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Abstract: In this research, we investigated the second-order nonlinear optical (NLO) properties of
multicomponent hybrid materials formed by meso-tetraphenylporphyrin P (both as free base and
ZnII complex), carrying in 2 or 2,12 β-pyrrolic position an electron donor ferrocene (Fc), and/or
an electron acceptor fullerene (C60) moiety, connected to the porphyrin core via an ethynyl or an
ethynylphenyl spacer. We measured the NLO response by the electric-field-induced second-harmonic
generation (EFISH) technique in CH2Cl2 solution with a 1907 nm incident wavelength, recording
for all the investigated compounds unexpected negative values of µβ1907. Since density functional
theory (DFT) calculations evidenced for P-Fc dyads almost null ground state dipole moments and
very low values for P-C60 dyads and Fc-P-C60 triads, our EFISH results suggested a significant
contribution to γEFISH of the purely electronic cubic term γ(−2ω; ω, ω, 0), which prevails on the
quadratic dipolar orientational one µβ(−2ω;ω,ω)/5kT, as confirmed by computational evidence.

Keywords: porphyrins; fullerene; ferrocene; nonlinear optics; hybrid materials; dyads; triads

1. Introduction

In the last two decades, many organic and organometallic molecular chromophores
have attracted attention in the scientific community for their significant second-order NLO
properties, mainly arising from push–pull structures as donor—π-delocalized spacer—
acceptor systems [1,2]. Among them, porphyrins and metalloporphyrins are very appeal-
ing, thanks to their thermal and chemical stability and the quite good solubility [3]. The
electron-rich extended 18-electron π-conjugated core of porphyrins (P) can act as a spacer
between the donor and the acceptor group in the push–pull system [4–7], or it can itself be
the donor or the acceptor part of the push–pull architecture [8–10].

The four meso, the eight β-pyrrolic, and the two axial positions allow a wide variety of
chemical functionalizations, so that many different substituents can be linked to the core
and to the metal center. Moreover, by changing the metal center, its oxidation state, the
type of the axial ligands, the nature of the substituents at the periphery of the macrocycle,
the flexibility of the synthetic process and of structural diversification can be exploited to
achieve a fine-tuning of the electronic properties and a large second-order NLO response [3].

Through the electric-field-induced second-harmonic generation (EFISH) technique [11,12],
the effect of the metal [13], of the nature and of the position of the substituents [8,9,14], and
of the presence of aggregation phenomena in solution [15,16] have been investigated in
depth. Recently, also the non-negligible role of third-order contributions to the quadratic
hyperpolarizability of A4 β-substituted ZnII porphyrins was highlighted [17].
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The porphyrin core has the same structure as chlorophyll and therefore has been
thoroughly studied as an efficient light harvester, for example, in dye-sensitized solar
cells [18–24] or in systems conceived to reproduce the complex electron transfer reactions
occurring in natural photosynthesis. In these molecular mimetics, porphyrins were coupled
at first to benzoquinone [25], then benzoquinone was replaced by fullerene (C60) [26] to
originate conjugates with increased excited charge-separated state lifetime, due to a faster
forward electron transfer and a slower rate for the charge recombination reaction.

In this context, C60 has been a subject of several investigations by the scientific
community, because of its unique physical and chemical properties [27–29]. The highly
symmetric structure of C60, its ability to undergo multiple addition reactions, combined
with its exceptional electron-accepting characteristics (e.g., it can accept up to six electrons)
are by far the most important properties [30]. With its strong electron-accepting properties
and remarkably small reorganization energy (ca. 0.23 eV), C60 is one of the most popular
compounds incorporated into multicomponent molecular architecture to tune its optical
properties to specific spectral regions of interest. By using chemical methods, the C60
moiety, acting as an electron acceptor in the ground electronic state, significantly improves
the average hyperpolarizabilities in fullerene derivatives [31]. The observed enhancement
is mainly due to the delocalization of charge from the electron-rich moiety to the electron-
poor carbon cage, producing partially negatively charged fullerene moieties. For this
reason, chemical modifications with a variety of electron-donating organic moieties have
been studied [32].

