss and confidence loss,
which is set to 1 through cross validation.

Position loss is obtained by calculating the Smooth L1 loss between the detection and the real
boxes. The offset of the coordinate center point (x, y), width w, and height h of the bounding box are
regressed to obtain the minimum value of position loss. The relevant formula is as follows:

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xk
i j · smoothL1(lmi −

_
g

m
j ) (2)

where Pos represents the aggregate of all positive samples; xk
i j indicates whether the object category

k predicted by the i-th detection box is consistent with the classification label of the j-th real box,
1 if consistent, 0 otherwise; lmi represents the coordinates of the i-th detection box; gm

j represents the
coordinates of the j-th real box.

_
g

cx
j = (gcx

j − dcx
i )/dw

i
_
g

cy
j = (gcy

j − dcy
i )/dh

i
_
g

w
j = log(gw

j /dw
i )

_
g

h
j = log(gh

j /dh
i )

(3)
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where gcx
j and gcy

j represent the coordinate center points of the j-th real box; gw
j and gh

j represent the

width and height of the j-th real box, respectively; dcx
i and dcy

i represent the coordinate center points of
the i-th detection box, respectively; dw

i and dh
i represent the width and height of the i-th detection box,

respectively.
Confidence loss is obtained by calculating the Softmax loss of the confidence of the multi-class

object, which is expressed by the following formula:

Lcon f (x, c) = −
N∑

i∈Pos

xp
ij log(

_
c

p
i ) −

∑
i∈Neg

log(
_
c

0
i ) (4)

_
c

p
i = exp(cp

i )/
∑

p
exp(cp

i ) (5)

where p represents the object category; xp
ij indicates whether the object category p predicted by the i-th

detection box is consistent with the classification label of the j-th real box;
_
c

p
i represents the probability

that the object category predicted by the i-th detection box is p, if the match is correct, then the loss is

small when the probability is great;
_
c

0
i represents the probability that the object category predicted by

the i-th detection box is background, if no object is present in the detection box, then the loss is small
when the probability is great.

2.2. Shortcomings of SSD in Vehicle Detection

SSD absorbs the advantages of Faster R-CNN and YOLO. However, the SSD network model still
has many disadvantages when it is applied to vehicle detection, including the unsatisfactory detection
effect for small-scale vehicles, low detection precision under bad weather conditions, and easy missing
detection of blocked vehicles. The analysis and summary reasons are as follows:

(1) In the front view of a smart car, the long-distance vehicle object only accounts for a small
proportion of the image area in the collected detection image, and the vehicle object scale is
small. Although the SSD network model has a multi-scale feature extraction network, the SSD
adopts a nondiscriminatory method for different scale features, and simply selects a few feature
layers for prediction without considering that the shallow and deep convolutional layers contain
different local details and textural and semantic features. Therefore, the SSD network model
has insufficient ability to extract features of small-scale vehicle objects and has yet achieved a
satisfactory detection effect.

(2) In the actual road scenes, different vehicle objects have obvious differences in characteristics,
such as color, shape, and taillights, and are easily affected by changes in lighting conditions,
severe weather interference, and road object occlusion. These conditions bring many challenges
to the accurate detection of front vehicles. The original SSD network model has poor vehicle
detection performance in complicated environments, and its robustness and environmental
adaptability are poor.

(3) In the network training process, the regression task is only for matching the correct detection box.
Accordingly, the corresponding loss will be directly set to zero when no vehicle object is present
in some pictures of the dataset; thus, the other pictures are not fully utilized. In the ranking of
confidence scores, the number of negative detection boxes is much larger than that of positive
detection boxes. Accordingly, the training network pays great attention to the proportion of
negative samples, thereby resulting in the slow training speed of the network model.

(4) When the smart car passes through intersections, urban arterial roads, and traffic jam areas,
a single detection image collected may include multiple vehicle objects, thereby inevitably
resulting in mutual occlusion between vehicle objects. However, the original SSD network model
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has poor detection performance for overlapping objects, and it is prone to miss detection in
multi-object scenes.

