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Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to
their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the
effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of
the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on
the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for
treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombo-
lytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a
structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot
lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition,
and (v) risks of side effects. This information needs to be carefully considered while establishing protein engi-
neering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are
discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity
by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and
targeted release, the application of adjuvants, and the development of improved production systems.
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1. Introduction

1.1. Plasminogen Activators

Thrombolytics are widely used in the treatment of thrombotic dis-
eases. The first thrombolytic drug - streptokinase - revolutionized the
treatment of acute myocardial infarction [1]. Nowadays, thrombolytics
are used for the treatment of acute myocardial infarction, acute ischemic
stroke, pulmonary embolism, and other diseases. The advantages of
thrombolytic therapy over mechanical clot-removal methods are cost-
effectiveness, early onset of effect, the outlook for prehospital use, and
availability in the developing countries with limited access to special-
ized centers providingmechanical clot-removal methods [2]. Thrombo-
lytics activate the endogenous proenzyme plasminogen and convert it
to the active form plasmin, which degrades fibrin and dissolves the
blood clot (Fig. 1).

Study of the two endogenous plasminogen activators, tissue plasmin-
ogen activator (t-PA) and urokinase, resulted in finding their numerous
roles in human pathophysiology. Many side-effects were described
upon administration of t-PA into the brain, mainly intracranial hemor-
rhage, brain edema, excitotoxicity, and neuroinflammation [3–5]. Consid-
eration of these side-effects is therefore critical during both treatment
and development of new therapeutics. Recent studies revealed the po-
tential of targeting the fibrinolytic system for treating neurodegenera-
tive and psychiatric disorders [6–8]. Urokinase has a crucial role in cell
migration and neoangiogenesis. Specific inhibitors of urokinase have
proven to inhibit metastasis of various tumors, both in vitro and
in vivo [9].

1.2. Thrombolysis

Plasminogen activators can be divided by their mode of action into
two groups: (i) direct and (ii) indirect. Direct plasminogen
activators are eukaryotic serine proteases which activate plasmino-
gen by its cleavage at the Arg561-Val562 bond, resulting in catalyti-
cally active plasmin. Examples of direct plasminogen activators are
t-PA [10], urokinase [11] or their variants [12]. Indirect plasminogen
activators are prokaryotic proteins which bind a molecule of plas-
minogen and induce its conformational change in a way that it can
directly convert another molecule of plasminogen to plasmin.
Plasmin then cleaves fibrin and eventually dissolves the thrombus.
Examples of indirect plasminogen activators are streptokinase and
staphylokinase.

Plasminogen is a 791 amino acids long trypsin-like serine protease
glycoprotein [13] with a molecular weight of 93 or 98 kDa, depend-
ing on the glycoform [14]. It can be glycosylated at Ser249, Asn289,
Thr340, and Thr346 [15], and phosphorylated at Ser578 [16]. It con-
sists of a PAN/apple domain, five kringle domains, a flexible linker
where cleavage occurs, and a serine protease domain with a catalytic
triad His603, Asp646, and Ser741 [15]. The kringle domains contain
lysine binding sites which allow plasminogen to bind fibrin and
other substrates containing N-terminal lysines. Both epsilon-
aminocaproic acid and tranexamic acids bind to the lysine binding
sites of plasminogen and plasminogen activators such as t-PA and
urokinase. Hence, these acids act as competitive inhibitors and are
used as antifibrinolytic drugs [17]. Plasminogen can be activated
into plasmin by the Arg561-Val562 bond cleavage by a direct plas-
minogen activator [18] or via an indirect mechanism. The residues
on the N-terminal side of the cleavage (1–561) form the A chain,
which contains the apple domain and five kringle domains. These
five domains mediate affinity to fibrin, cellular receptors and other
substrates [19,20]. The A chain is linked to the B chain via disulfide
bonds Cys548-Cys666 and Cys558-Cys566. The seven domains of
the native form of Glu-plasminogen are in a closed activation-
resistant conformation [21], which loosens up after (i) binding fibrin
or (ii) removal of amino acids 1–77 by plasmin, becoming Lys-



Fig. 1. A general principle of thrombolysis. Well-characterized plasminogen activators (tissue plasminogen activator, urokinase, desmoteplase, streptokinase, staphylokinase) show a
unifying principle of activating plasminogen into the active form plasmin. If plasmin is bound to the surface of a fibrin clot, it digests selectively only fibrin to form soluble fibrin
degradation products. This process cannot be inhibited by α2-antiplasmin or α2-macroglobulin because the recognition site of plasmin is sterically hindered by bound fibrin. If plasmin
is generated in circulating blood, it can digest fibrinogen and factor VIII instead of fibrin. This process is rapidly inhibited by α2-antiplasmin or α2-macroglobulin. Fibrinogenolysis and
subsequent plasminemia caused by inhibition often lead to extensive bleeding complications. As a consequence, only plasminogen activator highly selective towards fibrin-bound
plasminogen can be effective in the treatment of cardiovascular diseases.
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plasminogen [22]. Lys-plasminogen is less resistant to activation.
The crystal structure of full-length plasminogen has been elucidated,
revealing the closed conformation [23]. Full-length plasminogen
promotes neoangiogenesis via extracellular matrix degradation
[24]. Plasmin is cleaved by serine proteases and matrix metallopro-
teinases into angiostatin, a potent angiogenesis inhibitor [25].
There are two forms of angiostatin: (i) the one corresponding to do-
mains K1–K4, and (ii) a shorter fragment of plasminogen consisting
of domains K1–K3 [26]. Angiostatin inhibits angiogenesis by numer-
ous pathways such as competing with plasmin on annexin A2/
S100A10, regulating intracellular pH of endothelial cells, and
interacting with other receptors on the endothelial membrane
[27]. The crystal structure of the K1–K3 angiostatin has been
elucidated [28].

Development of novel plasminogen activators aims to improve
thrombolytic effectivity which is determined by the number of pa-
tients with successful recanalization of the clotted vessel. Thrombo-
lytic effectivity is mediated by four main mechanisms: (i) rate of
fibrin-specific activation of plasminogen by a plasminogen activator
in the clot [29], (ii) penetration of plasminogen activator into the
clot [30–32], (iii) resistance to inhibition [33–35], and (iv) clearance
through the uptake by cell receptors [28–30]. Important is also time
to recanalization in acute myocardial infarction [36,37] and volume
of reperfused brain tissue in arterial ischemic stroke [38–40]. Time
to recanalization is influenced by both the effectivity of the
Table 1
A comparison of three generations of thrombolytics in terms of their structure and biological p

Thrombolytics Domains Protein data bank
IDs

Mode
action

First generation
Streptokinase α, β, γ 1BML Indire
Urokinase EGF, K1, P 4DVA, 2I9B Direct

Second generation
Tissue plasminogen activator F, EGF, K1, K2, P 1TPG, 1TPK,

1BDA
Direct

Third generation
Desmoteplase F, EGF, K1, P 1A5I Direct
Staphylokinase α 1BUI Indire

a Prourokinase is fibrin-selective, urokinase is not fibrin-selective.
thrombolytic to degrade the blood clot and the time which elapses
from the occlusion until the thrombolytic is applied [2].