Many other porphyrin–C60 dyads (P-C60) have been reported [33], with C60 linked
through an amide bridge to the porphyrin meso-phenyl ring [34] or to the β-pyrrolic
position of the core in various fashion [35–37].

The continuous interest in the realization of complex architectures with a long lifetime
of charge-separated state has led research groups to perform extensive studies on differ-
ent linear multi-porphyrin–fullerene adducts, some equipped with an additional moiety,
mainly ferrocene (Fc) [38–42]. Because of the low oxidation potential of the iron atom, Fc
displays electron-donating properties [43].

The properties of P-C60, P-Fc or Fc-P-C60 conjugates can be modified by changing the
binding position (meso or β-pyrrolic) of Fc and/or C60 on the porphyrin ring or the type of
connection (double or triple bond). For example, when Fc and C60 are covalently linked
to the phenyl groups of a ZnII complex of a meso-tetraphenylporphyrin, as in Fc-NHCO-
ZnP-NHCO-C60, a charge separation lifetime of 8 µs is observed [33], which becomes
two orders of magnitude higher when Fc and C60 are connected to the porphyrin core by
imidazole linkers through the β,β’-pyrrolic positions [44].

Binding of Fc moiety to the β-pyrrolic position of P through an ethynyl group is an
effective way to enhance the electronic interaction between the π-system of the macrocycle
and the organometallic moiety [45]. On the other hand, the introduction of an additional
phenyl spacer between Fc and P provides only a small effect, as revealed by both spectro-
scopic and electrochemical measurements [45].

The connection of C60 to the β-pyrrolic position of P by an ethynylphenyl bridge
produces an efficient donor–acceptor system, where the lowest unoccupied and the highest
occupied molecular orbitals (LUMO and HOMO) are localized on P and on C60, respec-
tively [37].

In Fc-P-C60 triads a high charge delocalization of the π-electrons between the donor
Fc and the acceptor C60 moieties is reached by linking them to the 2,12 β-pyrrolic positions
of P through an ethynyl or an ethynylphenyl spacer [46], thus constituting an efficient
approach to the modulation of electron donor–acceptor interactions to realize hybrid
materials [47–52].

Since the linkage of electron donor Fc and/or electron acceptor C60 to P turns out
in Fc-P and C60-P dyads and Fc-P-C60 triads to have a push–pull structure, they might
display interesting second–order NLO properties.
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Therefore, this work aims to report and discuss the results of an EFISH investigation
of the dyads and triads reported in Figure 1, which have never been investigated from a
nonlinear optical point of view.
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Figure 1. Investigated push–pull hybrid materials.

2. Materials and Methods
2.1. Materials

Dyads 3a, 3b, 3a(Zn), 3b(Zn) were synthesized and characterized as reported in [53].
Dyads 6-C60 and 6(Zn)-C60 were synthetized and characterized as reported in [36]. Tri-
ads 10a-C60, 10a(Zn)-C60, 10b-C60, 10b(Zn)-C60 were synthetized and characterized
as reported in [46]. Their NMR, MS and UV spectra were in accordance with those
previously reported (see Supplementary Materials, Figures S1–S6 and S9–S16, and the
elemental analyses).

Electronic absorption spectra of compounds 6-C60 and 6(Zn)-C60 in CH2Cl2 solu-
tion were recorded at room temperature on a Shimadzu UV 3600 spectrophotometer
(Shimadzu Corporation, Kyoto, Japan) and are reported in the Supplementary Materials
(Figures S7 and S8).

