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ABSTRACT
Despite aggressive treatment, the 5-year event-free survival rate for children with high-risk neuroblastoma 
is <50%. While most high-risk neuroblastoma patients initially respond to treatment, often with complete 
clinical remission, many eventually relapse with therapy-resistant tumors. Novel therapeutic alternatives 
that prevent the recurrence of therapy-resistant tumors are urgently needed. To understand the adapta
tion of neuroblastoma under therapy, we analyzed the transcriptomic landscape in 46 clinical tumor 
samples collected before (PRE) or after (POST) treatment from 22 neuroblastoma patients. RNA sequen
cing revealed that many of the top-upregulated biological processes in POST MYCN amplified (MNA+) 
tumors compared to PRE MNA+ tumors were immune-related, and there was a significant increase in 
numerous genes associated with macrophages. The infiltration of macrophages was corroborated by 
immunohistochemistry and spatial digital protein profiling. Moreover, POST MNA+ tumor cells were more 
immunogenic compared to PRE MNA+ tumor cells. To find support for the macrophage-induced out
growth of certain subpopulations of immunogenic tumor cells following treatment, we examined the 
genetic landscape in multiple clinical PRE and POST tumor samples from nine neuroblastoma patients 
revealing a significant correlation between an increased amount of copy number aberrations (CNA) and 
macrophage infiltration in POST MNA+ tumor samples. Using an in vivo neuroblastoma patient-derived 
xenograft (PDX) chemotherapy model, we further show that inhibition of macrophage recruitment with 
anti-CSF1R treatment prevents the regrowth of MNA+ tumors following chemotherapy. Taken together, 
our work supports a therapeutic strategy for fighting the relapse of MNA+ neuroblastoma by targeting the 
immune microenvironment.
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Introduction

Neuroblastoma is a pediatric solid tumor that arises from the 
sympathetic nervous system and presents with a mass in the 
adrenal gland or along the sympathetic chain.1 It is the most 
common extracranial solid tumor in children accounting for 
6–10% of pediatric cancers.2,3 Despite advances in risk strati
fication and therapy, neuroblastoma remains a therapeutic 
challenge, accounting for approximately 15% of all pediatric 
cancer deaths.4–6 Neuroblastoma is stratified into low-, inter
mediate- or high-risk groups, according to the International 
Neuroblastoma Risk Group (INRG) consensus criteria, which 
include age at diagnosis, histological category, and genetic 
characteristics such as MYCN amplification (MNA+).7 MNA+ 

is found in approximately 20% of all neuroblastoma patients 
and accounts for 40% of all high-risk neuroblastoma cases.8 

Increased expression of MYCN is a tumor-initiating event 
responsible for the development of high-risk 
neuroblastoma.9,10 Besides having a direct effect on neuroblas
toma development, MNA+ induces an immunosuppressive 
tumor microenvironment. MYCN negatively regulates ligands 

for natural killer (NK) receptors, and MNA+ is associated with 
the downregulation of MHC-I expression in neuroblastoma, 
rendering tumor cells less susceptible to recognition and killing 
by NK- and T-cells.11–13 Moreover, MNA-positivity correlates 
with the infiltration of tumor-associated macrophages (TAMs) 
into neuroblastoma tumors.13,14

Most patients with MNA+ neuroblastoma are treated with 
intensive chemotherapeutic induction regimens according to 
contemporary European protocols, typically Rapid COJEC. 
Rapid COJEC comprises cisplatin (C), vincristine (O), carbo
platin (J), etoposide (E), and cyclophosphamide (C), adminis
tered in eight cycles, one every ten days and all within 70 days 
from the first to the last drug administered.15 Induction che
motherapy is typically followed by surgery and later high-dose 
treatment with allogeneic stem cell transplantation and radio
therapy, followed by isotretinoin and anti-GD2 monoclonal 
antibodies to treat any residual disease. While most high-risk 
neuroblastoma patients initially respond to the treatment, 
often with complete clinical remission, many eventually relapse 
with therapy-resistant tumors. Therapy resistance could be due 
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to either acquired drug resistance or due to the selection of 
therapy-resistant subclones in a genetic intratumor heteroge
neity already present at diagnosis.1,16,17 Chemotherapy resis
tance in neuroblastoma has been attributed to tumor cells with 
a mesenchymal gene profile.17 There are two main differentia
tion states of neuroblastoma tumor cells; committed adrener
gic cells and undifferentiated mesenchymal cells.17–19 