3. Improved SSD Network Model

3.1. Improved Basic Structure of SSD

Considering the limited feature extraction ability of the original SSD network model for small-scale
vehicle objects, the model structure needs to be reasonably improved. The direct way to enhance the
feature extraction ability is to expand the network depth by adding multiple convolutional layers.
However, this method will lead to the rapid increase in the network model parameters, which is prone to
over-fitting phenomenon and greatly reduces the detection efficiency of the training network. In recent
years, the local topology represented by the inception block gradually shines in the field of object
detection with the rapid development of deep learning and convolutional neural network. Inception
block was first proposed by Szegedy at the International Conference on Computer Vision and Pattern
Recognition (CVPR) in 2015, which was successfully applied in GoogLeNet and achieved excellent
classification and recognition results in the ILSVRC2014 (Imagenet Large Scale Visual Recognition
Challenge 2014) [36,37]. Inception block is a small network structure added to the network model.
The convolutional kernels of different sizes are used to extract features of the same input layer, thereby
greatly expanding the overall width of the network. This approach is helpful in enhancing the feature
extraction ability of the network model and to avoid over-fitting phenomenon.

SSD creates a multi-scale feature extraction network in the form of a feature pyramid by adding
multiple sets of convolutional layers behind the basic network. The shallow and high-level feature maps
are responsible for feature learning and prediction of small-scale and large-scale objects, respectively.
The shallow-level feature maps contain detailed information, but the semantic features are insufficient.
The high-level feature maps are the opposite. Each feature layer in the original SSD only relies on a
single feature input from the previous layer, which cannot achieve context information sharing during
multi-scale feature extraction, thereby greatly affecting the detection performance of the network
model. Feature fusion is an effective approach to solve this problem. Feature fusion is to process feature
layers of different scales and form a new feature layer. The fusion of high-level semantic features and
shallow detail information helps strengthen the connection between feature layers and realize context
information sharing in the network model.

Aiming at the problem that the original SSD network model has insufficient ability to extract the
features of small-scale vehicle objects in complicated environments, this study extends and deepens
the neural network and improves the basic structure of SSD by combining inception block and feature
fusion. Figure 2 shows the basic structure of the improved SSD network model, and Figure 3 presents
the internal structure of the inception block.

Figure 2 shows that the inception block has been used several times in the improved SSD network
model. First, four groups of inception blocks are added to the basic network of SSD to extract the
local features of the network. The newly created interp layers performs feature layer scale conversion
on the Conv7 and Conv8_2 layers through bilinear interpolation, and the output scale is 38 × 38,
thereby making it the same size as the Con4_3 layer. Then, the newly created concat layer combines
the above-mentioned three feature layers with the same scale into a new feature layer through
the concatenation operation to achieve feature fusion. This specific feature layer contains context
information and is used as Feature_1 to construct a new multi-scale feature extraction network after
batch normalization (BN) processing. Finally, the convolutional kernel of size 3 × 3 is used to reduce
the feature layer scale of the network layer by layer with Feature_1 as the base layer. Five feature
layers with different scales are generated. A group of inception blocks is again added, and five new
feature layers corresponding to the above-mentioned five feature layers are obtained by pooling the
Feature_1_inception layer. A new concat layer is again created, and the concatenation operation is
conducted to fuse the five groups of feature layers with the same scale one by one to form Feature_2,
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Feature_3, Feature_4, Feature_5, and Feature_6. A new multi-scale feature extraction network is
established by combining the aforementioned layers with Feature_1. The new multi-scale feature
extraction network can reuse the key features, which is conducive to improving the overall feature
extraction ability of the network model.
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Figure 3 shows that the inception block mainly uses convolutional kernels of 5 × 5, 3 × 3, and 1 × 1
to perform convolution operation on the input features, and two 3 × 3 convolutional layers in series are
used instead of 5 × 5 convolutional layers. The advantage of this structural design is that it can further
reduce the parameters of the model while keeping the original receptive field unchanged. The feature
extraction ability of the inception block can be improved by introducing nonlinear transformations.
In the internal structure of the inception block, the ratio of the number of convolutional kernels of
5 × 5, 3 × 3, and 1 × 1 is 1:2:1. The 1 × 1 convolutional layer is added in front of the 5 × 5 and 3 × 3
convolutional layers to reduce the number of input feature channels and the overall calculation. At the
end of the structure, two 1 × 1 convolutional layers are added after the concat layer to further enhance
the nonlinear computing ability of the inception block.

