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Annonamuricata L., known as graviola, is an evergreen plant of the tropical regions and is a rich source of natural products. Graviola
has various biological activities, and it is best known for its anticancer activity. This study aimed to investigate the effects of crude
graviola extract in vitro on breast cancer cells; in particular, we aimed to identify an agent against triple negative breast cancer
(TNBC). We used the TNBC MDA-MB-231 cell line as the experimental model and the ER(+) non-TNBC MCF-7 breast cancer
cell line as the control. We identified annonaceous acetogenins, including annonacin isomers, characteristic to this plant by using
liquid chromatography tandem mass spectrometry (LC/MS/MS). We observed a significant decrease in the cell viability in both
cell lines within 48 h, whereas impaired cell motility and invasiveness were observed only in the MDA-MB-231 cell line. While the
MCF-7 cells showed an ER-dependent mechanism of apoptosis, the apoptosis of MDA-MB-231 cells was governed by an intrinsic
apoptotic pathway triggered by graviola leaf extract (GLE).

1. Introduction

Breast cancer is the second most common cancer in the
world and by far the most frequent cancer among women,
with an estimated 1.67 million new cases diagnosed in 2012
(accounting for 25% of all cancers). Breast cancer is the
most common cancer among women both in more and
less developed regions, and slightly higher number of cases
have been reported in the less developed regions (approx-
imately 883,000 cases) than in the more developed regions
(approximately 794,000). Breast cancer ranks fifth among the
causes of death from cancer and is the most frequent cause
of cancer-related death in women in less developed regions
(approximately 324,000 death; 14.3% of total) and it ranks
second after lung cancer as a cause of cancer-related death
in more developed regions (approximately 198,000 death;
15.4%) [1].

Breast cancer is not a single disease; there are a minimum
of four molecular subtypes and 21 histological subtypes of

breast cancer with all variable risk factors. Breast cancer
is classified into different molecular subtypes using routine
biological markers, i.e., estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor
2 (HER2). Approximately 12% of patients with breast cancer
are ER(−), PR(−), and HER2(−) [2]; this subtype is known
as the triple negative breast cancer (TNBC). Patients with
TNBC have poorer prognosis and higher risk of recurrence
than patients with ER(+) or HER2/neu-(+) breast cancer;
TNBC is a clinically aggressive disease associatedwith distant
recurrence and high rates of visceral and central nervous
metastases [3, 4]. The standard treatment for TNBC includes
chemotherapy with microtubule stabilizers and platinum
agents alone or in combination with other therapeutic
options such as surgery and radiotherapy. Patients with
TNBC do not benefit from hormone receptor-targeted ther-
apies such as tamoxifen and trastuzumab, which are used
for ER(+) and HER2(+) breast cancer; therefore, inhibitors
of common apoptotic pathways, e.g., poly (ADP-ribose)
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polymerase (PARP) and mammalian target of rapamycin
(mTOR), and inhibitors of cancer cell metabolism, e.g.,
antiangiogenesis agents, have been used for the treatment
of TNBC [5]. A recent study has shown positive effects
of immunotherapy for TNBC; however, further studies are
required to establish the efficacy of immunotherapy for
TNBC [6].

The limitations of the existing therapeutic options for
TNBC warrant the discovery of novel molecular agents for
treating TNBC. Graviola (Annona muricata L.), also known
as soursop, guanabana, or Brazilian pawpaw, is an evergreen
plant of tropical and subtropical regions and is a rich source of
natural products [7].The phytochemicals derived from gravi-
ola have various biological activities, including anticancer,
antiarthritic, and antiparasitic activities [7]. Annonaceous
acetogenins (AAs) are the metabolites isolated from the
plants belonging to the genus Annona; the AAs characterized
by a terminal gamma-lactone ring and a single tetrahy-
drofuran (THF) ring in the middle of aliphatic chains are
the active ingredients responsible for the cytotoxic effects
of graviola. The AAs isolated from plants belonging to the
family Annonaceae exert their effects through the inhibition
of mitochondrial complex I, namely, NADH: ubiquinone
oxidoreductase [8]. Currently, more than 100 AAs have been
identified and isolated; pure AAs have been screened for their
anticancer activity, and the studies performed in the previous
three decades have shown promising results.