Importantly, intratumor genetic heterogeneity is common in 
neuroblastoma, where high-risk tumors are distinguished by 
a mosaic pattern of distinct clonal areas across the primary 
tumor space,20,21 which in turn forms a substrate for tumor 
relapse with an increased mutational burden and activation of 
the RAS-MAPK pathway.22–24 Emerging data from other 
tumor types further demonstrate that resistance to therapy 
can be promoted by the tumor microenvironment.25 For exam
ple, in melanoma, MAPK pathway inhibitors increase the 
infiltration of macrophages, fostering tumor cell resistance to 
BRAF and MEK inhibition through macrophage-derived 
TNFα.26 A therapeutic strategy for fighting therapy resilience 
could accordingly be to target the tumor microenvironment 
itself.

Here we demonstrate that the immune landscape and the 
genetic landscape change in chemotherapy-treated MNA+ neu
roblastoma tumors. Using neuroblastoma patient-derived 
xenograft (PDX) models, we show that immunogenic tumor 
cells expand following treatment and that inhibition of macro
phage recruitment after chemotherapy can prevent the 
regrowth of MNA+ neuroblastoma tumors.

Materials and methods

See Supplemental Information.

Results

Immune cells are recruited to MNA+ neuroblastoma 
tumors following treatment

To understand the potential adaptations of neuroblastoma cells 
under therapy, we analyzed the transcriptomic landscape in 46 
clinical tumor samples from 22 neuroblastoma patients 
(Supplementary Figure S1a, Supplementary Table S1). The 
tumor samples were collected before (PRE) or after (POST) 
treatment. RNA sequencing (RNA-seq) was performed, and 
differential gene expression analysis revealed major transcrip
tomic changes when comparing PRE MNA+ tumors with 
POST MNA+ tumors and PRE MNA− tumors with POST 
MNA− tumors (Figure 1a, Supplementary Figure S1b). Gene 
ontology (GO) analysis was performed to determine which 
biological processes were upregulated in POST tumor samples. 
Eight of the top 20 upregulated biological processes in POST 
MNA+ tumors were immune-related pathways, such as the 
interferon-gamma-response and IL2-STAT5 signaling 
(Figure 1b). Similar correlations with immune-related path
ways were not found in MNA− tumors (Supplementary 
Figure S1c).

To further elucidate how the immune landscape changed 
after treatment, we analyzed the RNA-seq data for selected 
immune cell markers. There was a significant increase in 

specific sets of genes, including those associated with macro
phages and T-cells, in POST MNA+ tumors compared to those 
in PRE MNA+ tumors (Figure S1c, Supplementary Figure S2a). 
The transcriptomic results were further corroborated by IHC 
staining for various immune cell markers on consecutive 
tumor sections (Supplementary Fig. 1a), revealing 
a significant POST treatment shift in the immune infiltration 
of macrophages and T-cells only in MNA+ tumors (Figure 1d– 
f, Supplementary Figure 2b-f and Supplementary Figure 3). 
MNA+ patients with low infiltration of macrophages in their 
POST tumors had better survival (p-value = 0.059; 
Supplementary Figure S4a). A similar prognostic impact was 
not found for T-cells (p-value = 0.841; Supplementary Figure 
S4b). Caution should be taken when interpreting these prog
nostic data given our limited number of patients.