Moreover, the treatment outcome is influenced by harmful
side-effects: (i) bleeding complications, (ii) reocclusion [41,42],
(iii) neurological side effects such as excitotoxicity [43,44] and
damaging of the blood-brain barrier [45] leading to subsequent
development of intracranial hemorrhage and brain edema. The
side effects limit the usage of thrombolytics approved by
the Food and Drug Administration in acute ischemic stroke by a
therapeutic time window of 4.5 h from symptom onset [46].
Prolonging the therapeutic time window by avoiding the side-
effects could lead to thrombolytic therapy for more patients.
Given that time to therapy is a crucial predictor of the outcome,
striving for less pronounced side-effects or pre-hospital therapy
could lead to earlier application of thrombolytics, and therefore a
better outcome [2]. Immunogenicity is another major concern for
non-human plasminogen activators.

The most commonly clinically used thrombolytics is t-PA [12].
One of the advantages of t-PA (Table 1) over the first-generation
thrombolytics is its fibrin specificity [47]. The fibrin specificity is di-
rectly connected to organization of the domains within protein mol-
ecules (Fig. 2). Non-specific thrombolytics, e.g., β-hemolytic
streptococcal streptokinase and the second endogenous thrombo-
lytic, urokinase, cause plasma fibrinogen depletion and bleeding
complications (Fig. 3). The disadvantage of high fibrin specificity of
roperties.

of Fibrin
affinity

Fibrin
selectivity

Half-life
[min]

Risk of
inhibition

Risk of
side-effects

ct None None 10 Low High
None Low/nonea 8 High High

Moderate Moderate 4.5 High Low

High High 138 Low Low
ct None High 6 Low Moderate



Fig. 2. Comparison of domain organization in eukaryotic and prokaryotic plasminogen activators. The corresponding domains for the eukaryotic proteins t-PA, urokinase, and
desmoteplase – finger F, epidermal growth factor EGF, kringle K1, kringle K2, serine protease P – are depicted with individual colors. Glycosylation sites are marked with a green Y
symbol, phosphorylation sites with a purple P symbol, catalytic residues with a red asterisk *, disulfide bridges with a blue line, and the site of the proteolytic cleavage is marked with
a yellow triangle Δ. The individual domains α, β, and γ are marked with corresponding colors for prokaryotic proteins streptokinase and staphylokinase. The missing domains in
homologous proteins are illustrated with a dashed line.
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t-PA is front-like lysis, where most of the t-PA binds to the first mi-
crometers of the fibrin clot. This binding hinders the penetration of
t-PA inside and disables the lysis in the whole volume of the clot,
causing non-optimal effectivity. This uneven lysis pattern can lead
to the formation of smaller clots which are released from the blood
vessel wall and can cause reocclusion [30,32,48]. The third genera-
tion of thrombolytics are: (i) derivatives of t-PA engineered for en-
hanced half-life, penetration into a clot, fibrin specificity and
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resistance to inhibition, e.g., reteplase, tenecteplase, duteplase,
monteplase, lanoteplase, pamiteplase, amediplase [12], (ii)
desmoteplase from the vampire bat saliva, and (iii) fibrin-specific
prokaryotic staphylokinase.
2. Tissue Plasminogen Activator

2.1. Biological Function

Besides fibrin-specific thrombolysis, t-PA also has many roles in the
brain (Fig. 4). A high concentration of t-PA in the bloodstream during
therapeutic thrombolysis can result in deleterious side-effects. t-PA is
amodulator of cerebral bloodflow and blood-brain barrier permeability
in response to neuronal activity and facilitates memory formation and
response to brain injury [3,29,45,49–53]. Both t-PA and the t-PA-PAI-1
complex have effects on blood vessel tone. The t-PA-PAI-1 complex in-
duces vasodilation whereas t-PA alone induces vasoconstriction. Vaso-
dilation can have beneficial effects of better penetration into the blood
clot, which could be a downside of tenecteplase [54].
Fig. 3. Comparison of key properties of eukaryotic and prokaryotic plasminogen activators. The s
= high potential). The radial plots are based on the values published in the scientific articles c
2.2. Molecular Structure

T-PA is a 527 amino acids long glycoprotein belonging to the trypsin-
like serine protease family (Fig. 5). It exists in two glycoforms: type 1
and type 2 t-PA with a molecular weight of 66 or 63 kDa, respectively.
Type 1 has oligosaccharides bound at both Asn448 and Asn184, while
type 2 is glycosylated at Asn448 only [55]. T-PA carries 17 disulfide brid-
ges which make it hard to express in prokaryotic systems and many
studies are focused on improvement of its production. T-PA is composed
of five domains [56]: (i) the fibronectin-like finger F domain (residues
1–49), (ii) the epidermal growth factor EGF domain (50–87), (iii)
kringle K1 domain (88–175), iv) kringle K2 domain (176–256), and
v) the serine protease P domain (257–527, Fig. 6).

The domain F contributes to about 80 % of the affinity to fibrin [57]. It
also binds to annexin A2/S100A10 located on the cell surface [58] and is
involved in the low-density lipoprotein receptor-related protein 1
(LRP1) binding together with the domains EGF and K1 [59]. The EGF do-
main activates the EGF receptor [60] and is fucosylated on Thr61 [61].
The domain K1 binds to the mannose receptor (MR) expressed in liver
endothelial and Kupffer cells by high-mannose oligosaccharide linked
ize of the blue area quantifies the overall potential for clinical use of the protein (large area
ited throughout this review article.



Fig. 4. Interactions of t-PA on the blood-brain barrier. On the endothelial cell surface, tissue plasminogen activator (t-PA) binds annexin A2/S100A10. This leads to plasminogen activation
on the cell surface. The free form, as well as inhibitor complexes of t-PA, are endocytosed by asialoglycoprotein receptor (AGPR), mannose receptor (MR), and low-density lipoprotein
receptor-related protein 1 (LRP1), leading to their clearance. T-PA can cross the intact blood-brain barrier (BBB) via LRP1-dependent transcytosis. In the brain parenchyma, it can
activate matrix metalloproteinases and interact with the N-methyl-D-aspartate receptor (NMDAR). These effects are inhibited by neuroserpin 1, the inhibitor of tPA in the brain
parenchyma.
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to Asn117 [62]. The domain K2 plays a crucial role in the stimulation of
proteolytic activity by fibrin [63] and by other lysine-containing sub-
strates [64]. The domain K2 contains a negatively charged lysine binding
site around Asp236 [65] which binds fibrin, amyloid beta aggregates
[66],N-methyl-D-aspartate receptor (NMDAR) [67], and others via non-
specific interactionwith C-terminal and intra-chain lysines [68]. The do-
main P is catalytically active and carries a catalytic triad of His322,
Asp371, and Ser478 [69].

