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Abstract
The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In par-

ticular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the

autoimmune pathogenesis of the disease, although roles for inflammatory processes and

the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of

cytokines before and at the onset of T1D, the corresponding findings are inconsistent

across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D

patients. The current study was performed to investigate genetic and autoantibody markers

in association with the peripheral blood cytokine profiles by xMap multiplex technology in

newly diagnosed young T1D patients and age-matched healthy controls. The onset of

young-age T1D was characterized by the upregulation of growth factors, including granulo-

cyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflam-

matory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and

the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and

-ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine lev-

els. These findings broaden the current understanding of the dysregulation of systemic lev-

els of several key cytokines at the young-age onset of T1D and provide a further basis for

the development of novel immunoregulatory treatments in this disease.

Introduction
As cell-signaling molecules, cytokines play integral roles in the development and activation of
immune cells. Much attention has been devoted to exploring their role in autoimmune dis-
eases, including type 1 diabetes (T1D). Several disease-promoting cytokines and chemokines
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are dysregulated in the blood of prediabetic and diabetic patients [1,2,3]. Therefore, cytokines
may serve as additional markers of T1D. Additionally, cytokines may provide valuable infor-
mation about the pathogenic pathways and the regulation of disease processes, leading to the
development of immunotherapeutic strategies (e.g., targeted neutralization of cytokines with
monoclonal antibodies).

An imbalance towards T helper (Th) type 1 (Th1) cells and dysregulation of regulatory T
(Treg) cells have been proposed to underlie the pathogenesis of T1D. Recently, the involvement
of third effector pathway, that of Th17 cells, was shown to be connected with the pathogenesis
of T1D and the destruction of pancreatic β-cells [4,5]. Despite evidence for the role of cytokines
before and at the onset of T1D, the findings are inconsistent across studies, and conflicting
data exist regarding the blood cytokine levels in patients with T1D. Plasma levels of proinflam-
matory and Th1 cytokines, such as interleukin (IL)-1β, IL-2, IL-6, IL-12, tumor necrosis factor
(TNF)-α, and interferon (IFN)-γ, may be upregulated in patients with T1D [1,6–9]. However,
other studies reported no difference in [2,10] or even reduced production of Th1-associated
cytokines at the onset of T1D [3,11–13]. Moreover, metabolic imbalance (e.g., ketoacidosis,
hyperglycemia, oxidative stress), disease duration, as well as the patient’s gender and age may
influence the serum cytokine level in T1D [14,15].

The purpose of the present study was to investigate the peripheral blood immunoregulatory
milieu (cytokine profiles of Th1, Th2, and Th17) in association of genetic and autoantibody
markers in newly diagnosed young T1D patients and age-matched healthy controls. Stringent
storage conditions (temperature< -70°C) and avoidance of repeated thawing of plasma or
serum are needed for the correct measurement of cytokine levels in peripheral blood. Ideally, a
multiplex platform should be used for the simultaneous detection of different cytokines. There-
fore, in this study, the xMap multiplex technology was applied to assess 20 different cytokines
simultaneously by two commercially available Luminex kits.

Materials and Methods

Study population
This study included 36 newly diagnosed young T1D patients (median age 10.5 years; interquar-
tile range [IQR] 5.2–12.9 years; 17 boys/19 girls) and 20 controls (median age 14.6 years; IQR
6.7–20.3 years; 8 males/12 females). All patients were recruited from November 2008 to Octo-
ber 2011 at Tartu University Hospital and Tallinn Children’s Hospital. Diagnostic criteria for
T1D were based on the classification of the Expert Committee on the Diagnosis and Classifica-
tion of Diabetes Mellitus [16]. Data about concomitant autoimmune diseases (autoimmune
thyroiditis, Graves' and Addison's diseases, celiac disease, vitiligo, autoimmune liver and rheu-
matic diseases, multiple sclerosis) and other diseases were available. No autoimmune diseases
were recorded except two persons with autoimmune thyroiditis and one without diagnosis but
with high anti-TPO antibodies in T1D group. None of individuals in studied population has a
history of infections during last month. Peripheral blood was obtained less than 1 week after
diagnosis. All T1D patients were on insulin treatment during the blood collection period
(mean 0.72, range 0.15–1 U/kg of day). C-peptide values in T1D group were 0.132±0.077
nmol/L (mean±SD). The control group consisted of young healthy blood donors and children
who visited Tartu University Hospital with minor surgical problems. Subjects in the control
group did not have diabetes or abnormal fasting blood glucose levels, and there was no suspi-
cion of any inflammatory process in these individuals.