Spatial profiling reveals POST infiltration of pro-tumoral 
macrophages

Next, we investigated the immune landscape using a high- 
resolution spatial proteomics platform (Nanostring, GeoMx; 
Supplementary Table 2).27,28 PRE and POST tumor samples 
from two MNA+ neuroblastoma patients (selected based on hav
ing both PRE and POST tumor samples and having enough tissue 
available) were stained with a chromogranin A antibody, recog
nizing neuroblastoma tumor cells and with a CD45-antibody 
recognizing immune cells (Figure 2a). GeoMx analysis confirmed 
that the infiltration density of monocytes/macrophages (HLA-DR, 
CD11c, CD68, and CD14) increased in the POST MNA+ samples 
(Figure 2b,c and Supplementary Table S3). Moreover, there was 
a significant increase in proteins associated with pro-tumor effects 
and immunosuppression such as Tim-3, B7-H3, and CD163.29–31 

CD163 is a scavenger receptor for hemoglobin and haptoglobin 
and a major marker for anti-inflammatory M2 macrophages and 
tumor-associated macrophages (TAMs).31,32 To further validate 
the infiltration of TAMs in POST MNA+ tumors we stained the 
neuroblastoma patient cohort with an anti-CD163 antibody 
(Figure 2d). The infiltration percentage of CD163+ cells in tumors 
significantly correlated with that of CD68 (p-value <0.001; 
Spearman’s rho, two-tailed p-value), supporting the notion that 
macrophages infiltrating POST MNA+ tumors have TAM traits.

Expansion of CCL2-expressing tumor cells following 
treatment

To understand how macrophages are recruited, we re-analyzed 
patient RNA-seq data from both MNA– and MNA+ tumors 
and specifically focused on the expression of chemokines/cyto
kines and their receptors (Supplementary Table 4). There were 
37 differentially expressed genes for chemokines/cytokines and 
their receptors in POST MNA+ compared to PRE MNA+ 

tumors (Figure 3a). Among the top differentially expressed 
genes were two genes, namely colony-stimulating factor 
(CSF1) and chemokine (C-C motif) ligand 2 (CCL2), encoding 
potent monocyte/macrophage chemoattractant proteins, 
shown to be critical determinants of monocyte/macrophage 
recruitment and TAM accumulation in various cancers.33–35

To elucidate whether expression of CCL2 was induced during 
treatment or if subpopulations of tumor cells more abundant in 
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CCL2 expanded after COJEC treatment, we analyzed RNA-seq 
data derived from a previously performed in vivo PDX#3-COJEC 
experiment.36 We compared CCL2 expression in untreated 
tumors, tumors collected during treatment, and tumors collected 
after COJEC treatment and regrowth (POST). Interestingly, CCL2 
gene expression was found to be increased in POST tumors 
(Figure 3b). This indicates that the increase of CCL2 seen in 
POST tumors is not due to the treatment itself but rather due to 
an expansion of CCL2+ tumor cells following treatment. An 

increase in CCL2 protein expression in POST tumors was further 
confirmed by IHC in clinical MNA+ tumor samples (Figure 3c,d).

CCL2 is mainly expressed by mesenchymal 
neuroblastoma tumor cells

Chemotherapy resistance in neuroblastoma has been attrib
uted to tumor cells with a mesenchymal gene profile.17 It 
was recently shown in vitro that adrenergic neuroblastoma 

Figure 1. Immune cell infiltration in POST MNA+ neuroblastoma tumors a. Heatmap showing differentially expressed genes in PRE and POST MNA+ neuroblastoma 
tumors. The heatmap is based on (unsupervised) clustering of the genes that differed significantly in differential expression analyses. b. Top 20 biological processes 
upregulated in POST MNA+ neuroblastoma tumors. c. Expression of macrophage-related genes in POST MNA- and MNA+ neuroblastoma tumors compared to PRE 
MNA- and MNA+ neuroblastoma tumors, respectively. *Indicates significant differential expression, p-value. d. Representative IHC image for macrophages (CD68+ cells, 
here in a POST MNA+ neuroblastoma tumor). Scale bar = 100μm. e. Percentage of CD68+ cells in neuroblastoma tumors (1-7 tumor samples per patient) divided by 
treatment status and MYCN amplification. f. Mean percentage of CD68+ cells in patients’ PRE and POST tumors. Mean ± SD, Mann-Whitney test.
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tumor cells that become therapy-resistant acquire 
a mesenchymal profile and, more importantly, have 
increased expression of immune response genes.37 In line 
with that data, our clinical data revealed that, besides 
immune-related pathways, epithelial-mesenchymal transi
tion (EMT) was among the top upregulated biological pro
cesses when we compared POST with PRE MNA+ tumors 
(Figure 1b). To understand whether CCL2+ tumor cells were 
of mesenchymal tumor cell lineage, we analyzed previously 
generated single-cell RNA sequencing (scRNA-seq) data 
from a treated MNA+ neuroblastoma tumor (Figure 3e).38 

In line with previous work, the majority of CCL2-expressing 
tumor cells belonged to the mesenchymal population 
(Figure 3f).