2.3. Mechanism of Activation and Specificity

Most serine proteases are expressed in an inactive, single-chain form
and must be cleaved to the two-chain active form. T-PA is cleaved be-
tween Arg275-Ile276 by plasmin [70] into N-terminal “A chain” and
Fig. 5. The primary structure of tissue plasminogen activator. Individual domains – finger (F), ep
residues, cysteine-bridges, cleavage sites and sites of post-translational modification are highli
the C-terminal “B-chain” which are connected by a single disulfide
bond between Cys264-Cys395 [71]. While other serine proteases are
more than 107 times less active in the single-chain form, t-PA has low
zymogenicity with only 5–10-fold increase in activity upon cleavage
[72]. The catalytic activity of t-PA is regulated by a dynamic conforma-
tional equilibrium of the activation domain [39,73,74] restricting the
binding of plasminogen in the inactive states. Activation domain con-
tains the catalytic triad, an oxyanion hole and an S1 specificity pocket
[69]. Active conformations are favored when a salt bridge is formed be-
tween Asp477 and the N-terminal of the B-chain of two-chain t-PA.
Low zymogenicity of single-chain t-PA is caused by substitute salt bridge
of Lys429 and Asp477, which leads to an active conformation.

T-PA has a general trypsin-like specificity, preferentially cleaving
peptide bonds after Arg and a small or a hydrophobic residue. The
idermal growth factor (EGF), kringle 1 (K1), kringle 2 (K2), serine protease (P) , important
ghted as stated in the legend.



Fig. 6. Theoretical model of the tertiary structure of tissue plasminogen activator. The visualization is based on themodel kindly provided by Ashish and coworkers [78]. T-PA is composed
offive domains: finger F (green), epidermal growth factor EGF (purple), kringle K1 (orange), kringle K2 (red), and protease P (blue). Themolecule contains four glycosylation sites labeled
as green beads: Thr61, Asn117, Asn184, and Asn448. The molecule also has complex oligosaccharides attached to Asn117 and Asn448, which are shown as white surface. The K2 domain
contains a lysine binding site at Asp236 (yellow bead). The P domain can be cleaved into two chains in between Arg275 and Ile276 (orange beads). The catalytic triad of the P domain is
His322, Asp371, and Ser478 (red beads).
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plasminogen cleavage site is a Cys-Pro-Gly-Arg-Val-Val-Gly-Gly-Cys
cyclised by the flanking cysteines. The active site cleft of t-PA is specifi-
cally well suited for cleaving it since linear peptidesmimicking the plas-
minogen cleavage site are cleaved 104 times less efficiently than
plasminogen [75]. The adaptation to the cyclic sequence in plasminogen
is determined by loops around the active site [72] and the specificity for
plasminogen is enhanced by a hydrophobic exosite at the residues
420–423 [76].

2.4. Binding and Stimulation by Fibrin

T-PA variants with: (i) uncleavable single-chain form [67,77], (ii) re-
stored zymogen triad [77], or (iii) the single-chain form salt bridge
disrupted [70,72], are stimulated by fibrin to a similar activity as the
wild type t-PA. The property of fibrin stimulation limits systemic fibrin-
ogen depletion. All five domains of t-PA account for fibrin binding, with
the strongest effect of the F domain followed by the K2 domain. The
stimulation of activity is mediated by the heavy-chain domains via co-
Fig. 7. The fibrin binding sites of tissue plasminogen activator. The residues interacting with fi
(i) Arg7–Lys10 in the t-PA’s finger domain and (ii) residues His432, Arg434, Asp460, and A
terminal and intra-chain lysines of partially degraded fibrin.
localization of t-PA and plasminogen on fibrin in a productive orienta-
tion and by increasing the catalytic rate of t-PA.

The glycosylation at Asn184 insulates contacts between the F, K2,
and P domains, in the less active type 1 [78]. The orientation of the F,
E, K2, and P domains, towards each other is mediated by the domain
K1, which explains the deleterious effect of deletion of any domain on
activity and stimulation by fibrin [79]. Binding of the penta-L-lysine
peptide between the K2 and P domains stimulated the activity by in-
creasing the number of inter-domain interactions and reducing protein
dynamics [78]. Domain deletion studies have reported inconsistent re-
sults, some indicating the K1 domain is not significantly involved in
binding [57,80], whereas others suggested that one kringle domain, be
it K1 or K2, can facilitate fibrin binding [63]. The F domain contains
patch of charged residues Arg7, Asp8, Glu9 and Lys10, while the P do-
main (Fig. 7) contains a fibrin binding patch of the residues His432,
Arg434, Asp460, and Arg462 [69,81].

T-PA’s high selectivity for fibrin over fibrinogen [82] is mediated by
cryptic sites present in fibrin [83]. Cross-linked αC domain fragments
brin are shown as orange beads. Two charged patches are involved in binding of fibrin:
rg462 in the serine protease domain. The lysine binding site at Asp236 binds both C-



Fig. 8. Tertiary and quaternary structure of fibrin. (Left panel) The C-terminal part of fibrinogen (PDB ID 3GHG). The α chain of fibrinogen contains a site which can bind either t-PA or
plasminogen at the residues Aα148–160 (red). Residues γ312–324 form a site which binds t-PA (green). The sites are situated very close to the A-hole (blue bead) and B-hole (orange
bead) which in fibrin polymerization bind the A- and B-knobs, respectively. (Right panel) The t-PA and plasminogen binding sites, and the A- and B-hole are highlighted as in panel A.
Upon polymerization, the A knobs interact with the A holes, the B knobs with the B holes, and the globular C-terminal parts of the α and β chain get spatially reoriented, exposing the
buried Aα148-160 site.
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Aα392–610 contain high-affinity binding sites for t-PA and plasmino-
gen [84]. Their binding is lysine-dependent which suggests the domain
K2 binds these sites. A low-affinity binding site on fibrin (γ312–324,
Fig. 8) is positioned next to the A knob binding cavity [85]. When A
knob binds, the β globular domain is pulled away and the buried bind-
ing sitewhich can bind of t-PA or plasminogen (Aα148–160) is exposed
[86,87]. Similarly, binding of B knobs alsomakes the Aα148–160 site ac-
cessible whereas synthetic B knobs showed fibrinolysis inhibition [88].
Limited digestion by plasmin reveals new C-terminal lysines which
bind t-PA and plasminogen, resulting in stimulation of fibrinolysis
[89,90].
2.5. Inhibition

T-PA is irreversibly inhibited by proteins of the serpin family: PAI-1,
PAI-2, protease-nexin-1, and neuroserpin [91–94]. These inhibitors bind
by their reaction center loop into the active site of t-PA [94]. T-PA
cleaves the bond of its major inhibitor PAI-1 and remains covalently
bound by the catalytic serine. The interaction with PAI-1 (Fig. 9) is de-
termined by the positively charged loop 296–302 and the residue
Arg304 [95,96]. The 296–302 tetra-alanine substitution in tenecteplase
[97] or charge-reversing mutations in this region [98] can substantially
decrease the inhibition. Other strongly interacting residues represen-
ting inhibition hot-spots are Gln325, Glu326, Asp365, and Tyr368. Espe-
cially, Tyr368protrudes to the active site cleft of t-PA and restricts the S2
specificity pocket which causes resistance to most canonical serine pro-
tease inhibitors [69]. Tyr368Leu mutation improves the resistance of
t-PA to PAI-1 without compromising the activity with plasminogen
[99]. Mutation Ala419Tyr introduced into the hydrophobic pocket of
Fig. 9. Interactions of t-PA and tenecteplasewith theplasminogen activator inhibitor-1. (Left pan
their surface colored according to the surface charge (PDB ID 5BRR). T-PA contains a positively c
panel) The catalytic domain of tenecteplase (left) carries the 296–299 tetra-alanine substitutio
t-PA formed by Ala419, Gln475 and Gly501 [96] increased PAI-1 resis-
tance 30-fold and plasminogen activation 5-fold [100].