Recent in vitro studies indicate that the crude extract of
A.muricata alone can be used as an alternative chemotherapy
against pancreatic cancer [9], prostate cancer [10], and breast
cancer [11]. Here, we examined the effects of A. muricata leaf
extract onTNBC in vitro using theMDA-MB-231 cell line and
compared the results with those obtained using the ER(+)
breast cancer cell line MCF-7 (control) to determine the
mechanism underlying apoptosis. Our results may provide
insights into a targeted therapy for TNBC and establish the
therapeutic potential of this plant beyond its status as a
functional food.

2. Methods and Materials

2.1. Preparation of Graviola Leaf Extract (GLE). GLE (aq)
made of Annona muricata leaves (Philippines) was pro-
vided fromWestmoreland AlternativeMedicine Association.
Professor Youngbae Suh in our department organolepti-
cally identified the specimen of A. muricata. The voucher
specimen (2017-25) has been deposited in the herbarium
of Natural Products Research Institute, SNU. To prepare
aqueous concentrate, graviola leaves were air-dried and finely
milled into powder. Collected graviola leaf powder (1 kg)
was blended with purified water (5 L) and then processed in
a vacuum extractor (COSMOS-660, Kyung Seo Co., Korea)
under proper heating cycle. Produced aqueous suspension
was further concentrated (over 40∘Brix) so approximately 100
mL of the final GLE (aq) could be acquired from 1 kg of
dried Annona muricata leaves. Concentrated GLE (aq) was
filtered and counter-extracted in methylene chloride (1:1 v/v)
and organic solvents were evaporatedwithN

2
gas. Remaining

products were suspended then further diluted inDMSO (100,

50, and 25 mg/mL) for in vitro treatment [9] or suspended in
methanol (3000 𝜇g/mL) for LC/MS/MS analysis.

2.2. LC/MS/MS Analysis of GLE. Active ingredients of Anno-
na muricata leaf extract were analyzed using the HPLC sys-
tem (Agilent Technologies, USA) linked to a 6530 ESI-Q-TOF
MS spectrometer (Agilent Technologies). The reconstituted
sample was prepared as 3000 ppm inMeOH (Section 2.1); we
injected 5 𝜇L of the reconstituted sample into the LC/MS/MS
system. LC separation was performed on an INNO C18
column (2.0 × 50 mm, 3.0 𝜇m) with mobile phase A (0.1%
formic acid in water) and mobile phase B (0.1% formic acid
in acetonitrile). The gradient program (A/B: 9:1 󳨀→1:9 in 25
min) was followed by 5min 100% Bwashing, and the column
was then equilibrated with 10%B for 5minwhile the flow rate
was maintained at 0.30 mL/min. Subsequently, we obtained
the mass spectra under positive electrospray ionization (ESI)
with an ion spray voltage of 4000 V. The source temperature
was 350∘C. The flow speed of gas was 10 L/min while the
pressure of nebulizer was 30 psi. Full-scan mass spectra
were acquired within an m/z range of 50−1400 in the MS
mode. The data obtained were analyzed using MassHunter
Qualitative Analysis software (Agilent Technologies).

2.3. Cell Culture. TNBC cell line MDA-MB-231 and ER(+)
breast cancer cell line MCF-7 were acquired from American
Type Culture Collection (ATCC). Breast cancer cells were
cultured in DMEM (CM002-250, GenDEPOT) medium
supplemented with a 25-mM HEPES buffer (CA011-010,
GenDEPOT), 10% (v/v) fetal bovine serum (FBS), and 1%
(v/v) PenStrep (the final concentration of antibiotics to be
100U/mLpenicillin and 100 𝜇g/mL streptomycin). Cells were
maintained at 37∘C humidified atmosphere with 5% CO

2
.

2.4. Cell Viability Assay. Cytotoxicity of GLE was measured
by MTT assay. MDA-MB-231 (5.0 × 104 cells/well) andMCF-
7 (5.0 × 104 cells/well) cells were seeded with increasing
concentration (0, 50, 100, 200 𝜇g/mL) of GLE and cultured
on a 24-well plates. After 48 hours, MTT reagent (M2128,
Sigma) stock solution (5 mg/mL in DPBS) was added to each
well (final concentration of MTT 0.5 mg/ml) and cells were
incubated for additional 4 hours. Medium was removed then
replaced with DMSO to dissolve MTT formazan. The cell
viability of each experimental group was measured at 540
nm absorbance filter on a microplate reader and results were
obtained from three independent experiments.