The network model can extract the features of the hidden layers in the network to the greatest
extent and fully share the context information by using the inception block and feature fusion.
This approach helps in enhancing the feature extraction ability for small-scale vehicle objects in
complicated environments. Although the improved SSD network model increases the structural
complexity and the number of parameters, it does not have a significant impact on the computational
load because the scale of the feature layer is kept in a small range, and BN processing is used several
times. It can ensure that the model has a fast training speed and good real-time detection performance
while improving the level of feature extraction.
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3.2. Weighted Mask

In the original SSD training network, when a picture has no vehicle objects in the dataset,
the corresponding classification loss function will be directly set to zero, and the remaining valuable
images in the dataset cannot be fully utilized. Considering that the number of negative detection boxes
is much larger than that of positive detection boxes, the detection boxes with high confidence scores
are used. The ratio of positive and negative samples is controlled to 1:3, which undoubtedly reduces
the convergence speed of the training network.

On the basis of the shortcomings of the original SSD network model during training, this paper
calculates the weighted mask for sample classification and regression tasks when using relevant
datasets for training. The calculation method of weighted mask is as follows:

(1) When K detection boxes are present, the number of positive samples is N, the number of negative
samples is M, K = N + M, and the classification label label is set.

(2) When N > 0 the weighted mask for positive sample classification is set to pos_mask = label/N.
(3) When M > 0 and the ratio of positive and negative samples is controlled to 1:3, the weighted

mask for negative sample classification is set to neg_mask = {1− label}/M× 3.
(4) The weighted mask used for classification task is cls_mask = pos_mask + neg_mask
(5) Assuming that the weight coefficient of regression task is α the weighted mask used for regression

task is reg_mask = pos_mask× α.
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This study ensures that the training network pays great attention to the sample data with high
classification difficulty by using weighted mask in the training process. This approach is beneficial to
solve the problem of the imbalance between the background and the positive and negative sample
data and further accelerate the training speed of the network model.

3.3. Improved Loss Function

The original SSD network model has a good detection effect on a single-vehicle object in simple
environments. However, this model cannot achieve satisfactory detection results when detecting
many vehicle objects in the multi-object scenes or vehicle objects with severe occlusion. The missing
detection, false detection, and inaccurate object positioning easily appear.

Considering the above-mentioned deficiencies, this study improves the loss function and adds
exclusion loss on the basis of the original position and confidence losses. The improved loss function
can be expressed by the following formula:

L = L(x, c, l, g) + γLRepGT (6)

where LRepGT is the exclusion loss, and γ is the weight coefficient, which is used to balance the
auxiliary loss.

This study allows P+ = {P} to represent the aggregate of all candidate boxes with IoU greater than
0.5, and G+ = {G} to represent the aggregate of all real boxes. In any candidate box P ∈ P+, this study
allows the real box with a large IOU as its specified object, namely:

GP
Attr = arg max

G∈G+

IoU(G, P) (7)

Given that the exclusion loss aims to make the candidate box repel the adjacent real box,
the exclusion object for any candidate box P ∈ P+ is the real box with a large IoU except the specified
object, namely:

GP
Rep = arg max

G∈G+{GP
Attr}

IoU(G, P) (8)

This study allows BP to be the detection box regressed from candidate box P. The overlapping
IoG between BP and GP