2.6. Interaction with Receptors and Clearance

Interactions of t-PA with receptors mediate many biological func-
tions (Fig. 10). The most important is binding to liver cell receptors
(LRP1), which are responsible for the short half-life of only 4.5 min
[101]. LRP1 plays amajor role in clearance, followedbyMR [62], galectin
[102], and potentially by the asialoglycoprotein receptor [55]. Gp330 is
highly homologous to LRP1 and could be responsible for the clearance
of t-PA in the kidney [103,104]. The binding sites for both free t-PA
and the t-PA-PAI-1 complex on LRP1 are on complement repeats of clus-
ter 2 of LRP1 [105]. Binding can be inhibited by the receptor antagonist
protein (RAP), which inhibits the binding both by competing for
the part of the binding site and allosterically [103,104,106]. The
ligand-binding mechanism of LRP1 employs aspartates around Ca2+

ions [101,107–110] which bind exposed lysines. In t-PA and desmot-
eplase [111], the LRP1 binding sites could be present in the F, E, and
K1 domains [58,59,112]. Tyr67Gln mutation impairs binding via an
extra oligosaccharide inserted, which hinders the interaction with
LRP1 [113]. The effects of LRP1 interactionwith t-PAmediate pleiotropic
roles of t-PA in neurophysiology [29,49], but also contribute to neuro-
logical side-effects of therapeutically used t-PA.

All these effects on the nervous system are more pronounced when
t-PA is used in the treatment of acute ischemic stroke. TheMR is proven
to bind the high-mannose oligosaccharide attached to Asn117. Deletion
of K2 reduces NMDAR-mediated neurotoxicity [114] as well as muta-
tions in the positively charged loop (296–299) [115]. On the other
hand, proteolytic activity is not necessary for NMDAR activation so the
el) The interface between t-PA (left) and the plasminogen activator inhibitor-1 (right)with
harged loop of residues 296–302which fits into a negatively charged cleft on PAI-1. (Right
n which weakens its interaction with PAI-1 (right).



Fig. 10. Schematic representation of binding of t-PA to low-density lipoprotein receptor-related protein 1 (LRP1) and binding of receptor-associated protein (RAP). (Left panel) Low-
density lipoprotein receptor-related protein 1 (LRP1) binds to t-PA via cluster 2 (red oval) of its structure. In contrast, receptor-associated protein (RAP) possesses three binding
domains, binds three clusters of LRP1 simultaneously and induces conformational changes that prevent the binding of t-PA. RAP does not compete for the same binding site but
allosterically makes the site inaccessible for t-PA binding. (Right panel) A close-up view of the LRP1-t-PA complex. The binding of t-PA to LRP1 is enhanced by an avidity effect of two
separate binding sites of t-PA that interact with distinct complement repeats of cluster 2 of LRP1.
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specific interaction remains unclear [44,115]. Desmoteplase does not
contain a lysine binding site and is not neurotoxic [116]. Interestingly,
only the single-chain form of t-PA activates NMDAR [43]. Since t-PA in-
teracts with Annexin A2/S100A10 via C-terminal lysines, the lysine
binding site on K2 domain is likely the determinant of the binding.
Annexin A2/S100A10 also binds plasminogen at the site of the cytoplas-
micmembrane and is a source of plasminogen activation on the cell sur-
face [117]. Binding to endothelial cells by t-PA’s kringle domains has
been shown to inhibit neoangiogenesis [118–120]. The binding of t-PA
to the epidermal growth factor receptor protects neurons in ischemic
conditions [60]. Binding to annexin A2/S100A10 tetramer on the surface
of vascular endothelial cells enhances the activation of plasminogen on
the cell surface and activates nuclear factor κB involved in immune re-
sponse [121–123]. Both of these effects could cause problems in throm-
bolytic therapy: (i) reocclusion complications and (ii) inflammation.

2.7. Protein Engineering

One aim of protein engineering of t-PAwas to increase its half-life. A
deletion mutant reteplase retains only the K2 and P domains [124] and
has the tetra-alanine substitution. Half-life is thus enhanced by the
elimination of binding to the MR, decreased binding to LRP1 and resis-
tance to PAI-1. Tenecteplase also contains the tetra-alanine in addition
to Thr103Asnwhich introduces a complex oligosaccharide, causing ste-
ric hindrance of clearance receptors, and Asn117Gln eliminating MR
recognition [125]. The tetra-alanine also increases fibrin specificity
[126]. Monteplase with Cys84Ser in the EGF domain has a half-life of
23 min [128]. Duteplase is a Met245Val mutant produced exclusively
as a two-chain form and possesses slower clearance rate than single
chain t-PA [127]. Lanoteplase has a prolonged half-life to 37–45 min
[128] due to the absence of a large part of the F domain, whole EGF do-
main and the Asn117Gln substitution [129]. Pamiteplase is a K1 domain
deletion mutant with a half-life of 30–47 min. It also contains the
Arg275Glu mutation which renders it uncleavable to the two-chain
form [130,131]. Amediplase is a chimeric protein composed of the first
3 residues of the F domain and the K2 domain of t-PA, combined with
residues 159–411 of the P domain of urokinase. The lower fibrin affinity
enables better penetration into the clot. It has a half-life of 30 min [12],
likely because of the absence of F, EGF, and K1 domains. A variant
consisting of the GHRP peptide mimicking the B knob of fibrin, K2,
and P domain has an increased half-life as well as improved binding to
fibrin compared to reteplase [128]. Arg275Ser mutation is preventing
the conversion to the two-chain form and thus NMDAR-mediated neu-
rotoxicity. The variant also has the lysine binding site in K2 defunct via
the Trp254Argmutation [114]. Higher fibrin binding and fibrin stimula-
tion were achieved by substituting the finger domain of t-PA by that of
desmoteplase and deleting the K2 domain [132].

3. Urokinase

3.1. Biological Function

Urokinase accelerates thrombolysis initiated by t-PA and was tested
as a synergistic therapy [48,133–136]. The implications of urokinase in
cancermake it a target for the development of urokinase-specific inhib-
itors [137] or disrupting interactionswith its receptors [138,139]. Uroki-
nase is primarily associated with plasminogen activation on the cell
surface and is involved in neoangiogenesis [140], degradation of the ex-
tracellular matrix by plasmin [141], and activation of matrix metallo-
proteinases [142,143]. These mechanisms confer the roles of urokinase
in cell migration [144], tumor metastasis [145], cell adhesion [146],
and proliferation of various cancer types [147,148].