All blood samples were collected in the morning before meals and EDTA-treated plasma
from the blood was aliquoted and stored at -80°C. Samples did not go through additional freeze-
thaw cycles before analysis. The study was approved by the Research Ethics Committee of the
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University of Tartu (protocols 163/T-6 from 24.09.2007 and 179/M-29 from 16.02.2009). All
patients, their parents, and/or their guardians signed a written consent form before participation.

Autoantibodies and human leukocyte antigen (HLA) genotyping
In all patients and controls, the presence of the main diabetes-associated antibodies and HLA
class II alleles was determined. Autoantibodies against 65-kDa glutamic acid decarboxylase
(GADA), protein tyrosine phosphatase (IA2A), and zinc transporter 8 (ZnT8A) were mea-
sured by commercial ELISA kits (RSR Ltd., Cardiff, UK), in accordance with the manufactur-
er’s protocol. The cut-off levels were�5 U/ml for GADA,�15 U/ml for IA2A and ZnT8A.
These tests are performed routinely with specificity of 96–99% and sensitivity of 66–74%, as
confirmed by the Islet Autoantibody Standardization Program (IASP) in 2012.

For determination of HLA DQA1–DQB1 genotypes and DRB1�04 subtypes, polymerase
chain reaction (PCR)-based lanthanide-labeled oligonucleotide hybridization and time-
resolved fluorometry were used [17,18]. Combinations of HLA DRB1-DQA1-DQB1 alleles
were divided into five groups on the basis of risk for T1D development: high-, moderate-,
slightly increased-, neutral-, and decreased-risk groups [18]. General medical information,
autoantibodies, and HLA data for the study groups are presented in Table 1.

Cytokines
Cytokine levels in EDTA-treated plasma from controls and T1D patients were measured by
the xMAP Technology on Luminex 200 (Luminex Corp., Austin, TX). Levels of 20 different
cytokines were determined with the Milliplex MAP High Sensitivity Human Cytokine kit

Table 1. Medical data, autoantibodies, and HLA haplotype frequencies in T1D patients and controls.

Characteristics Controls (n = 20) T1D patients (n = 36)

Ketoacidosis - 44% (16/36)

Autoantibodies:

GADA 10% (2/20#) 89% (32/36)

IA2A 0% (0/20) 69% (25/36)

ZnT8A 5% (1/20#) 78% (28/36)

HLA haplotypes:

High riska 0% (0/20) 25% (9/36)

Moderate riskb 10% (2/20) 28% (10/36)

Slightly increased riskc 0% (0/20) 8% (3/36)

Neutral riskd 25% (5/20) 19% (7/36)

Decreased riske 65% (13/20) 19% (7/36)

# Controls with a low level of GADA or ZnT8.
a Heterozygosity for the two risk-associated haplotypes DRB1*0401/2/4/5/8-DQA1*03-DQB1*0302/4 and

[DRB1*03]-DQA1*05-DQB1*02.
b Above risk haplotypes as homozygous or DRB1*0401/2/4/5/8-DQA1*03-DQB1*0302/4 combined with a

neutral haplotype, or the [DRB1*03]-DQA1*05-DQB1*02/[DRB1*09]-DQA1*03-DQB1*03 genotype.
c [DRB1*03]-DQA1*05-DQB1*02 with a neutral haplotype or theDRB1*0401/2/5/8-DQA1*03-DQB1*0302/

4/[DRB1*1301]-[DQA1*01]-DQB1*0603 genotype.
d Genotypes where a risk haplotype is combined with a protective one(DRB1*15-[DQA1*01]-DQB1*0602,

[DRB1*11/12/13]-DQA1*05-DQB1*0301, [DRB1*14]-[DQA1*01]-DQB1*0503,

DRB1*07-DQA1*0201-DQB1*0303, DRB1*0403-[DQA1*03]-DQB1*0302/4 and [DRB1*1301]-

[DQA1*01]-DQB1*0603 (except the combination in c)) or combinations of two neutral haplotypes.
e Combinations of two protective haplotypes or a protective haplotype associated with a neutral one.

doi:10.1371/journal.pone.0142976.t001
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(n = 20 controls, n = 34 T1D patients) and the Milliplex MAP Human Th17 Magnetic Bead
Panel kit (n = 20 controls, n = 36 T1D patients; Millipore Corp., Billerica, MA) (Table 2). Cyto-
kine levels were analyzed in accordance with the manufacturer’s protocol, with levels below the
detection limit being imputed as 10% less than the minimum detectable concentration limit, as
calculated by the manufacturer’s protocol.