2.2. EFISH Measurements

EFISH experiments were performed on freshly prepared 10−3 M CH2Cl2 solutions.
The incident wavelength at 1.907 µm was obtained by Raman shifting the 1.064 µm emission
of a Q-switched Nd:YAG laser in a high-pressure hydrogen cell (60 bar). The 1.907 µm laser
incident wavelength was chosen because its second harmonic (at 953 nm) was far enough
from the absorption bands of the chromophores in CH2Cl2 [46] to avoid any enhancement
of the second-order NLO response because of resonance. The Maker fringe pattern (that is
the harmonic intensity variation as a function of the cell translation) was obtained through
a liquid cell with thick windows in the wedge configuration. In the EFISH experiments, the
incident beam was synchronized with a DC field applied to the solution, with 60 and 20 ns
pulse durations, respectively, to break its centrosymmetry. The NLO response (assumed to
be real because the imaginary part was neglected) was determined from the concentration
dependence of the harmonic signal with respect to that of the pure solvent through the
experimental value γEFISH Equation (1):

γEFISH =
µβλ(−2ω;ω,ω)

5kT
+ γ(−2ω;ω,ω, 0). (1)
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γEFISH is the sum of the purely electronic cubic contribution γ(−2ω;ω,ω, 0) and of
a quadratic dipolar orientational contribution µβλ(−2ω;ω,ω)/5kT, µ being the ground
state dipole moment, and βλ the projection along the dipole moment direction of the
vectorial component βvec of the tensorial quadratic hyperpolarizability working with the
incident wavelength λ.

The EFISH experiments were performed recording firstly the second-order response
of the pure solvent, then the second-order response of the chromophore in solution, and
finally the second-order response of the solvent again. The EFISH values reported were the
average of 12 consecutive measurements performed on the same sample. The uncertainty
of the measure was about ±15%.

All the experimental EFISH β1.907 values were defined according to the “phenomeno-
logical” convention [54].

The apparatus for the EFISH measurements was a prototype made by SOPRA (Paris,
France) and the experiments were carried out in the Department of Chemistry of the
University of Milano (Italy).

2.3. Computational Details

Density functional theory (DFT) calculations were performed on all compounds
using the Gaussian16 suite of programs [55]. Geometry optimizations were performed
with the 6-311G(d) basis set using the PBE0 functional [56,57] in CH2Cl2, adopting the
polarized continuum model in its integral equation formalism (IEFPCM) to describe the
solvent effect [58]. Using the same basis set, the SHG first hyperpolarizabilities, i.e., the
β(−2ω; ω, ω) tensors, were computed within the coupled perturbed Kohn−Sham (CPKS)
approach at the same frequency (1907 nm) used in the EFISH experiments. The SHG
second hyperpolarizabilities, i.e., the γ(−2ω; ω, ω, 0) tensors, were evaluated by finite
field technique. β and γ calculations were performed by using the M06-2X functional [59],
owing to its optimal performance in reproducing hyperpolarizability values for midsize
chromophores [60]. A pruned (99,590) grid was selected for computation and use of
two-electron integrals and their derivatives. From the full tensors β and γ, the scalar
quantities β|| and γ||, respectively, were derived to get a meaningful comparison with
the experimental data. β|| corresponds to 3/5 times βλ, the projection along the dipole
moment direction of the vectorial component of the β tensor, that is, β|| = (3/5) ∑i(µiβi)/µ,
where βi = (1/5)∑j(βijj + βjij + βjji) [61,62].

γ|| is related to the tensor components according to the following: γ|| = (1/15)
[3(γxxxx + γyyyy + γzzzz) + 2(γxxyy + γxxzz + γyyzz + γyyxx + γzzxx + γzzyy) + (γxyyx + γxzzx +
γyzzy + γyxxy + γzxxz + γzyyz)] [61].

3. Results and Discussion
3.1. Synthesis

The dyads and triads investigated in this work have never been considered for nonlin-
ear optics. They have been synthesized and characterized according to the literature, as
highlighted in Section 2.1 [36,46,53].