Macrophage infiltration and changed genetic landscape in 
POST tumors

To find further support for a macrophage-induced outgrowth 
of subpopulations of tumor cells following treatment, we 
examined the genetic landscape in multiple clinical PRE and 
POST tumor samples from nine neuroblastoma patients. The 
number of copy number aberrations (CNA) in each sample 
correlated with macrophage infiltration. While macrophage 
infiltration and the number of CNAs in PRE tumor samples 
did not correlate, there was a significant correlation found in 
POST tumor samples between the number of CNA and macro
phage infiltration (p = .005) (Figure 4a, Supplementary Table 
S5). Notably, only MNA+ neuroblastoma tumors showed 
a significant increase in CNAs after treatment (Figure 4b).

Figure 2. Infiltration of tumor associated macrophages in POST MNA+ neuroblastoma tumors a. Representative image of high-resolution spatial proteomics on 
neuroblastoma tumors stained for immune cells (CD45+, green) and tumor cells (chromogranin A+, purple). Circles indicate regions of interest (ROI). Red blood cell 
autofluorescence can be seen between ROI. b. Volcano plot of immune cell related proteins. Unpaired t-tests, p-value <-2 or > 2. c. Heatmap and dendrogram showing 
unsupervised hierarchical clustering of multiple PRE and POST tumor samples from two patients with MNA+ neuroblastoma, for the proteins that had significantly 
different expression comparing PRE and POST tumor samples. d. Representative IHC images for TAMs (CD163+ cells in PRE and POST MNA+ tumors from the same 
patient). Black arrow indicate CD163+ cells. Scale bar = 100 µm.
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Inhibition of macrophage recruitment prevents tumor 
regrowth

Once high-risk neuroblastoma patients complete the rapid- 
COJEC therapy regimen, they undergo surgery to achieve 

complete removal of any remaining primary tumor. The time 
from completed treatment to surgery is typically a couple of 
weeks to allow recuperation. We hypothesized that, during the 
interval between chemotherapy and surgery, surviving tumor 

Figure 3. Monocyte/macrophage chemoattractant protein CCL2 increases in POST MNA+ tumors a. Genes related to cytokines and chemokines and their receptors in 
POST-treatment MNA- and MNA+ neuroblastoma tumors as compared to pre-treatment MNA- and MNA+ neuroblastoma tumors, respectively. *Indicates significant 
differential expression, p-value. b. Gene expression of CCL2 in PDX#3 tumors; untreated, collected during COJEC treatment or POST COJEC treatment. Mean ± SD, Mann- 
Whitney test. c. Representative IHC images for CCL2 in a PRE and POST MNA+ neuroblastoma tumor. Scale bar = 100μm. d. H-score of CCL2 protein levels in clinical MNA 
+ neuroblastomas. Mean ± SD, Mann-Whitney test. e. Data analysis of scRNA-seq sample from one treated MNA+ neuroblastoma tumor, visualized using a common 
UMAP embedding is tumor and stroma compartment. f. gene expression shown in UMAP plot.
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cells could proliferate in cooperation with macrophages. To 
explore whether inhibition of macrophage recruitment could 
prevent tumor regrowth we used an in vivo neuroblastoma 
PDX–COJEC model and anti-CSF1R, inhibiting the recruit
ment of macrophages.36 Dissociated organoids from the 
PDX#3 model were subcutaneously (s.c.) injected into the 
flank of nude mice (Figure 5a).39 COJEC treatment was admi
nistered for three weeks. After chemotherapy, the tumors were 
allowed to regrow for three weeks without or with intraperito
neal (i.p.) treatment with anti-CSF1R, inhibiting the recruit
ment of macrophages.40,41 All PDX tumors treated with 
COJEC shrank during the treatment period and started to 
regrow once the treatment ended. Importantly, the anti- 
CSF1R treatment, which impaired macrophage infiltration 
(Figure 5d,e and Supplementary Fig 5a-c), prevented the 
regrowth of the tumors (Figure 5b,c). In line with the above
mentioned data, the POST tumors in this experiment had 
increased expression of CCL2 than the untreated tumors 
(Figure 5f).