Statistical analysis
The R version 3.0.1 language and environment (Free Software Foundation, Boston, MA) and
GraphPad Prism 5 (GraphPad Software, La Jolla, CA) software packages were used for statisti-
cal analyses and figure preparation. For descriptive statistics, medians and IQRs are reported.
As the concentrations of cytokines do not assume a normal distribution, the non-parametric,
pairwise Spearman’s rank correlation was used to assess the correlation between cytokine lev-
els. The Mann–Whitney U-test (two-tailed) was used to compare the characteristics of the two
study groups and Kruskal-Wallis Rank Sum Test for more than two groups. A p-value less
than or equal to 0.0025 after Bonferroni correction was considered statistically significant.

Results

Correlation of cytokine concentrations
Three cytokines, IL-6, IFN-γ, and IL-10, were measured simultaneously with High Sensitivity
Human Cytokine kit and Human Th17 Magnetic Bead Panel kit. No strong correlations

Table 2. Minimal detectable concentrations and percentage rates of detection for investigated cytokines.

Cytokine Kit name Minimal detectable concentration* Relative assay sensitivity **

GM-CSF High Sensitivity Human Cytokine 0.46 pg/mL 100%

IL-7 High Sensitivity Human Cytokine 0.12 pg/mL 100%

IL-1β High Sensitivity Human Cytokine 0.06 pg/mL 100%

IL-6 Human Th17 Magnetic Bead Panel 1.7 pg/mL 96%

IL-6 High Sensitivity Human Cytokine 0.10 pg/mL 100%

TNF-α High Sensitivity Human Cytokine 0.05 pg/mL 100%

IL-8 High Sensitivity Human Cytokine 0.11 pg/mL 100%

IL-12 p70 High Sensitivity Human Cytokine 0.11 pg/mL 100%

IFN-γ Human Th17 Magnetic Bead Panel 1.8 pg/mL 100%

IFN-γ High Sensitivity Human Cytokine 0.29 pg/mL 100%

IL-2 High Sensitivity Human Cytokine 0.16 pg/mL 100%

IL-4 High Sensitivity Human Cytokine 0.13 pg/mL 100%

IL-5 High Sensitivity Human Cytokine 0.01 pg/mL 100%

IL-13 High Sensitivity Human Cytokine 0.48 pg/mL 89%

IL-17A Human Th17 Magnetic Bead Panel 2.1 pg/mL 100%

IL-17E Human Th17 Magnetic Bead Panel 0.099 ng/mL 98%

IL-17F Human Th17 Magnetic Bead Panel 0.009 ng/mL 95%

IL-21 Human Th17 Magnetic Bead Panel 2 pg/mL 100%

IL-22 Human Th17 Magnetic Bead Panel 0.021 ng/mL 98%

IL-23 Human Th17 Magnetic Bead Panel 0.098 ng/mL 100%

IL-27 Human Th17 Magnetic Bead Panel 0.063 ng/mL 100%

IL-10 Human Th17 Magnetic Bead Panel 0.3 ng/mL 91%

IL-10 High Sensitivity Human Cytokine 0.15 pg/mL 100%

* Calculated by the Millipore kit protocols.
**calculated as the frequency of detectable values in the plasma samples (n = 56); all extrapolated sample values were considered undetectable.

doi:10.1371/journal.pone.0142976.t002
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(rho< 0.7) were found between the concentrations of these cytokines when measured by the
two assay kits in the whole study group, but correlation was statistically significant (Spearman’s
rank correlation test: rho = 0.45, p = 0.0005 for IL-6 measured by Th17 kit versus High Sensi-
tivity kits; rho = 0.60, p = 1.4 × 10−6 for IFN-γmeasured by Th17 kit versus High Sensitivity
kits, and rho = 0.56, p = 9.9 × 10−6 for IL-10 measured by Th17 kit versus High Sensitivity
kits). The High Sensitivity Human Cytokine kit provided higher percentages of the detected
cytokines (Table 2) and was used in the subsequent experiments.