However, since their preparation was not trivial, we summarized the main synthetic
details (Scheme 1).

The possibility of placing different substituents at the β-pyrrole positions constituted a
powerful approach toward the fine-tuning of tetrapyrroles and the modulation of electron
donor–acceptor interactions to realize performing hybrid materials.

In Scheme 1 we show three different synthetic strategies for creating push–pull systems
formed by a combination of electron donors (i.e., ferrocene), light harvester (i.e., porphyrin),
and electron acceptors (i.e., C60) connected to each other through “molecular wires” of
variable lengths.
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Scheme 1. Different synthetic routes toward push–pull hybrid materials.

Specifically, ethynyl or ethynylphenyl functionalities were selected as molecular
bridges because of their synthetic versatility and their outstanding physicochemical proper-
ties. It was previously reported that these linkers assist in a good conduction of the charges
due to their high electron density and the extended π-system [63–65].

The use of synthetic approaches that involved the Sonogashira reaction or its mod-
ification for the formation of carbon–carbon bonds allowed obtaining final mono and
disubstituted compounds in β-positions of the macrocycle.
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The first step involved the bromination of compound 1 using different quantities of N-
bromosuccinimide (NBS) to obtain preferentially monobromo-(2) and dibromo-porphyrin
(7). The bromination of specific antipodal pyrrole position 2 and 2,12 was carried out follow-
ing the procedure from the literature [66], using light-induced reaction and NBS in CH2Cl2.
The first synthetic strategy (Strategy 1) consisted of a variation of Sonogashira coupling
introduced by Li and coworkers [67] for the formation of monosubstituted compounds by
linking different donor units.

Specifically, we used ferrocenyl moieties of variable length such as ethynylferrocene
(a) or 4-(ferrocenyl)-phenylacetylene (b) to functionalize the β positions of the macrocycle
in one step.

The approach was based on the use of tetrabutylammonium fluoride (TBAF) as reagent
under copper-, amine-, and solvent-free conditions. We obtained the final compounds
3a and 3b in 50–65% of yield [53], starting from compound 2 and using Pd(PPh3)2Cl2
as catalyst.

The second strategy (Strategy 2) involved a Sonogashira coupling, using the catalytic
system Pd2(dba)3/AsPh3 developed by Lindsey and coworkers [68–70], paying particular
attention to the deoxygenation and dilution conditions and, most of all, avoiding the use of
copper iodide as cocatalyst.

In this way the homocoupling side reaction between terminal alkynes was suppressed,
and the desired final hybrid materials were formed by the combination of porphyrin and
fullerene as acceptor unit.

In this synthetic strategy the Sonogashira coupling of compound 2 with 1.5 equivalents
of p-ethynylbenzaldehyde (4) afforded porphyrin 5. For the functionalization of C60 with
intermediate 5, we used the Prato–Maggini reaction [71] to achieve the final compound
6-C60 in 60% of yield [36].

To obtain disubstituted hybrid materials formed in the same structure by an acceptor
and donor units, the third synthetic strategy was adopted (Strategy 3).

In addition, in this case the first step involved a Sonogashira coupling of compound 7
with 1.5 equivalents of compound 4 to obtain compound 8.

The next step was again a Sonogashira coupling reaction between compound 8 and
two equivalents of different ferrocene units (a-b) to afford the corresponding intermediates
9a and 9b.

The obtained compounds 9a and 9b were subsequently used for the cycloaddition
reaction with C60 [63], affording the desired 10a-C60 and 10b-C60 systems in 41 and 35%
of yield, respectively [46].

In the final step of the different synthetic strategies, the respective ZnII porphyrinate
complexes of all compounds (1, 3a, 3b, 6-C60, 10a-C60, 10b-C60) were obtained by dis-
solving the compounds in chloroform and adding a slight excess of a saturated Zn(OAc)2
methanol solution to yield 1(Zn), 3a(Zn), 3b(Zn), 6(Zn)-C60, 10a(Zn)-C60 and 10b(Zn)-
C60 quantitatively.