Rep can be expressed by the following formula:

IoG(BP, GP
Rep) =

area(BP
∩GP

Rep)

area(GP
Rep)

(9)

The exclusion loss can be calculated by the following formula:

LRepGT =
IoG(BP, GP

Rep)

|P+|
(10)

The exclusion loss is used to increase the distance between the detection box and the surrounding
nonvehicle objects. If an overlap area with the surrounding nonvehicle objects is observed, then the
detection box will be subject to additional penalties. The penalty will be great when the overlap area is
large, and vice versa. Therefore, adding exclusion loss on the basis of the original loss function can
prevent the detection box from moving to adjacent nonvehicle objects. This approach is helpful in
accurately locating vehicle objects and effectively improving the detection performance for overlapping
objects in multi-object scenes.
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4. Vehicle Detection Experiments and Discussion

4.1. Experimental Environment

The software environment is as follows: Windows 10 64-bit operating system, TensorFlow deep
learning framework, CUDA 9.1, cuDNN 7.1, Python 3.7.0, and MATLAB R2018a.

The hardware environment is as follows: Intel (R) Core (TM) i7-7700 CPU@3.60 GHz processor,
32 GB memory, and NVIDIA GeForce GTX 1080Ti GPU, 11 GB.

4.2. Vehicle Detection Experiment Based on KITTI Dataset

4.2.1. KITTI Dataset

This article uses the KITTI vision benchmark suite for vehicle detection experiments, which was
jointly developed by Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago.
This dataset has now become an internationally used algorithm evaluation dataset for autonomous
driving scenarios. KITTI dataset mainly focuses on performance evaluation of various computer
vision technologies, including optical flow, stereo image, visual ranging, and object detection [38,39].
This dataset covers real road images in several scenarios, such as cities, villages, and highways.
Each sample image contains up to 15 vehicle objects and 30 pedestrian objects, and the image size is
1242 × 375 pixels. The whole dataset is composed of video streams collected with binocular cameras,
and it can be divided into five categories: road, city, residential, campus, and person.

KITTI dataset includes label data and does not require manual annotation, thereby providing
reliable image content information for model training. Considering that 7481 sample images with
corresponding label files are present in the dataset, 5985 images are divided as the training set,
and 1496 images are divided as the testing set. The ratio of the training set to testing set is 4:1.
The sample images can be divided into eight categories according to the object classification of
annotation information: car, van, truck, pedestrian, pedestrian (sitting), cyclist, tram, and misc or
“dontcare”. During the data preparation, all label files need to be converted from txt format to XML
format required for SSD training. This work only retains car, van, truck, and tram and eliminates other
irrelevant categories due to the focus on vehicle object detection. Figure 4 presents the example image
of the KITTI dataset.

 

Figure 4. The example image of the KITTI dataset.

4.2.2. Network Training and Evaluation Indexes

In this study, the stochastic gradient descent method is used for optimization. The weight
parameters of the training network are continuously updated by using the back propagation algorithm.
The initial learning rate is set to 0.001, the momentum factor is set to 0.9, and the weight attenuation
factor is set to 0.0005. The size of the learning rate is closely related to the convergence speed of the
training network. If the setting is large, then the network model will not converge. By contrast, if the
setting is small, then the convergence speed will be slowed down. In this study, the maximum number
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of iterations of the training network is 20,000. The learning rate is set to 0.001 in the first 12,000 times,
0.0001 from 12,000 to 16,000 times, and 0.00001 after 16,000 times. The L2 regularization is used for
the loss function to prevent overlearning the features of the training set and avoid the occurrence of
over-fitting. Figure 5 shows the loss functions of SSD before and after improvement.

 

Figure 5. The loss functions of SSD before and after improvement.