2.5. Clonogenicity Assay. MDA-MB-231 cells were seeded on
a 24-well plates (1000-2000 cells/well) and then exposed to
different concentrations of GLE (0, 50, 100, and 200 𝜇g/mL).
After 24-hour or and 48-hour incubation, cells were carefully
rinsed and cultured in the fresh medium. Surviving adherent
cells were further cultured for additional 10 days to gain
visible colonies. Colonies were rinsed with DPBS, fixed with
3.7% formalin, stained with 0.5% crystal violet dissolved in
20%MeOH [12], and photographed.

2.6. Wound-Healing Assay. MDA-MB-231 and MCF-7 cells
were seeded on 24-well plates to reach 80–90% confluency
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after overnight incubation. Once the cells formedmonolayer,
cells were scratchedwith sterilized pipette tips. Detached cells
were removed by careful washing and medium was changed
exposing scratched cell layer to different concentrations of
GLE (0, 50, 100, and 200 𝜇g/mL). After 24-hour incubation,
recovered monolayers were photographed under a CKX41
microscope (Olympus, Japan) at a 40×magnification. Images
were processed with ProgRes CapturePro software v.2.8.8
(JENOPTIK Optical Systems, USA).

2.7. Cell Invasion Assay. MDA-MB-231 (5.0 × 105 cells/well)
cells were seeded on transwell inserts with 8.0-𝜇m pore size
(SPL Life Sciences Co., Seoul, Korea) coated with properly
diluted Matrigel with serum-free DMEM (1:10) prior to use.
Cells were exposed to different concentrations of GLE (0,
50, 100, and 200 𝜇g/mL) at a starved condition (FBS-free
DMEM). After 24-hour incubation, both sides of the tran-
swell inserts werewashedwithDPBS and cells were fixedwith
3.7% formalin, permeabilized with MeOH, and then finally
stained with 2% crystal violet solution (aq). Stained cells were
observed and photographed under a CKX41 microscope at a
100×magnification.

2.8. Cell Cycle Analysis. Cell cycle phases were assessed as
described elsewhere [14]. In brief, MDA-MB-231 (2.0 × 106
cells/well) and MCF-7 (2.0 × 106 cells/well) cells were seeded
in six-well plates then exposed to GLE (0, 50, 100, and 200
𝜇g/mL) for 24 hours. Incubated cells were collected, washed
with DPBS, fixed with cold 70% ethanol, and then stored at
−20∘C for a minimum of 24 hours. Ethanol was removed by
centrifugation right before the analysis and cell pellets were
repetitively washed with DPBS. Cellular RNA was removed
by incubation with RNase (200 𝜇g/mL) at 37∘C for 30 min,
then cellular genomic DNA was stained with propidium
iodide (PI, 50 𝜇g/mL) for another 30 min in RT. Cells were
sorted on FACSCalibur flow cytometry (BD Biosciences)
according to detected signals in FL2 channel (ext. 488 nm,
emi. 564–606 nm) while data was analyzed with Cell Quest
Pro software.

2.9. Western Blotting. Pellets of MCF-7 and MDA-MB-231
cells were collected through centrifugation, briefly washed
with DPBS, and then homogenized with a lysis buffer (20
mM HEPES, pH 7.6, 350 mM NaCl, 20% glycerol, 1% NP-
40, 1 mM MgCl

2
, 0.5 mM EDTA, 0.1 mM EGTA, 1 mM

DTT, 1 mM PMSF, and a protease inhibitor cocktail). After
vigorous vortexing and ultracentrifugation, we denatured
protein lysates in the supernatants through the process of
boiling with 5X loading dye. Proteins were separated via SDS
electrophoresis with 10% gel, followed by a transfer of sep-
arated protein bands on the PVDF membrane. Transferred
protein bands were blocked with 5% BSA then incubated
at 4∘C overnight with the following primary antibodies and
given dilution rates; 𝛽-actin (C4) HRP (mouse monoclonal,
Santa Cruz 47778) as 1:2000, PARP (rabbit, GeneTex 100573)
as 1:3000, cytochrome C (rabbit, Epitomics 1896-1) as 1:500,
ER alpha (rabbit, Epitomics 1115-S) as 1:1000, and HER2
(rabbit, Epitomics 2521-1) 1:1000 as optional. After the culture
with primary antibodies, the protein bands were labeled

with a goat anti-rabbit IgG (H+L) HRP secondary antibody
1:3000 for one hour at room temperature, with the exception
of 𝛽-actin. The protein bands were visualized via the EZ-
Western (DG-W500, Daeillab Service) ECL solution, then
photographed on the LAS-1000 imaging system (Fujifilm,
Japan), and operated by Image Reader LAS-1000 Lite V1.5,
while processing images with MultiGuage V3.0 software.