3.2. UV-Vis Spectroscopy

The electronic properties of the dyads and triads were investigated by UV-Vis spec-
troscopy in CH2Cl2 solution (Table 1). While the spectra of 6-C60 and 6(Zn)-C60 were
recorded for the first time (Figures S7 and S8 in the Supplementary Materials), those of the
other compounds have already been reported [37,46,53].
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Table 1. Synopsis of the UV-Vis spectroscopic data in CH2Cl2 of the investigated dyads and triads.

Compound
Soret Band
λmax (nm)

(logε)

QIV Band
λmax (nm)

(logε)

QIII Band
λmax (nm)

(logε)

QII Band
λmax (nm)

(logε)

QI Band
λmax (nm)

(logε)

3a 426
(5.30)

526
(4.22)

566
(3.93)

602
(3.95)

660
(3.56)

3a(Zn) 432
(4.50)

566
(4.08)

602
(3.83)

3b 427
(5.28)

526
(4.29)

563
(3.94)

601
(3.79)

658
(3.51)

3b(Zn) 436
(5.43)

565
(4.37)

601
(4.06)

6-C60 427
(5.31)

522
(4.27)

558
(3.83)

599
(3.76)

656
(3.42)

6(Zn)-C60 434
(5.28)

560
(4.15)

598
(4.00)

10a-C60 434
(5.15)

527
(4.59)

580
(3.81)

616
(3.61)

670
(3.71)

10a(Zn)-C60 449
(5.36)

574
(4.37)

613
(4.34)

10b-C60 435
(5.23)

532
(4.37)

574
(4.21)

609
(4.00)

666
(3.68)

10b(Zn)-C60 438
(5.20)

570
(3.76)

612
(3.61)

1 417
(5.58)

515
(4.19)

550
(3.83)

591
(3.68)

647
(3.61)

1(Zn) 420
(5.78)

548
(4.41)

589
(3.76)

The UV-Vis spectra of the free-base porphyrins (3a, 3b, 6-C60, 10a-C60 and 10b-C60)
and of their ZnII complexes (3a(Zn), 3b(Zn), 6(Zn)-C60, 10a(Zn)-C60 and 10b(Zn)-C60) ful-
filled the “four orbital model” developed by Gouterman [72]. The S0
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first excited state) transitions led to four (for free
bases) or two (for the ZnII complexes) weaker (logε in the range 3.42–4.50) Q bands at
520–670 nm. The reduction of the number of the Q bands by complexation was because
of the increased degree of microsymmetry, from D2h of the free base to D4h of the metal
complex [72].

The complexation to the metal ion induced a 3–15 nm bathochromic shift of the B
band. A 2 nm redshift by complexation occurred also for the QIII band of dyads 3b and
6-C60. On the other hand, by complexation to ZnII of triads 10a-C60 and 10b-C60 the QIII
band underwent a 4–6 nm ipsochromic shift and increased in intensity.

The UV-Vis data allowed us to highlight the effect that the introduction of Fc and/or
C60 may have had on the electronic properties of P (and of its ZnII complex) [73].

Starting from 5, 10, 15, 20-tetraphenylporphyrin 1 (Scheme 1), the introduction in
β-pyrrolic position of an electron-donating Fc moiety connected to the core by a triple bond
(3a) produced a sizable redshift of the B and the Q bands (9 and 11–18 nm, respectively),
suggesting an increased molecular conjugation. Conversely, the introduction in 3a of an
additional phenyl unit between Fc and P (3b) slightly affected the spectroscopic properties:
the B and QIV bands were almost the same, while the other three Q bands experienced
a slight ipsochromic shift (1–3 nm). Hence, the insertion of the phenyl moiety was not
effective in further enhancing π-delocalization.
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Furthermore, linking an electron-withdrawing C60 moiety to 1 by an ethynylphenyl
spacer (6-C60) led to a significant redshift of the B and Q bands (10 and 7–11 nm, respec-
tively) and to an increased conjugation. However, different from what was observed
when a –NO2 [17] or a cyanoacrylic moiety [24,65,74] was connected in the same fashion
to a ZnII-porphyrin, the B band of 6(Zn)-C60 was symmetric, without any shoulder at
lower energy.