The aforementioned figure demonstrates that the improved loss function is slightly larger than
that of the original at the beginning of training. This condition may be due to the improvement of
the loss function and the addition of exclusion loss. However, the improved loss function value is
quickly lower than that of the original with the continuous iteration of the training network and
finally gradually decreases to zero, thereby reflecting the advantage of using weighted mask. As the
number of iterations is 3400, the distance between the two loss functions reaches the maximum. As the
maximum number of iterations reaches 20,000, the distance between the two loss functions achieves
the minimum. In summary, the convergence speed of the improved SSD network model is higher,
thereby indicating that the problem of sample data imbalance has been effectively solved.

In the vehicle detection algorithm, evaluation indexes must be used to accurately evaluate the
detection performance. Considering that the detection image includes positive and negative samples,
four prediction cases are present for the detection result, and the confusion matrix is shown in Figure 6.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 20 

 

The aforementioned figure demonstrates that the improved loss function is slightly larger than 
that of the original at the beginning of training. This condition may be due to the improvement of 
the loss function and the addition of exclusion loss. However, the improved loss function value is 
quickly lower than that of the original with the continuous iteration of the training network and 
finally gradually decreases to zero, thereby reflecting the advantage of using weighted mask. As the 
number of iterations is 3400, the distance between the two loss functions reaches the maximum. As 
the maximum number of iterations reaches 20,000, the distance between the two loss functions 
achieves the minimum. In summary, the convergence speed of the improved SSD network model is 
higher, thereby indicating that the problem of sample data imbalance has been effectively solved. 

In the vehicle detection algorithm, evaluation indexes must be used to accurately evaluate the 
detection performance. Considering that the detection image includes positive and negative 
samples, four prediction cases are present for the detection result, and the confusion matrix is 
shown in Figure 6. 

 
Figure 6. Confusion matrix. 

The evaluation indexes, such as precision, recall and mean average precision (mAP), can be 
calculated according to the confusion matrix. 

In this article, precision refers to the proportion of samples whose detection results are the 
vehicle objects that are correctly detected, and it can be expressed as follows: 

TPP
TP FP


  

(11)

Recall refers to the proportion of vehicle objects that are correctly detected, and it can be 
expressed as follows: 

TPR
TP FN


  

(12)

mAP is one of the important evaluation indexes of object detection algorithms, and it can be 
expressed as follows: 

1

0
( )

=
P R dRAP

mAP
N N




 
(13)

where N is the category number of the objects. 

4.2.3. Experimental Test Results and Analysis 

In the NMS algorithm, the IoU threshold needs to be manually set. Different IoU thresholds 
will produce diverse precision and recall, and the setting of the IoU threshold is closely related to 
the detection performance of the network model. After repeated experimental tests, the IoU 
threshold is set to 0.5. Figure 7 shows the precision-recall curves about the original and improved 
SSD. The P–R curve uses recall and precision as the horizontal and vertical coordinates, respectively, 
which is a common curve used to measure the performance of the detection algorithm. The 
corresponding recall is low when the precision is high. When precision is at a high value, the 
probability of false detection is low. When recall is at a high value, the probability of missing 
detection is low. 

Figure 6. Confusion matrix.

The evaluation indexes, such as precision, recall and mean average precision (mAP), can be
calculated according to the confusion matrix.
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In this article, precision refers to the proportion of samples whose detection results are the vehicle
objects that are correctly detected, and it can be expressed as follows:

P =
TP

TP + FP
(11)

Recall refers to the proportion of vehicle objects that are correctly detected, and it can be expressed
as follows:

R =
TP

TP + FN
(12)

mAP is one of the important evaluation indexes of object detection algorithms, and it can be
expressed as follows:

mAP =

∑
AP
N

=

∑∫ 1
0 P(R)dR

N
(13)

where N is the category number of the objects.