3.2. Molecular Structure

Urokinase is a 411 amino acids long proteinwith amolecularweight
of 54 kDa [71], having a 40 % identity with t-PA [149]. It consists of the
EGF domain (1–49), a K domain (50–131) lacking a lysine binding site
[150], a flexible linker (132–158), and a serine protease domain P
(159–411) with the catalytic triad of His204, Asp255, and Ser356
(Fig. 11). Phosphorylations on Ser138 and Ser303 contribute to the sig-
naling through the urokinase receptor [151]. Urokinase is fucosylated
on Thr18 [152] and N-glycosylated on Asn304 [153]. The enzyme is se-
creted as prourokinase,which is cleaved by plasmin andother proteases
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at Lys158-Ile159 to a two-chain form called high molecular weight
urokinase [154]. Additional cleavage at Lys135-Lys136 generates the
N-terminal EGF-K fragment and low molecular weight urokinase.

3.3. Mechanism of Activation and Specificity

The conversion to two-chain form increases inter-domain flexibility
[155] which enables to interact more efficiently with its substrates and
improves the activity of urokinase about 100 times [156]. Cofactors shift
the equilibrium towards the formation of an active catalytic site [157] or
could improve the interaction of the new Ile159 N-terminus with
Asp370, analogically to the activation of t-PA [158,159].

3.4. Binding and Stimulation by Fibrin

Prourokinase cleaves relaxed plasminogen bound to fibrin [160]. In-
terestingly, prourokinase is stimulated only by fibrin fragment E, but not
fragment D, which could be due to different conformations adapted by
plasminogen when bound there. Mutation of Pro309 can make uroki-
nase stimulated byboth fragments E andDD [161]. Two-chain formuro-
kinase is not fibrin-selective and causes systemic fibrinogen depletion.

3.5. Inhibition

Urokinase is inhibited by PAI-1, PAI-2, protease-nexin [162], and
thrombin [163]. As in t-PA, the positively charged loop around His200
contributes significantly to the recognition by serpins [164]. The aim
of understanding the specific inhibition of urokinase has led to crystal-
lographic and inhibitor screening studies [164–167].

3.6. Interaction with Receptors and Clearance

Urokinase’s half-life of 8 min in the human bloodstream is medi-
ated by the receptor LRP1 and asialoglycoprotein [168]. LRP1 inter-
nalizes either free urokinase or the trimeric complex with PAI-1/
PAI-2 and the urokinase receptor. The binding to LRP1 is probably
mediated by domains EGF and K [169–172]. Plasminogen activation
on the cell surface is mediated by Ω loop of the EGF domain of uroki-
nase binding to the urokinase receptor [173–176]. When bound to
the urokinase receptor, urokinase regulates cell adhesion by cleav-
age of vitronectin [146]. The modulation of chemotaxis via interac-
tion with integrins is probably related to the presence of the
flexible linker [177,178].
Fig. 11. The catalytic serine protease domain and epidermal growth factor domains of urokin
urokinase (PDB ID 4DVA) with its triad of His204, Asp255, and Ser356 shown as red beads. (R
urokinase receptor as cyan surface. The omega loop of the amino terminal fragment which bin
3.7. Protein Engineering

Chimeric combinations of t-PA and urokinase domains possess poor
fibrin affinity [179]. Amediplase has poor fibrin affinity due to the inter-
action of the P domain from urokinase with both K domains from t-PA.
On the other hand, it has better penetration into the clot and a longer
half-life [12]. Themutation Lys300His has 10 times lower amidolytic ac-
tivity in the single-chain form and 2 times higher in the two-chain form
[180,181].

4. Streptokinase

4.1. Biological Function

Streptokinase is an exocellular plasminogen activator of the pro-
karyotic origin first described in 1933 [182]. It is naturally produced
by the strains of β-hemolytic streptococci which utilize it for over-
coming the host’s defensive fibrin barrier and for promoting bacte-
rial metastasis and colonization [183,184]. There are several
streptokinases from different streptococci which vary in their struc-
ture, but the only variant of streptokinase currently used as a throm-
bolytic agent originates from the group C streptococci (streptokinase
SK-H46A from Streptococcus equisimilis strain H46A) and lacks a sig-
nificant stimulation by fibrin [185,186]. Despite its moderate half-
life in vivo (approximately 10 min) and significantly lower cost, the
largest disadvantages are the lack of fibrin specificity and immuno-
genicity due to its bacterial origin [47,187–189].

4.2. Molecular Structure

The molecule of streptokinase consists of 414 amino acids and
the biological unit forms the monomeric protein with the molecu-
lar weight of 47 kDa [190,191]. The isoelectric point is 4.7, while
the pH optimum is between 7.3 and 7.6 [187,191]. Nuclear
magnetic resonance and circular dichroism studies [152,192]
alongside with the crystallographic analysis of the microplasmin-
streptokinase complex [193] showed that streptokinase contains
three β-grasp domains – α, β, and γ (Fig. 12). The domain α (res-
idues 1–150) mainly mediates the formation of the plasminogen
active conformation within the streptokinase-plasminogen com-
plex [194–200] and is important for the substrate recognition
[194,197,198,201–203]. The domain β (residues 151–287) is re-
sponsible for high-affinity binding during the activation of the
plasminogen “partner” [197,204–206] but it also facilitates the
ase complexed with the urokinase receptor. (Left panel) The serine protease domain of
ight panel) The EGF domain of urokinase (PDB ID 2I9B) is shown as violet surface and the
ds the urokinase receptor is highlighted in red.



Fig. 12. The binary complex of streptokinase with bound plasmin. The complex of
streptokinase and the catalytic domain of plasmin (blue) (PDB ID 1BML). Streptokinase
contains three β-grasp domains embracing the plasmin catalytic domain: domain α
(gray), domain β (red), and domain γ (green). The catalytic triad of plasmin His603,
Asp646, and Ser741 are shown as red beads.
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plasminogen “substrate” binding and processing [207–211]. Finally,
the domain γ (residues 288–414) is involved in stabilizing the
streptokinase-plasminogen complex and in inducing its proteolytic
activity [193,197,201,204,208,212–214]. Although having one or
two major functions, each domain participates in all the steps of
plasminogen activation due to the high level of cooperativity
[206,215,216].