In the spectra of 6-C60 and 6(Zn)-C60 the well-defined contribution of the C60 unit
was also present at 255 and 329 nm, respectively [75].

Therefore, the insertion of a Fc or a C60 moiety on P affects and tunes its electronic
properties, promoting a charge transfer process from the π-conjugated substituent in β-
pyrrolic position to the macrocycle when the former carries an electron donor, and from
the macrocycle to the π-conjugated system when this latter has an electron acceptor [17].
In other words, P behaves as an electron acceptor moiety when connected to electron-
rich Fc and as an electron donor when connected to electron acceptor C60, displaying an
ambivalent role [8,10].

When both Fc and C60 were bound to P in 2,12 β-pyrrolic positions [76] (triads 10a-
C60 and 10b-C60 and their ZnII complexes), the UV-Vis data showed a further redshift of
the B and Q bands, which was more significant for the first triad.

3.3. EFISH Investigation of the Second-Order NLO Properties

We measured the second-order NLO response of our compounds by the EFISH tech-
nique on 10−3 M CH2Cl2 solutions with a 1907 nm incident wavelength. The details are in
the Materials and Methods Sections, and the results in Table 2.

Table 2. Experimental γEFISH and µβ1907 values (10−3 M solution in CH2Cl2) and theoretical dipole
moments (µ) for the investigated dyads and triads.

Compound µ

(D)
γEFISH

(x × 10−33 esu)
µβ1907

(x × 10−48 esu)

3a 0.09 −1.54 −320
3a(Zn) 0.19 −3.11 −640

3b 0.49 −1.88 −390
3b(Zn) 0.28 −2.85 −595
6-C60 4.21 −2.84 −590

6(Zn)-C60 4.77 −3.47 −720
10a-C60 3.82 −7.12 −1495

10a(Zn)-C60 4.37 −8.08 −1670
10b-C60 3.82 −5.19 −1075

10b(Zn)-C60 4.14 −6.41 −1330

All the investigated compounds showed negative γEFISH and µβ1907 values. For dyads
6-C60 and 6(Zn)-C60 and for triads 10a(Zn)-C60 and 10b(Zn)-C60 this outcome was quite
unexpected. Indeed, the similar complexes BP1 and BP3 (Figure 2), with a –NO2 acceptor
group (instead of C60) and a –NMe2 donor group (instead of Fc) linked to the core by
an ethynylphenyl moiety in 2 and 2,12 β-pyrrolic position, displayed positive γEFISH and
µβ1907 values [17].

On the other hand, the negative γEFISH and µβ1907 of dyads 3a, 3a(Zn), 3b, and 3b(Zn)
were in agreement with what was observed for BP2, where Fc was replaced by –NMe2 [17].

According to the “two-level” model developed by Oudar [77,78], a negative sign of
µβλ derives from a negative value of ∆µeg, which is the difference between the excited and
the ground state molecular dipole moments. Negative µβλ values suggest a decrease of the
excited state dipole moment in comparison to the ground state [79]. This evidence occurred
for C60 containing second-order NLO chromophores, in which the C60 acceptor moiety
endows a cyclopropane ring bridging an ethynylthienyl spacer linked to a trimethylsilyl or
an alkynyl platinum donor unit [80].
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Moreover, when the second-order NLO response obtained by the EFISH technique
showed an unexpected sign and/or absolute value of βλ, aggregation or other molecular
interactions occurring in solution should be considered [15,16].