4.2.3. Experimental Test Results and Analysis

In the NMS algorithm, the IoU threshold needs to be manually set. Different IoU thresholds will
produce diverse precision and recall, and the setting of the IoU threshold is closely related to the
detection performance of the network model. After repeated experimental tests, the IoU threshold is
set to 0.5. Figure 7 shows the precision-recall curves about the original and improved SSD. The P–R
curve uses recall and precision as the horizontal and vertical coordinates, respectively, which is a
common curve used to measure the performance of the detection algorithm. The corresponding recall
is low when the precision is high. When precision is at a high value, the probability of false detection is
low. When recall is at a high value, the probability of missing detection is low.Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 

 

 
Figure 7. The precision-recall curves about the original and improved SSD. 

The above-mentioned figure demonstrates that the improved P–R curve is more inclined to the 
upper right corner than the original one, thereby indicating that the detection performance of the 
improved SSD is better than the original one. When the recall is 90%, the improved precision is 70%, 
while that of the original is 50%. The area enclosed by the P–R curve and two coordinate axes of the 
improved is larger than that of the original, thereby reflecting that the improved SSD has obvious 
advantages in average detection precision. 

The KITTI testing set is used for vehicle detection test, and test results in various complicated 
environments are illustrated in Figures 8–12. Among them, panel (a) and (b) are carried out based 
on the original and improved SSD, respectively. Figure 8 shows that in the shadow environment, 
the original SSD only detects four vehicle objects at a short distance, while the others at a long 
distance are missed. However, the improved SSD achieves the detection of all vehicle objects, and 
the confidence scores have been enhanced to a certain extent. Figure 9 indicates that the original 
SSD has the cases of missing detection and inaccurate positioning for small-scale vehicle objects, 
and the improved SSD achieves valid detection and accurate positioning of multi-scale vehicle 
objects. Figure 10 shows that multiple vehicle objects are blocked to varying degrees, and the 
original SSD causes a great deal of missing detection on the vehicle objects that are heavily blocked, 
and inaccurate positioning for vehicle objects at a long distance can be observed. By contrast, the 
improved SSD achieves valid detection of all cars and vans. Figure 11 shows that the vehicle objects 
are located at the road intersection, which is the typical traffic accident prone area. The original SSD 
only detects the vehicle objects with obvious feature information, and the improved SSD correctly 
detects all vehicle objects and effectively improves the corresponding confidence scores. Figure 12 
demonstrates that in the traffic jam environment, the object density is high and mostly back-viewed. 
The original SSD causes missing detection on the vehicle objects in the far-field of view, and the 
improved SSD still realizes valid detection of all vehicle objects. 

 

Figure 7. The precision-recall curves about the original and improved SSD.

The above-mentioned figure demonstrates that the improved P–R curve is more inclined to the
upper right corner than the original one, thereby indicating that the detection performance of the
improved SSD is better than the original one. When the recall is 90%, the improved precision is 70%,
while that of the original is 50%. The area enclosed by the P–R curve and two coordinate axes of the
improved is larger than that of the original, thereby reflecting that the improved SSD has obvious
advantages in average detection precision.
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The KITTI testing set is used for vehicle detection test, and test results in various complicated
environments are illustrated in Figures 8–12. Among them, panels (a) and (b) are carried out based
on the original and improved SSD, respectively. Figure 8 shows that in the shadow environment,
the original SSD only detects four vehicle objects at a short distance, while the others at a long distance
are missed. However, the improved SSD achieves the detection of all vehicle objects, and the confidence
scores have been enhanced to a certain extent. Figure 9 indicates that the original SSD has the cases of
missing detection and inaccurate positioning for small-scale vehicle objects, and the improved SSD
achieves valid detection and accurate positioning of multi-scale vehicle objects. Figure 10 shows that
multiple vehicle objects are blocked to varying degrees, and the original SSD causes a great deal of
missing detection on the vehicle objects that are heavily blocked, and inaccurate positioning for vehicle
objects at a long distance can be observed. By contrast, the improved SSD achieves valid detection of
all cars and vans. Figure 11 shows that the vehicle objects are located at the road intersection, which is
the typical traffic accident prone area. The original SSD only detects the vehicle objects with obvious
feature information, and the improved SSD correctly detects all vehicle objects and effectively improves
the corresponding confidence scores. Figure 12 demonstrates that in the traffic jam environment,
the object density is high and mostly back-viewed. The original SSD causes missing detection on
the vehicle objects in the far-field of view, and the improved SSD still realizes valid detection of all
vehicle objects.