2.10. Confocal Microscopy. MDA-MB-231 (5.0 × 104 cells/
well) and MCF-7 (5.0 × 104 cells/well) cells were seeded on
confocal dishes (SPL Life Sciences Co., Seoul, Korea) and
cultured with different concentrations of GLE (0, 50, 100,
and 200 𝜇g/mL) in the incubator. After 24 hours, medium
was replaced with a live staining cocktail of 10 𝜇M 2󸀠7󸀠-
dichlorofluorescein diacetate (denoted as DCF-DA, ≥ 95%,
Sigma), 50 𝜇g/ml propidium iodide (≥ 94.0%, Sigma), and
1 𝜇g/mL bisBenzimide H 33342 trihydrochloride (≥ 97.0%,
Sigma). After 20 minute incubation with fluorophores, cells
were washed twice and stained cells were observed on a TCP
SP8 confocal microscope (Leica, Germany).

2.11. Statistical Analysis. Student’s t-test was used to deter-
mine statistical significance between the control (0 𝜇g/mL,
DMSO) and experimental (50, 100, and 200 𝜇g/mL) groups
in MTT assay. Statistical analysis was performed using
Microsoft Office Excel 2007 under the condition of equal
sample size and unequal variances. Calculated p-values< 0.05
were considered statistically significant.

3. Results

3.1. GLE Contains Characteristic AA Isomers of Annona
muricata Leaves. Previous studies have shown that AAs are
abundantly present in the leaf, stem, and root of A. muricata.
The results of matrix assisted laser desorption/ionization
time of flight mass spectrometry (MALDI-TOF MS) of
products derived fromdifferent parts of this plant showed the
presence of four representative AAs in the leaves of graviola,
which may have the common skeleton characterized by a
long C32 alkyl backbone ending in a 𝛾-lactone: C

35
H
62
O
7
;

C
35
H
64
O
7
, C
35
H
64
O
8
, and C

35
H
64
O
9
[15]. Figure 1 displays

the obtained extracted-ion chromatograms (EIC) showing
the series of peaks withm/z values corresponding to the four
selected molecular formulas. The most abundant peaks can
be found in the EIC of C

35
H
64
O
7
(m/z 597.4695 ± 10.0 ppm)

which corresponds to many monotetrahydrofuran (THF)
acetogenins found in A. muricata, including the annonacin-
type AAs [16].

According to Allegrand et al. (2010), the characteristic
ions are adequate to identify and localize the functional
groups on the alkyl chain, including the presence of the
112 u loss (the lactone ring fragment), H

2
O losses, and the

typical fragment series [17]. Since AAs have homogeneous
structures, the results of MS fragmentation allowed us to
confirm the presence of some AAs in the GLE through
structural ion peaks that representative for the loss of ter-
minal 𝛾-lactone ring [M-112u+Na]+ and the number of the
hydroxyl groups [M-xH

2
O+H]+ in the structures (Figure 2

and Figure S1-S3 in Supplementary Materials). Notably, the
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Figure 1:The extracted-ion chromatograms obtained for the A. muricata leaf extract using HPLC-QTOF. (a) EIC of m/z 595.4574 (± 10.0 ppm)
[C
35
H
62
O
7
+H]+; (b) EIC of m/z 597.4730 (± 10.0 ppm) [C

35
H
64
O
7
+H]+; (c) EIC of m/z 613.4679 (± 10.0 ppm) [C

35
H
64
O
8
+H]+; (d) EIC of

m/z 629.4629 (± 10.0 ppm) [C
35
H
64
O
9
+H]+.

five main peaks corresponding to C
35
H
64
O
7
(m/z 597.4695)

shared characteristic fragments that were similar to the
previously described patterns for the annonacin structure
(Figure 2(a)). In particular, the remarkable X4 fragment (m/z
507.4006, [M-112u+Na]+) properly characterizes the loss of
the terminal lactone ring; the B1/X4 fragment (m/z 243.1384)
might indicate that the THF is located between C16 and C19
flanked by two hydroxyl groups at C15 and C20, whereas the
X1 ions (m/z 199.1475) suggest the presence of a hydroxyl
group at C10 on the alkyl chain consistent with the results
reported in a previous study [13, 18] (Figures 2(b)–2(f)).Thus,
the identification of AAs in the crude extract used in this
study was achieved to some degree while precise calculation
of the molecular content remains to be performed.