4.3. Mechanism of Activation and Specificity

Compared to human-derived plasminogen activators, strepto-
kinase represents a thrombolytic agent with an indirect mecha-
nism of plasminogen activation (Fig. 13), i.e., it does not possess
enzymatic activity. The activation process occurs in three
Fig. 13. Schematic representation of the indirect mechanism of plasminogen activation. Pathw
plasminogen (Plg) but only SK is able to form an enzymatically active complex (SK-Plg*) wi
another free Plg molecule to active plasmin (Plm). Pathway II: An equimolar complex of SK/S
and is enzymatically active with either SK or SAK. This complex (SK-Plm/SAK-Plm) catalyzes
via Pathway II.
fundamental steps including (i) formation of an equimolar (1:1)
complex with the molecule of plasminogen (“partner molecule”),
(ii) induced intramolecular rearrangement of the complex gener-
ating an enzymatically active structure, and (iii) amidolytic con-
version of other free plasminogen molecules (“substrate
molecules”) to plasmin by the active streptokinase-plasminogen
complex [201,217–219].

The detailed mechanism of all these steps was intensively studied
and the current understanding assumes the complex behavior of all
the participating structures as follows:

1. Theβ domain of streptokinase interactswith the lysine binding site of
the kringle 5 domain of the “partner” plasminogen molecule which,
originally closed, becomesmore extended and allows all the three do-
mains of streptokinase to associate with the catalytic domain of plas-
minogen [197,206,220,221]. Affinity towards plasminogen during the
initial step is further enhanced by the C-terminal Lys414 which inter-
acts with the plasminogen’s kringle 4 domain [214,222,223].

2. Within the formed encounter complex, the N-terminal amino group
of Ile1 residue of streptokinase forms a salt bridge with Asp740 of
plasminogen [195,199,200,207] and simultaneously, additional salt
bridges between the γ domain of streptokinase and the catalytic do-
main of plasminogen are created [201,212]. These interactions cause
conformational changes, open the active site of plasminogen and
make the overall complex enzymatically active, forming so-called
“virgin enzyme”, marked as SK-Plg* in Fig. 13 [197,201,217,218].

3. The conformation of the active complex allows binding of another
molecule of plasminogen (“substrate”) resulting in a transient ter-
nary intermediate [201,211]. The “substrate”molecule is bound pre-
dominantly by the α domain [197,201–203] while the 250-loop of
the streptokinase’s β domain (residues Arg253, Lys256, and
Lys257) interacts with the kringle 5 domain of the plasminogen sub-
strate via its lysine binding site [207,208,210,211,220].

4. Finally, the Arg561-Val562 peptide bond of the “substrate” mol-
ecule is hydrolytically cleaved by the “partner’s” catalytic triad
His603, Asp646, and Ser741, and the final molecule of active plas-
min is formed and released [201,217,219]. Regions 88–97,
164–186, and 314–342 of streptokinase were reported to be im-
portant for the plasminogen substrate processing during this
final step of activation [208,209,213,215,224].
ay I: Streptokinase (SK) or staphylokinase (SAK) form an equimolar complex with free
th an open conformation of Plg. The activated complex then catalyzes the conversion of
AK with Plm is formed with higher affinity, does not require conformational activation
the same conversion of Plg to Plm as SK-Plg*. Compared to SK, SAK can activate Plg only



Fig. 14. The complex of staphylokinase with bound plasmin. The complex of
staphylokinase (gray) and the catalytic domain of plasmin (blue) (PDB ID 1BUI). The
catalytic triad of plasmin His603, Asp646, and Ser741 are shown as red beads.
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5. When traces of plasmin molecules are generated, streptokinase
tends to form the streptokinase-plasmin complex preferentially
due to the approximately three orders of magnitude higher affinity
towards plasmin compared to plasminogen. This complex does not
require any conformational changes for activation as in the case of
streptokinase-plasminogen but only narrows the broad substrate
specificity of the plasmin partner towards the plasminogen substrate
[199,219,221,225].

4.4. Binding and Stimulation by Fibrin

Due to the α domain, streptokinase does not require fibrin and acti-
vates plasminogen independently [186,194,200]. Stimulating experi-
ments confirmed that neither fibrin nor fibrinogen had stimulatory
effects on activation, preventing targeted thrombolysis on the surface
of fibrin clots [185,186]. The activation independent of fibrin can lead
to bleeding complications which represents one of themain drawbacks
of the currently used streptokinase variant.

4.5. Inhibition

Unlike t-PA and urokinase, streptokinase has no natural inhibitor
present in a human body. Since it is not homologous to eukaryotic plas-
minogen activators, it is not recognized by traditional plasminogen
activator inhibitors [47]. Similarly, the streptokinase-plasminogen/
streptokinase-plasmin complex is not inhibited by α2-antiplasmin
[226–228]. However, streptokinase’s non-human origin causes the pro-
duction of neutralizing antibodies by the human immune systemwhen
used as a drug. Thus, repeated administration decreases streptokinase’s
thrombolytic efficiency and can lead to a serious allergic response
[188,189].

4.6. Protein Engineering

Different approaches were tested to enhance fibrin specificity of
streptokinase. Deletion of the α domain prevented streptokinase to in-
teract with the closed conformation of plasminogen. Instead, it formed
the streptokinase-plasmin complex exclusively andwas able to activate
only the extended conformation of plasminogen bound to thefibrin sur-
face. This stepmade streptokinase an activator resembling themolecule
of staphylokinase [186,194,200,229]. An alternative strategy was based
on using fibrin-specific streptokinases from different Streptococcus
strains or on shuffling activators’ domains to combine their properties.
While keeping the original activity, the fibrin-specificity of these new
molecules was comparable or even higher than for t-PA [185,230–232].

Different engineering attempts were focused on increasing the half-
life of streptokinase. Strategies were based on finding that during
the process of plasminogen activation, the generated plasmin non-
physiologically cleaves streptokinase into three polypeptide chains
(residues 1–59, 60–386, and 387–414) leading to drop in activity
[233,234]. Preventing the cleavage by mutagenesis at the identified po-
sitions (Lys59Gln/Glu, Lys386Gln) resulted in a 21-fold increased half-
life without affecting activity [235–237]. Alternative strategies based
on combinatorial mutagenesis [14,238], PEGylation [239–242], glyco-
sylation [235,243], or lipidification [244] yielded streptokinase variants
with improved thrombolytic activity, decreased immunogenicity, and
higher half-life.

A very successful variant of streptokinase is its acylated complexed
form known as anistreplase. Anistreplase represents a pre-formed
streptokinase-plasminogen complex with plasminogen’s active site
inactivated by anisoylation [245]. In vivo, p-anisic acid is cleaved and re-
moved, resulting in an enzymatically active plasminogen activator.
While keeping the original activity and antigenicity of streptokinase,
the half-life of the variant was prolonged approximately 10-fold
[246,247].
5. Staphylokinase

5.1. Biological Function

Staphylokinase is a small prokaryotic plasminogen activator se-
creted by lysogenic Staphylococcus aureus, enabling invasion of the
host’s tissue [248]. Originally mentioned already during the discovery
of streptokinase in 1933 [182], the molecule of staphylokinase was
firstly described in 1948 [248] and produced recombinantly in 1983
[249]. Although being immunogenic and having the half-life of only
6 min, its high fibrin specificity, low production cost, and promising
clot penetrability make staphylokinase a potential thrombolytic for
the clinical practice [47,250–253].