Taken together, our data suggest that the regrowth of 
immunogenic tumor cells in MNA+ neuroblastoma depends 
on the infiltration of macrophages, and our work supports 
a therapeutic strategy for fighting the relapse of high-risk 
neuroblastoma by targeting macrophages (Figure 6).

Discussion

Despite aggressive treatment, the 5-year event-free survival rate 
of high-risk neuroblastoma patients is <50%. Here, we show 
that MNA+ tumors are infiltrated with pro-tumor macro
phages following treatment, and inhibition of macrophage 
recruitment after chemotherapy prevents tumor regrowth, sug
gesting that a therapeutic strategy for fighting relapse of high- 
risk neuroblastoma could be to target the immune 
microenvironment.

The tumor microenvironment in neuroblastoma has been 
previously investigated, revealing a complex network of inter
actions between tumor cells and various immune cell 
populations.38 However, to our knowledge, no previous study 
has compared the immune landscape in neuroblastoma tumors 

before and after treatment. One study did, however, determine 
immune profiles in the peripheral blood of high-risk neuro
blastoma patients before and over the course of treatment, 
revealing a high degree of interpatient immune variability 
and the existence of both immune-enhancing and regulatory 
responses during treatment.42 While we did not find 
a significant difference in macrophage infiltration between 
clinical PRE MNA− and MNA+ tumors, we did observe 
increased infiltration of macrophages in POST MNA+ tumors, 
compared to POST MNA− tumors, PRE MNA− and PRE 
MNA+ tumors. Other clinical studies focusing on the immune 
microenvironment in neuroblastoma tumors have compared 
MNA+ with MNA− tumors and included primary untreated 
tumors or did not provide information about treatment status. 
This could explain the contradictory results in this field. RNA- 
seq was performed on 150 neuroblastomas revealing that 
MNA− tumors had a significantly higher cytotoxic tumor- 
infiltrating lymphocyte (TIL) signature than MNA+ tumors. 
Importantly, all tumors included in that study were primary 
tumors collected before treatment, and the authors did not 
focus on myeloid signatures.43 In silico immunological analysis 
of ~140 neuroblastomas (information about treatment was not 
provided) revealed significantly reduced transcripts related to 
major immune effector cells, including macrophages and 
T-cells, in MNA+ tumors compared to MNA− tumors.44 

Another study examined 41 primary neuroblastomas (collected 
before therapy) using IHC and markers for macrophages 
(CD68 and CD163). They, however, found a correlation 
between macrophage infiltration and MNA+.14

Our neuroblastoma cohort had too few patients to perform 
comprehensive survival analyses. The patients with MNA+ 

tumors, which had high infiltration of macrophages following 
treatment, had a worse outcome than those with lower macro
phage infiltration. Our prognostic data align with previous work 
showing that high gene expression of CSF1R in neuroblastoma 
predicts poor outcome,45 but future studies investigating the 
importance of macrophages and other immune cell populations 
in a larger patient cohort are warranted to determine the prog
nostic impact of macrophage infiltration in PRE and POST 
neuroblastoma tumors. Interestingly, we also detected increased 
T-cell infiltration in POST MNA+ tumors. T-cell infiltration has 
been associated with improved clinical outcome for neuroblas
toma patients.46 A future goal will be to investigate T-cell 