Nevertheless, A4 β-pyrrolic mono or disubstituted ZnII porphyrins were characterized
by a remarkable steric hindrance, because of the 70–90◦ dihedral angle formed by the aryl
rings in 5, 10, 15, 20 meso position with the mean plane of the macrocycle, which lowered
the flatness of the molecule and hampered aggregation phenomena in solution [16,76].

The µβ1907 values in Table 2 derive from Equation (1), neglecting the cubic electronic
contribution γ0(−2ω;ω,ω, 0) to γEFISH, and for this reason could be overestimated. Indeed,
the EFISH technique is appropriate to study dipolar chromophores with a clear push–pull
structure, for which the third-order contribution is much smaller than the quadratic dipolar
orientational term and can be neglected. However, for macrocycles with an extended π-
conjugation and significant third-order NLO properties (asymmetrically monosubstituted
metal porphyrins [81], phtalocyanines [82] or porphyrazines [83]), the EFISH second-order
NLO response could be affected by a significant error, since the cubic term is comparable,
at least as an order of magnitude, to the quadratic orientational one. Moreover, as recently
reported by some of us for the BP2 complex (Figure 2) [17], when the molecular ground
state dipole moment (µ) is low, the electronic third-order term can have an overwhelming
role, determining the sign of the second-order response.

To clarify these aspects, we computed the ground state dipole moments of our dyads
and triads by DFT (Table 2).

The µ values for all the P-Fc dyads (3a, 3a(Zn), 3b and 3b(Zn)) were almost null,
suggesting for these compounds a very low dipolar character. Notably, 3a(Zn) and
3b(Zn) showed the lowest µ ever computed for A4 β-pyrrolic monosubstituted ZnII por-
phyrins [8,17], with values comparable in the order of magnitude only to the ones reported
for symmetric structures such as BP4 and BP5 (Figure 2). Therefore, endowing the por-
phyrin core either as a free core or as a ZnII complex with a donor Fc moiety did not produce
an efficient push–pull system, despite the increased molecular conjugation pointed out
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by the UV-Vis spectroscopic data (Table 1). In other words, the electronic perturbation
induced by Fc in the β-pyrrolic position of the macrocycle was trivial. The overall po-
larizability of the system increased, but without any sizable asymmetry in the electronic
density distribution.

Hence, we can safely conclude that, similar to what was reported for slightly asymmet-
ric BP2 and for symmetric BP4 and BP5 [17], in P-Fc dyads the electronic third-order contri-
bution γ0(−2ω;ω,ω, 0) to γEFISH outstrips the dipolar orientational term µβ1907(−2ω;ω,
ω)/5kT. Basically P-Fc dyads behave as third-order NLO chromophores, because of their
almost null polarity.

This conclusion is supported by CP-DFT calculations in dichloromethane, which we
chose to perform only on the ZnII dyads and triads similar to BP1, BP2 and BP3, as the
most representative of our series (Table 3).

Table 3. Theoretical β||, µβ||/5kT and γ|| values of representative dyads and triads.

Compound β||
(x × 10−30 esu)

µβ||/5kT
(x × 10−36 esu)

γ||
(x × 10−36 esu)

3b(Zn) −21 −29 −1820
6(Zn)-C60 30 696 −1543

10b(Zn)-C60 42 845 −3225

As expected, 3b(Zn) showed a very low β|| value as a consequence of a negligible
µβ||/5kT in comparison to the high and negative γ|| (Table 3).

In contrast, linking a C60 moiety to P produced dyads (6-C60 and 6(Zn)-C60) with µ
values in the range 3.5–4.8 D, in agreement with a decrease of the electron density on P
when connected to acceptor C60 and playing the role of the electron donor part of the push–
pull system [8]. The acceptor character of C60 appeared lower than that of the –NO2 group,
since for BP1 a µ value of 7.8 D was computed (compared with 4.77 of 6(Zn)-C60) [17].
Moreover, an enhancement of µ occurred by complexation (the µ of 6-C60 was 4.21 D and
that of 6(Zn)-C60 4.77 D) [8].