5.2. Molecular Structure

The protein has the smallest structure of all the biochemically char-
acterized biological thrombolytics. It is composed of 136 amino acids, of
which 30 % are charged [249,254,255]. The protein is folded into a single
domain with the molecular weight of 15.5 kDa [256,257]. Structurally,
but not sequentially, staphylokinase is homologous with the α domain
of streptokinase with the β-grasp fold (Fig. 14) [256,258].

5.3. Mechanism of Activation and Specificity

Similarly to streptokinase, staphylokinase is an activator with an in-
direct mechanism of plasminogen activation, showing no enzymatic
activity [248,259]. Compared to streptokinase, the complex of plasmin-
ogen bound by staphylokinase is inactive and is not able to perform the
non-proteolytic activation of the plasminogen zymogen [260,261]. In-
stead, staphylokinase forms a productive equimolar (1:1) complex
with plasmin only (Fig. 13 – Pathway II) [259,261,262].Within the com-
plex, staphylokinase modifies a broad substrate specificity of plasmin
from a general protease digesting fibrin to an enzyme selectively cleav-
ing the Arg561-Val562 bond in anothermolecule of plasminogen, yield-
ing active plasmin [259]. Only a few studies have been conducted to
understand staphylokinase at the molecular level. The results identified
that the residues 26, 42–50, 65–69, and75 are important for theplasmin
“partner” binding [263–267], while the residues 11–16, 46–50, 65–69,
and 97–98 are involved in the binding and the processing of the plas-
minogen “substrate” [256,266,268–270]. In contrast, the first ten



Fig. 15. The catalytic domain of desmoteplase. The catalytic domain of desmoteplase (PDB
ID 1A5I) from the vampire bat Desmodus rotundus is shown as blue surface. The catalytic
triad of His237, Asp296, and Ser393 is shown as red beads.
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N-terminal residues are not required for the activity and are cleaved by
active plasmin [268,271–275].

5.4. Binding and Stimulation by Fibrin

An unusually high fibrin specificity of staphylokinase is given bymu-
tual action of fibrin and α2-antiplasmin. In the absence of fibrin, the
staphylokinase-plasmin complex is rapidly inhibited byα2-antiplasmin.
In clotted plasma, fibrin competitively interacts with the complex via
the same lysine binding sites as the inhibitor so the inhibition is
prevented [226–228,276–278]. Such a mechanism allows staphylok-
inase to activate plasminogen preferentially only on the fibrin’s surface.
This avoids systemic plasminogen activation causing fibrinogenolysis
and bleeding complications [226,228,253,276,277,279]. Moreover,
the activity of staphylokinase is further enhanced by the fact that
plasminogen/plasmin molecules bound to fibrin exhibit more extended
conformation preferred by staphylokinase [278,280].

5.5. Inhibition

Compared to streptokinase, which is resistant to α2-antiplasmin in
any form, the staphylokinase-plasmin complex is rapidly inhibited in
human plasma as described above [227,228,276,277,279]. Conve-
niently, staphylokinase can reversibly dissociate from the inhibited
complex so its effective concentration in plasma is not decreased by
the inhibition [281]. The main factor decreasing the efficiency of
staphylokinase is, therefore, its immunogenicity causing the production
of neutralizing antibodies [250].

5.6. Protein Engineering

The immunogenic property of staphylokinase prevents its repeated
administration and represents its biggest disadvantage. Three non-
overlapping immunodominant regions located on the protein surface
represent the main epitopes recognized by the antibodies [282–285].
After disruption of the identified contacts by combinatorial mutagene-
sis, the immunogenicity of the best variant decreased to less than 30 %
[283,286–289]. Other engineering strategies using PEGylation
[290–295], glycosylation [296], protein fusion [288,297–301], and
lipidification [302] provided variants of staphylokinase exhibiting
higher efficiency, improved half-life, decreased immunogenicity, and a
lower risk of reocclusion.

6. Desmoteplase

6.1. Biological Function

Desmoteplase is a plasminogen activator that was isolated from the
saliva of the vampire batDesmodus rotundus in 1974 [303]. It is employ-
ed by these hematophagous animals during feeding on the blood of live-
stock, maintaining blood fluidity and attenuating formation of clots.
Thrombolytic properties of desmoteplase were observed already in
1932, but it took another 34 years to identify that this factor is an activa-
tor of plasminogen [304]. Thanks to its enormous fibrin specificity, an
absence of neurotoxicity, and a highly prolonged half-life of more
than 2 h, desmoteplase represents a promising activatorwith the poten-
tial for the treatment of cardiovascular diseases [116,305–309].
Although these beneficial propertieswere not observed during random-
ized clinical trials, further clinical tests are in progress [310,311].

6.2. Molecular Structure

The protein exhibits more than 72 % sequence homology with the
human t-PA and analogically contains a finger F, an epidermal growth
factor EGF, and a serine protease P domain (Fig. 15) but only one kringle
K domain which is equivalent to kringle K1 in t-PA and lacks a lysine-
binding site [312–314]. The structure is composed of 441 amino acids
with the molecular weight of 52 kDa, contains three glycosylation sites
Thr68, Asn117 and Asn362, and 14 disulfide bonds [312,313,315–317].
Desmoteplase does not possess any plasmin-sensitive cleavage site so
it exists solely as a single chain form [314].

6.3. Mechanism of Activation and Specificity

Desmoteplase is a serine protease with the typical catalytic triad
(His238-Asp297-Ser394) that cleaves the Arg561-Val562 peptide
bond in plasminogen, yielding active plasmin [312–314]. However,
the mechanism of the enormous desmoteplase specificity has not
been explained yet and all the experimental data provide only indi-
rect assumptions [312,314,318–320]. It is hypothesized that the ac-
tivity is connected with the intramolecular interaction between
Lys259 and Asp297. This interaction opens the active site cavity
and is formed only when desmoteplase is bound to fibrin by the fin-
ger F domain. Dissociation from fibrin disrupts this interaction and
leads to a reversible loss of activity [314,318,320]. Such amechanism
also corresponds to the exclusive single-chain form of desmoteplase
because the side chain of its Lys259 substitutes the function of the
new N-terminus important in two-chain forms of other eukaryotic
activators [314].

6.4. Binding and Stimulation by Fibrin

Desmoteplase is highly specific towards fibrin and exhibits the
highest stimulation of all known thrombolytics [312,315,318,321].
Desmoteplase is almost inactive towards plasminogen in the absence
of fibrin but once bound, its activity reaches the level of stimulated
t-PA. As a consequence, desmoteplase is stimulated by fibrin approxi-
mately 100,000-fold, which is 200-fold higher than described for t-PA
[312,318,321]. Moreover, the presence of fibrinogen and other plasma
factors induce desmoteplase’s activity insignificantly so this activator
is selective exclusively towards fibrin [318,319,321]. Such property pre-
vents fibrinogen depletion and plasminemia which often cause side ef-
fects such as hemorrhage [305,306,308].