Figure 4. Macrophage infiltration and altered genetic landscape in POST-tumors a. Correlations between the percentage of CD68+ cells and the number of copy number 
aberrations (CNA) in clinical PRE and POST tumor samples. b. Number of CNA in clinical neuroblastoma tumor samples. Mean ± SD, Mann-Whitney test.
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Figure 5. Inhibition of macrophage recruitment prevent POST tumor regrowth a. Schematic illustration of experimental approach. b. Tumor growth kinetics of untreated 
(n = 4) and COJEC treated PDX#3 tumors (n = 12). The treatment continued for three weeks after which the tumors were left to regrow for an additional three weeks. 
Seven of the COJEC-treated mice were administrated with anti-CSF1R during the last three weeks. Mean ± SD. c. Tumor volume of POST treatment (n = 5) and POST 
treatment + anti-CSF1R treated tumors (n = 7) last day of experiment (day 42). Mean ± SD, Mann-Whitney test. d. Representative IHC images for mouse CD206 in 
untreated (i), POST (ii) and POST+anti-CSF1R (iii- CD206+ cells absent; iv- few dispersed CD206+ cells present) PDX#3 tumors. Black arrows indicate CD206+ cells. 
e. Immunohistochemistry statistics of d. using Mann-Whitney test. Mean ± SD. f. Representative IHC images for human CCL2 in untreated and POST PDX#3 tumors. Scale 
bar = 100 µm.

Figure 6. Immunogenic tumor cells have a growth advantage after treatment due to their ability to recruit pro-tumor macrophages. Blocking the recruitment of 
macrophages after chemotherapy prevents the outgrowth of immunogenic tumor cells.
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subpopulations further and their role in PRE and POST 
neuroblastoma.

Besides potentially affecting tumor progression by sup
porting, e.g., angiogenesis and invasion, as shown in other 
cancers,47 the unfavorable prognostic impact of macrophage 
infiltration in POST MNA+ neuroblastoma could be that 
macrophages are essential for the outgrowth of tumor cells 
that have survived therapy and are responsible for relapse. 
POST MNA+ tumors did have enrichment for the EMT path
way. Importantly, therapy-resistant tumor cells in neuroblas
toma have been shown to have a mesenchymal gene 
expression profile.17,37

MNA+ tumor cells surviving treatment were found to have 
an immunogenic gene expression profile compared to 
untreated MNA+ tumors, with an increased expression of 
many cytokines/chemokines capable of recruiting monocytes/ 
macrophages, e.g., CSF1 and CCL2. A similar immunogenic 
shift was not observed for MNA− tumors. The reason for the 
increased production of CCL2, a potent chemoattractant for 
macrophages,33 in POST MNA+ tumor samples is unknown. It 
is noteworthy that MYCN has been shown to bind to the CCL2 
promoter directly and negatively regulate the production of 
CCL2 in neuroblastoma.48 Marrano et al. reported clinical 
cases of PRE MNA+ neuroblastoma tumors that had MYCN 
amplified tumor cells throughout the tumor, but after treat
ment only had one or more foci with MYCN amplified tumor 
cells separated by foci of non-amplified tumor cells.49 Hence, 
the increase in CCL2 following treatment might be explained 
by the intratumoral MYCN heterogeneity found in untreated 
primary MNA+ neuroblastoma tumors and the expansion of 
therapy-resilient CCL2+MNA− tumor cells following 
treatment.

Using an in vivo neuroblastoma PDX-COJEC model, we 
furthermore showed that inhibition of macrophage recruit
ment prevented the short-term outgrowth of tumor cells that 
had survived COJEC-like therapy. These data are consistent 
with those of previous studies. Webb et al. showed that block
ing the recruitment of macrophages with the macrophage 
inhibitor BLZ945 improved the efficiency of chemotherapy in 
various human neuroblastoma cell lines and in a PDX model, 
suggesting that subpopulations of neuroblastoma tumor cells 
are protected from chemotherapy through cooperation with 
macrophages.50 Interestingly, BLZ945 treatment in 
a glioblastoma model did not deplete macrophages but 
impaired their tumor-promoting functions.51 Alteration of 
macrophage polarization is an additional way that anti- 
macrophage treatment might prevent neuroblastoma regrowth 
after treatment. Moreover, metastatic MNA- neuroblastomas 
have been shown to have a higher infiltration of TAMs than 
locoregional tumors, emphasizing anti-macrophage therapy’s 
potential in also preventing and targeting metastatic 
neuroblastoma.52

Taken together, we suggest that a therapeutic strategy for 
fighting relapse of high-risk neuroblastoma could be to 
inhibit macrophage infiltration following treatment, which 
would presumably prevent the outgrowth of therapy- 
resilient tumor cells, that have a mesenchymal and immu
nogenic profile and depend on macrophages for their 
expansion.
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