3.2. GLE Suppresses Proliferation and Clonogenicity of MDA-
MB-231 Cells. At the beginning of the biological assays, cell
viability was tested on breast cancer cells to verify cytotox-
icity of GLE and GLE led to decreased viability of MDA-
MB-231 (Figure 3(a), left) and MCF-7 (Figure 3(a), right)
cells. According to a previous study, 48-hour treatment of
graviola extracts induced significantly decreased cell viability
in FG/COLO357 and CD18/HPAF pancreatic cancer cells
[9]. Surprisingly, results from the MTT assay indicate a
significant decrease in breast cancer cells’ viability after 48-
hour incubation with increasing concentrations (0, 50, 100,
and 200 𝜇g/mL) of GLE (Figure 3(a)). Overall, GLE showed
cytotoxicity on breast cancer cells in a dose-dependent
manner and suppressed cell proliferation.

A more vigorous colony formation was expected in
TNBC cell line MDA-MB-231 than in non-TNBC cell line
MCF-7. As expected, visible colonies of MDA-MB-231 could

be identified within 10 days, unlike MCF-7 (data not shown),
and MDA-MB-231’s clonogenicity was shrunk by GLE treat-
ment as observed (Figure 3(b)). It is noteworthy that the
number of MDA-MB-231 colonies substantially decreased
with increasing concentration of GLE. Total amelioration of
the clonogenicity could be observed within 24 hours to the
100 𝜇g/mL dose and 48 hours to the 50 𝜇g/mL (Figure 3(b)).
In addition, cell cycle analysis after 24-hour treatment with
GLE demonstrated the change of cell population in different
phases. While there was no significant change in the pop-
ulations of other cell cycle phases (S and G2/M), graviola
treatment resulted in the accumulation of sub-G1 population
which represents dead cells (Figure 3(c)). Similar to the
MTT assay data (Figure 3(a), right), the results of cell cycle
analysis further supportGLE’s cytotoxic effects onMDA-MB-
231 cells.

3.3. GLE Decreases Motility and Invasiveness of MDA-MB-
231 Cells. Possible effects of GLE on motility of breast cancer
cells were further analyzed. As seen in the results from the
wound-healing assay, the uncovered area increased in treated
MDA-MB-231 cells with the increase of GLE concentrations
(0, 50, 100, and 200 𝜇g/mL) (Figure 4(a), upper row).
Cellular motility was seldom affected in MCF-7 cells upon
treatment (Figure 4(a), lower row), but cellular morphology
was obviously altered in both cell lines (Figure 4(a)).

Subsequently, the effects of GLE on cellular invasiveness
of MDA-MB-231 cells were further investigated. Invasion of
MDA-MB-231 cells over the Matrigel matrix of transwell
chamber was significantly suppressed upon GLE treatment
(0, 50, 100, and 200 𝜇g/mL) though not strictly in a dose-
dependent manner (Figure 4(b)). Taken together, 24 h
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Figure 3: Effects of GLE on cell viability, clonogenicity, and cell cycle. Breast cancer cells were treated with GLE at various concentrations (0, 50,
100, and 200 𝜇g/mL) for 48 hours and their cell viability was measured by MTT assay (a). MDA-MB-231 cells treated with GLE were allowed
to grow into visible colony for additional 10 days (b). MDA-MB-231 cells treated with GLE were fixed and sorted by genomic DNA contents
(c).
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MDA-MB-231, DMSO MDA-MB-231, 50 g/ml MDA-MB-231, 100 g/ml MDA-MB-231, 200 g/ml

MCF-7, DMSO MCF-7, 50 g/ml MCF-7, 100 g/ml MCF-7, 200 g/ml

(a)

50 g/ml 100 g/ml 200 g/ml0 g/ml

40X

100X

(b)

Figure 4: Effects of GLE on cell motility and invasion of breast cancer cells. Recovery of scratched cell monolayer in MDA-MB-231 (upper)
and MCF-7 (lower) (a) and transwell invasion of MDA-MB-231 cells (b) were observed after 24-hour exposure with various concentrations
of GLE.

exposure of GLE resulted obviously decreased motility and
invasiveness in MDA-MB-231 TNBC cells.