6.5. Inhibition

Despite desmoteplase’s eukaryotic origin, its repeated administra-
tion caused a slight raise of neutralizing antibodies in animal models,
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potentially decreasing the thrombolytic’s efficiency [322]. Furthermore,
the structure is recognized by the inhibitors PAI-1 and PAI-2 due to its
similarity to t-PA and urokinase, yet the resistance to inhibition is rela-
tively high [306].

6.6. Protein Engineering

Since desmoteplase exhibits plenty of positive properties and not
many drawbacks, a little effort was put into its engineering. A chimeric
protein combining the structures of desmoteplase and tenecteplase has
been recently reported [132,323]. In this variant, the kringle 2 domain of
tenecteplase was deleted and the finger domain was exchanged for the
domain of desmoteplase with the aim to improve the protein’s fibrin
specificity. However, the constructed variant was only 8-fold more spe-
cific than t-PA but 25-fold less specific compared to desmoteplase [132].
Another approach was focused on preventing the creation of the two-
chain form of t-PA. Substitution of the plasmin sensitive cleavage
site with the corresponding sequence of desmoteplase (Arg275His,
Ile276Ser, Lys277Thr) provided 28-fold higher fibrin specificity [318].
On the other hand, the reversed approach introducing the plasmin sen-
sitive site (His191Arg, Ser192Ile, Thr193Lys) into desmoteplase led to
the loss of specific activationwhich confirmed the importance of this re-
gion for the fibrin selectivity [318].

7. Perspectives

7.1. Novel Enzymes

Discovery of enzymes potentially serving as novel thrombolytics
with interesting biological properties is a very attractive avenue for fu-
ture research. Continuous advances in the next generation sequencing
technologies provide awealth of valuable information,which are stored
in public genomic databases. These sequences can be systematically
searched for novel biocatalysts by using bioinformatics tools and ana-
lyzed by computer modeling [324], cloned and experimentally charac-
terized. Several enzymes directly cleaving fibrin, without plasminogen
activation, have been recently described: (i) leech-derived Harobin,
(ii) fibrinolytic enzyme from Chlorella algae and (iii) Nattokinase from
soybeans [325–327]. The hunt for novel thrombolytics will result in
the discovery of more potent enzymes with different mechanisms
than the ones known to date.

7.2. Small Molecules

Smallmolecules fromamarine fungus Stachybotrys such as staplabin
bind and induce a conformational change in plasminogen, increasing its
fibrin binding and susceptibility to activation by plasminogen activators
[328]. Additional molecules are being isolated from different organisms
or developed by chemical modification since the discovery of staplabin
[329,330]. Their small size confers several advantages as easier produc-
tion, lack of immunogenicity, anti-inflammatory effects and no cross-
reactivity with other pathways [327]. Despite their small size, these
molecules exhibit clot-targeted plasminogen activation [331] and cur-
rent animal studies have shown promising results for example with
the molecule SMTP-7 [332,333]. Isolation and chemical modification
of novel biologically active small compounds is another promising
trend in thrombolytics research.

7.3. Encapsulation & Targeted Release

Plasminogen activators’ half-lives can be significantly enhanced by
trapping them in liposomes and nanomaterials. Effectiveness of plas-
minogen activators can be improved by targeting their release using ul-
trasound, the presence of activated platelets, or shear-stress [334–338].
Encapsulation allows for the targeted release of both a neuroprotective
and a thrombolytic agent [339]. Modification with covalently linked
DNA or RNA allows disruption of interactions between t-PA and LRP1
receptor with concurrent regulation of enzymatic activity [340,341].
PEGylation can reduce immunogenicity and increase the half-life of pro-
karyotic plasminogen activators [239,292]. Newly established methods
for targeted deliverywill be used to target the action of plasminogen ac-
tivators into the thrombus with minimized side-effects.

7.4. Adjuvants

Neurological side-effects such as neuroinflammation and disruption
of the blood-brain barrier by the interaction of variousmoleculeswith t-
PA and plasmin negatively influence the outcome of the therapy. Unfa-
vorable interactions and oxidative stress on thrombolytics in ischemic
conditions are being tackled by using antibodies, protein antagonists
of receptor binding, or small molecules [342–348]. Anti-inflammatory
cytokines were recently tested as adjuvant therapy to alleviate inflam-
matory side-effects [348,349]. Plasmin and plasminogen activators are
inhibited quickly in the blood clot. Moreover, binding sites of plasmino-
gen activators on fibrin are removed by tissue activable fibrinolysis
inhibitor which also slows down fibrinolysis. These effects can be
blocked via antibodies against PAI-1, α2-antiplasmin, and tissue activ-
atable fibrinolysis inhibitor, or by blocking two fibrinolytic inhibitors si-
multaneously by diabodies. This has proven to accelerate fibrinolysis
in vivo [350–356]. PAI-1 can be also inhibited by small molecules such
as tiplaxtinin or downregulated by statins and renin-angiotensin-
aldosterone inhibitors [357]. The fibrinolytic system has complex
connections to immune pathways, cerebrovascular coupling, nervous
system, cell migration, metastasis, and cognition. These connections
offer many targets for enhancing the efficacy of thrombolytics as well
as their use for the treatment of non-thrombotic conditions.

7.5. Protein Engineering

Protein engineering studies of eukaryotic plasminogen activators are
no longer aimed at increasing half-life since longer-circulating and
inhibitor-resistant thrombolytics are available. One of the aims is reduc-
ing the side-effects via increasingfibrin specificity [358,359] or prevent-
ing interactions with the receptors [114,115,360]. Reducing side-effects
also provides novel indications for thrombolytic therapy, such as drain-
age of intracerebral hemmorhages or extension of the time window in
which thrombolytics can be administered [114,333]. Despite improve-
ments inmany key properties, e.g., fibrin selectivity, half-life, and inhib-
itor resistance; faster lysis of a thrombus is still of major concern. The
structure-function relationships of fibrin-specific drugs need to be stud-
ied in a complex with fibrin, a large molecule of its own. The improve-
ment in the structural techniques, such as small-angle X-ray scattering
and cryo-EM,will allow solving even the largemulti-protein complexes.
Acquired structural data can be analyzed by various structural bioinfor-
matics and computer modeling techniques that will bring insights for
engineering activity, affinity, specificity and selectivity of thrombolytics.

7.6. Production Systems

Seventeen disulfide bridges of t-PAmake this protein hard to express
in prokaryotic systems. Even reteplase containing nine disulfide bridges
have to be refolded after the purification in order to adopt an active con-
formation. Higher yields of properly folded t-PA were achieved via
expression into the periplasm or co-expression with disulfide oxidore-
ductase [361,362]. Production in yeasts generally leads to higher yields
and absence of endotoxin when compared to bacteria [363–365]. Other
avenues are auto-induction, growth medium or cultivation protocol op-
timization [366,367], development of new refolding protocols [368–370]
or new mammalian cell lines [371]. To avoid the demanding work with
mammalian cell cultures, eukaryotic plasminogen activators can be pro-
duced in plants or extracted from the milk of transgenic animals
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[372–376].We envisage fine-tuning of available production systems and
continuous search for the new expression and purification systems.
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