The vehicle detection test results show that the detection performance of the improved SSD
network has laudable advantages, which is mainly attributed to the improvement of SSD basic
structure and loss function. The proposed vehicle detection algorithm has excellent robustness and
environmental adaptability for complicated traffic environments and road scenes, and the detection
precision has been further improved.

 
(a) Original 

 
(bb) Improved 

b

Figure 8. Vehicle detection test results in the shadow environment based on the original and
improved SSD.
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b

 
(a) Original 

 
(b) Improved 

Figure 9. Vehicle detection test results for multi-scale objects based on the original and improved SSD.

 
(a) Original 

 
(bb) Improved 

b

Figure 10. Vehicle detection test results under occlusion based on the original and improved SSD.
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Figure 11. Vehicle detection test results at the road intersection based on the original and improved SSD.

 
(a) Original 

 
(bb) Improved 

Figure 12. Vehicle detection test results in the traffic jam environment based on the original and
improved SSD.
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4.3. Vehicle Detection Based on Self-Made Vehicle Dataset

This study also conducts a performance test on the basis of a self-made vehicle dataset to fully check
the comprehensive detection performance of the proposed algorithm, in addition to the public KITTI
dataset. The self-made vehicle dataset mainly comes from the vehicle collection images in the actual
road scenes, including five types of weather, such as sunny, cloudy, rainy, snowy, and mild smoggy
days, which can fully display various weather conditions that may be encountered. The training
samples in the self-made vehicle dataset are labeled by the Ground Truth Labeler toolbox in MATLAB
software, and negative samples of nonvehicle objects are added. The training set contains 4500 images,
the testing set contains 1500 images, and the ratio of the training set to testing set is 3:1. The original
and improved SSD network models are used to carry out vehicle detection experiments. After data
statistics and classification, the vehicle detection test results under different weather conditions are
illustrated in Table 2.

Table 2. The vehicle detection test results under different weather conditions.

Sequence Number Weather Condition Original mAP (%) Improved mAP (%)

1 Sunny 91.56 95.78
2 Cloudy 88.72 93.66
3 Rainy 86.65 92.25
4 Snowy 86.34 92.02
5 Mild Smoggy 80.21 85.10

Total - 86.70 91.76

The aforementioned table demonstrates that the vehicle detection precision of the improved SSD
network model is higher than that of the original network model under the same weather conditions.
In the original mAP, the detection precision in sunny days is highest, reaching 91.56%, and the detection
precision in mild smoggy days is lowest, reaching 80.21%. In the improved mAP, the detection precision
in sunny days is highest, reaching 95.78%, and the detection precision in mild smoggy days is lowest,
reaching 85.10%. In summary, the mAP of the improved is 91.76%, and that of the original is 86.70%.
Test results show that the vehicle detection precision is high when the weather visibility is also high,
and vice versa. The proposed detection algorithm can adapt to different weather conditions and still
has high accuracy under bad weather conditions, thereby reflecting strong anti-jamming capabilities,
which can be well applied to the front vehicle detection for autonomous vehicles.

4.4. Discussion

The proposed algorithm is compared with other methods to check the technical level of vehicle
detection algorithm. Table 3 illustrates the performance comparison statistics of algorithms on the
basis of the KITTI dataset.

Table 3. The performance comparison statistics of algorithms on the basis of the KITTI dataset.