3.4. GLE Triggers Intrinsic Apoptotic Pathway through ROS
Formation in MDA-MB-231 Cells. The mechanisms of cell
death induced byGLEwere investigated by observing protein
regulators of apoptosis and visualizing cellular ROS forma-
tion. According to a previous study, annonacin induced ER𝛼-
related apoptotic phenomena on MCF-7 cells [19]. When
analyzed by Western blot, a similar pattern of apoptosis (i.e.,
ER𝛼-related pathway) was observed in MCF-7 cells treated
with crude GLE (Figure 5(a), right), possibly due to the
rich presence of characteristic AAs in our GLE. Interestingly
enough, the apoptotic mechanism in MDA-MB-231 cells dif-
fered from that ofMCF-7 cells.MDA-MB-231 cells exposed to
GLEunderwent intrinsic apoptotic pathway (Figure 5(a), left)
characterized by altered mitochondrial membrane potential
(cytochrome C), activated caspase cascade (caspase 3), and

damaged DNA (PARP). Since estrogen receptors (ERs) are
absent in TNBC cell line likeMDA-MB-231, a different apop-
totic signaling from that of MCF-7 could well be assumed.

All of the above described apoptotic reactions induced
by GLE may involve ROS formation in breast cancer cells;
thus signals of ROS were detected by a confocal microscopy
(Figure 5(b)). Seen from the proportion of DCFDA-positive
cells (denoted as green fluorescence), cellular ROS produc-
tion increased along with PI-positive apoptotic population
(denoted as red fluorescence) inMDA-MB-231 cells, although
treatment with a lethal concentration of GLE (200 𝜇g/mL)
resulted in the rupture of cellmembranes and a loss of cellular
fluorescence signals. In contrast, the fluorescence signals
were unaffected by the increasing concentrations of GLE in
MCF-7, proving the irrelevance of the GLE treatment to the
ROS formation. All in all, GLE increased intracellular ROS
accompanied by mitochondrial apoptotic pathways in MDA-
MB-231 cells only.
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ER alpha
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Figure 5: Different apoptotic mechanisms in breast cancer cell lines caused by GLE. Effects of GLE on apoptosis of MDA-MB-231 (left) and
MCF-7 (right) cells were analyzed by WB (a) and cellular ROS formation (green fluorescence, DCFDA) in MDA-MB-231 (left) and MCF-7
(right) were visualized by CLSM. Scale bar denotes 100 𝜇m (left, MDA-MB-231) and 250 𝜇m (right, MCF-7), respectively (b).

4. Discussion

The present study indicates that the active ingredients in the
GLE have a marked anticancer effect on the MDA-MB-231
TNBC cells. TNBC is the most aggressive form of breast
cancer, and the crude extract of A. muricata not only inhibits
proliferation but also inhibits metastasis. We also identified

different apoptotic pathways in MDA-MB-231 and MCF-
7 breast cancer cells resulted from GLE treatment. To our
knowledge, no study to date has simultaneously investigated
themechanism of apoptosis induced by theGLE in theMDA-
MB-231 and MCF-7 cells.

Further, we determined the presence of AAs, which
are the active ingredients of A. muricata, in our sample
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using LC/MS/MS analysis. A previous study has reported
the mechanism underlying the apoptosis induced by the AA
annonacin in a non-TNBC model MCF-7 [19]. Our data
indicate that the TNBC cells do not undergo apoptosis via the
same mechanism as that of non-TNBC cells, and thus, active
ingredients apart from the well-known AAs present in GLE
may be responsible for the apoptotic effects in TNBC cells.

Previous studies have reported the marked anticancer
effect of plants belonging to the Annona species [20], par-
ticularly Annona muricata. The promising results have been
obtained in recent studies on the efficacy ofA.muricata leaves
on colon cancer cell lines, namely, HCT-116 and HT29 [21],
and the COLO-205 cell line [22] and in a preliminary clinical
study [23]. The neurotoxicity caused by the consumption
of the family Annonaceae should not be overseen, which
is associated with Parkinson’s disease [24–26]. The side
effects of the GLE must be considered before for therapeutic
applications. Further, the completemolecular structure of the
active ingredients and the exact molecular mechanism need
to be determined.

5. Conclusions

Taken together, we partially identified the active ingredi-
ents present in the GLE and determined their anti-TNBC
activities. The crude extract of the graviola leaves induced
mitochondrial apoptosis, suppressed cell proliferation, and
decreased cellular motility in MDA-MB-231 TNBC cells.
Further studies are required to establish the therapeutic
potential of this medicinal plant beyond its status as a
functional food.
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LC/MS/MS: Liquid chromatography tandem mass
spectrometry
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