Nevertheless, P-C60 dyads, albeit more polar than the P-Fc counterparts, still showed
a low molecular asymmetry. In agreement with the enhanced µ value and the more pro-
nounced push–pull character, the computed β|| and µβ||/5kT of 6(Zn)-C60 were higher
than those of 3b(Zn), but the γEFISH was still dominated by the third-order contribution,
which produced a negative sign.

Eventually, the µ values of the triads were similar one to the other and to those of
P-C60 dyads, confirming the insignificant contribution of the Fc unit to the polarity of
the system, even in the presence of the additional phenyl spacer between Fc and P. An
increase of µ occurred by complexation (3.82 D vs. 4.37 D for 10a-C60 and 10a(Zn)-C60
and 3.82 D vs. 4.14 D for 10b-C60 and 10b(Zn)-C60). Once again, the computed β||,
µβ||/5kT and γ|| values supported an overwhelming contribution of the cubic term to
γEFISH. Moreover, the absolute value of γ|| of 10b(Zn)-C60 was the highest among the
series (Table 3), since the introduction of the ethynylphenyl spacer carrying the Fc moiety
extended π-delocalization, as evidenced by the bathochromic shift of the B and Q bands in
the UV-Vis spectra (Table 1).

4. Conclusions

In this work, we investigated the second-order NLO properties of a series of dyads
and triads composed by meso-tetraphenylporphyrin P (both as free base and ZnII complex),
carrying in 2 or 2,12 β-pyrrolic position an electron donor ferrocene (Fc), and/or an electron
acceptor fullerene (C60) moiety, connected to the porphyrinic core via an ethynyl or an
ethynylphenyl spacer.

UV-Vis spectroscopy showed that the introduction of a Fc or a C60 unit on the P core
causes a sizable bathochromic shift of the B and Q bands of the tetrapyrrolic macrocycle,
pointing to an increased molecular conjugation, in particular, with an ethynyl spacer.
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Indeed, the insertion of an additional phenyl moiety between Fc and P did not enhance
π-delocalization significantly. On the other hand, linking both Fc and C60 to P produced a
further redshift of the electronic absorption bands.

Therefore, the presence of Fc and /or C60 tuned the electronic properties of P in such
a way that it behaved as an electron acceptor when connected to electron-rich Fc and as
an electron donor when connected to electron-deficient C60, confirming its ambivalent
role [8,10].

Surprisingly, EFISH measurements produced for all the investigated compounds neg-
ative γEFISH and µβ1907 values. Since A4 β-pyrrolic mono or disubstituted ZnII porphyrins
feature a sterically hindered architecture [16,76], we could safely exclude the presence of
aggregation phenomena in solution, which could affect the sign and magnitude of the
EFISH response.

However, when the ground state molecular dipole moment was low, the pure elec-
tronic cubic contribution to γEFISH γ0(−2ω;ω,ω, 0) overwhelmed the dipolar orientational
term µβ1907(−2ω;ω,ω)/5kT, dictating the sign of the second-order response [17].

DFT-computed dipole moments of P-Fc dyads were almost null, and for P-C60 dyads
and Fc-P-C60 triads they were in the range 3.5–4.8 D, suggesting for all the investigated
compounds a low polarity, which led to a non-negligible third-order contribution to their
second-order NLO response, as confirmed by the calculated β||, µβ||/5kT and γ|| values
of representative dyads and triads.

Therefore, our investigation proved from both an experimental and a theoretical
point of view that the combination of porphyrins, fullerene, and ferrocene leads to hybrid
materials with a high polarizability but a low push–pull character, whose second-order
NLO properties as measured by the EFISH technique must be analyzed very carefully.
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