Sequence
Number Method Easy Moderate Hard mAP (%)

Average
Processing Time

(ms)/Frame
System Environment

1 Pointpillars [40] 88.35 86.10 79.83 84.76 16 Intel i7 CPU and 1080Ti GPU

2 MS-CNN [41] 90.03 89.02 76.11 85.05 400 Intel Xeon E5-2630 CPU@2.40
GHz; NVIDIA Titan GPU

3 HybridNet [42] 88.68 87.91 79.07 85.22 45 NVIDIA GTX 1080Ti GPU

4 Original SSD 90.67 89.56 82.39 87.54 28
Intel(R) Core(TM) i7-7700
CPU@3.60GHz; NVIDIA

GeForce GTX 1080Ti GPU

Ours Improved SSD 95.76 94.55 86.23 92.18 15
Intel(R) Core(TM) i7-7700
CPU@3.60GHz; NVIDIA

GeForce GTX 1080Ti GPU
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The aforementioned table demonstrates that all algorithms conducted the vehicle detection
experiments on the basis of the KITTI dataset. The mAP value and average processing time per
frame are the main evaluation indexes for performance comparison. Reference [40] adopted a deep
network and encoder named Pointpillars for object detection, which can be used for end-to-end
training on LiDAR point clouds. This method had a fast detection speed for vehicle detection, but its
mAP value was the lowest among all detection algorithms, and the accuracy needed to be improved.
Reference [41] utilized a unified deep neural network called MS-CNN, which consisted of proposal
and detection sub-networks. Multi-scale object detection was realized by feedforwarding a single
input image through the network. This method achieved high vehicle detection precision. However,
the average processing time was long to meet the real-time requirements of smart cars for vehicle
detection. Reference [42] proposed a cascade object detection system on the basis of a two-stage
regression, which can achieve rapid detection of vehicle objects, by referring to the advantages of
two-stage and one-stage detection methods. In comparison with reference [41], the detection precision
and speed obtained by this method were improved by different ranges and can still be further enhanced.
The average processing time of the original SSD network model is comparatively short. However,
the mAP value is still relatively low, thereby resulting in missing or false detection in complicated
environments. In comparison with the above-mentioned algorithms, the comprehensive detection
performance of the proposed algorithm is the best. The AP values in easy, moderate and hard modes
are all the highest, and the mAP value is the largest, reaching 92.18%, and the average processing time
per frame is the shortest, reaching 15 ms. Compared with the existing deep learning-based detection
methods, the improved SSD network model enables the proposed algorithm to obtain accuracy and
real-time performance simultaneously, which is conducive to the realization of fast and accurate
automatic vehicle detection. This is of great significance to ensure the accurate and efficient operation
of smart cars in the real traffic scenes, which helps to vastly reduce the incidence of traffic accidents
and fully protect people’s lives and property.

5. Conclusions

In this article, a front vehicle detection algorithm for smart car based on improved SSD model is
proposed. First, the SSD network model is briefly introduced, and its problems and shortcomings in
vehicle detection are analyzed and summarized. Then, targeted improvements are performed to the
SSD network model, including major advancements to the basic structure of the SSD model, the use of
weighted mask in network training, and enhancement to the loss function. Finally, vehicle detection
experiments are carried out on the basis of the KITTI and self-made vehicle datasets to observe the
algorithm performance in different complicated environments and weather conditions. The test results
based on the KITTI dataset show that the mAP value reaches 92.18%, and the average processing time
per frame is 15 ms. Compared with the existing deep learning-based detection methods, the proposed
algorithm can obtain accuracy and real-time performance simultaneously, which is conducive to the
realization of fast and accurate automatic vehicle detection. Meanwhile, the algorithm has excellent
robustness and environmental adaptability for complicated traffic environments and anti-jamming
capabilities for bad weather conditions.

In terms of the accuracy rate and working efficiency, the proposed vehicle detection algorithm has
outstanding performance advantages, which is of great significance to ensure the accurate and efficient
operation of smart cars in the real traffic scenes, and is beneficial to vastly reduce the incidence of
traffic accidents and fully protect people’s lives and property. In the future, we can continue to focus
on vehicle detection algorithms under extreme conditions and FPGA implementation of algorithms to
further promote the comprehensive performance and practical meaning of the algorithm.
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