Relationship between cytokine levels in T1D patients and controls
In T1D patients, 20 cytokines from different functional groups were mutually correlated with
each other. For example, granulocyte-macrophage colony-stimulating factor (GM-CSF)
showed strong correlations (rho> 0.7) with the lymphoid hematopoietic growth factor IL-7
and with the T-cell growth factors IFN-γ and IL-2. An important mediator of the inflammatory
response, IL-1β, showed strong correlations with several growth factors, namely GM-CSF, IL-
7, IFN-γ, and IL-2. Interestingly, the well-known proinflammatory cytokines, IL-6, TNF-α,
and IL-8, demonstrated weak correlations with other investigated cytokines, including IL-1β.
As expected, IL-17A, IL-17E, IL-17F, IL-21, IL-22, and IL-23 were correlated strongly with
each other, forming a large Th17 cytokine cluster. IL-27, which prevent excessive T cell activity
and limit pro-inflammatory cytokine production, was also very strongly correlated with the
Th17 cytokine cluster in T1D (Table 3, part A).

In the control group, strong correlations were detected among GM-CSF, IL-7, IFN-γ, and
IL-1β. IL-7 was strongly correlated with inflammatory marker IL-6 and T cell growth factor IL-
2, which, in turn, were correlated with each other. There was also a strong correlation between
IL-2 and IL-1β. In addition, IL-6 was correlated with IL-12. The neutrophil chemotactic factor
IL-8 revealed a strong correlation with Th17 lymphocyte cytokines IL-17F and IL-21. IL-4
showed a strong correlation with another Th2 cytokine, IL-13, and with the Th17 cytokines IL-
17A and IL-21. Moreover, IL-13 was correlated strongly with IL-22 and IL-7. Most of the Th17
cytokines were correlated strongly with each other (Table 3, part B).

Age-, gender- and seasonal-dependency of cytokine levels
The levels of almost all cytokines, except IL-12, decreased with age. The most significant age-
dependent inverted correlations were observed with TNF-α, IL-8, IL-10, IL-4, IFN-γ, IL-5, IL-
2, IL-1β, IL-13, GM-CSF, IL-21, IL-23, and IL-17A (Table 4). Concentrations of the investi-
gated cytokines generally did not differ between genders, except for TNF-α, which showed a
tendency for a higher level in males compared to females (Mann–Whitney U-test, U = 496,
p = 0.0202) in the whole study group (Table 4). We also found that IL-4, IL-6, IL-8 and IL-13
had tendency for seasonal variability (Kruskal-Wallis Rank Sum Test, p = 0.018 for IL-4,
p = 0.033 for IL-6, p = 0.05 for IL-8, p = 0.019 for IL-13). The levels of IL-4 demonstrated
higher values in summer compared to spring (Mann–Whitney U-test, U = 4, p = 0.00075) or
autumn (Mann–Whitney U-test, U = 141, p = 0.029). The levels of IL-6 tended to be lower in
spring compared to summer (Mann–Whitney U-test, U = 7, p = 0.0028) or winter (Mann–
Whitney U-test, U = 24, p = 0.029). We demonstrated also that IL-8 concentration tended to
increase in summer compared to spring (Mann–Whitney U-test, U = 8, p = 0.0041) or autumn
(Mann–Whitney U-test, U = 144, p = 0.021), and IL-13 showed the lowest values in spring
compared to summer (Mann–Whitney U-test, U = 4, p = 0.0020) or autumn (Mann–Whitney
U-test, U = 71.5, p = 0.018). Other cytokines revealed no seasonal variability in our study.
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Differences in cytokine levels between the T1D and control groups
Cytokine concentrations measured from EDTA-treated plasma samples from the control and
T1D groups are reported in Table 5. The most significant difference was seen in the GM-CSF
level between T1D patients and healthy controls, which remained significant even after Bonfer-
roni correction (Mann–Whitney U-test, U = 169, p = 0.0018). Compared to the control group,
the T1D group had tendencies (p< 0.05 but> 0.0025) towards higher concentrations of IL-7,
IL-1β, IL-8/CXCL8, IL-2, the regulatory cytokine IL-10, and Th17 cytokines (IL-17F, IL-21, IL-
23). Interestingly, the Th1 cytokine IL-27, but not IL-12 or IFN-γ, was upregulated in the periph-
eral blood of T1D patients compared to controls (Mann–Whitney U-test, U = 211, p = 0.011).

Influence of blood sampling time and diabetic ketoacidosis (DKA) on
cytokine levels in the T1D group
Almost half (44%) of investigated children suffered from DKA at the time of T1D diagnosis. As
accompanying metabolic imbalance and insulin treatment could influence the production of sev-
eral cytokines, we analyzed whether the time since diagnosis affected the cytokine concentrations.
The IL-7, TNF-α, IL-8, and IL-13 levels showed a tendency (p< 0.05 but> 0.0025) to decrease
with an increasing time gap between diagnosis and blood sampling (Fig 1). Moreover, T1D
patients with DKA had a tendency for higher IL-8 (Mann–Whitney U-test, U = 59, p = 0.0038)

Table 4. Cytokine associations with age and gender in the whole study group.

Cytokines Age Gender

rho# p# U## p##

GM-CSF -0.47 0.0004** 422 0.3088

IL-7 -0.40 0.0026* 471 0.0610

IL-1β -0.48 0.0003** 421 0.3171

IL-6 -0.31 0.0236* 449 0.1357

TNF-α -0.66 1.8 × 10−7** 496 0.0202*

IL-8 -0.64 2.4 × 10−7** 389 0.6520

IL-12 -0.26 0.0547 379.5 0.7747

IFN-γ -0.54 2.5 × 10−5** 435 0.2116

IL-2 -0.47 0.0003** 424.5 0.2860

IL-4 -0.57 6.4 × 10−6** 434.5 0.2148

IL-5 -0.54 2.5 × 10−5** 393 0.6028

IL-13 -0.45 0.0007** 406 0.4554

IL-17A -0.47 0.0002** 437.5 0.4146

IL-17E -0.31 0.0206* 382.5 0.9409

IL-17F -0.33 0.0122* 381.5 0.9278

IL-21 -0.46 0.0004** 465.5 0.2015

IL-22 -0.36 0.0069* 394 0.9212

IL-23 -0.41 0.0017** 426.5 0.5257

IL-27 -0.35 0.0076* 393 0.9343

IL-10 -0.59 4.7 × 10−6** 415 0.3700

# Pairwise Spearman’s rank correlation test.
## Mann–Whitney U-test (two-tail).
* A tendency remained after Bonferroni correction (p < 0.05 but > 0.0025).

** Statistically significant difference after Bonferroni correction (p � 0.0025).

doi:10.1371/journal.pone.0142976.t004
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and IL-10 levels (Mann–Whitney U-test, U = 66, p = 0.0088) compared to T1D patients without
DKA (Fig 2).

Diabetes-related autoantibodies and cytokine levels
Most of the T1D patients (Table 1) had more than one diabetes-specific autoantibody: 36%
had two and 53% had three. Only two T1D patients, neither of whom had DKA, had no auto-
antibodies. Two other patients with T1D, one with and one without DKA, had only one auto-
antibody, which was GADA in both cases.

In the control group, two individuals had low titers of GADA and one individual had a low
titer of ZnT8A. All of these autoantibody-positive controls were classified in the low-risk group
on the basis of HLA haplotype. Different laboratories, including ours, have reported low titers
of diabetes-associated antibodies among healthy persons [19–21].

There was no significant difference in cytokine levels among T1D patients with and without
GADA. However, the IA2A-positive T1D group showed a tendency towards higher IL-1β
(Mann–Whitney U-test, U = 68, p = 0.0312), TNF-α (U = 64, p = 0.0208), IFN-γ (U = 69,
p = 0.0359), GM-CSF (U = 72, p = 0.0456), and IL-10 (p = 0.0416) levels compared to IA2A-
negative patients (Fig 3). Moreover, T1D patients with ZnT8A revealed a tendency for higher
IL-1β and GM-CSF levels (Mann–Whitney U-test, U = 46, p = 0.0173 for both) compared to
ZnT8A-negative patients (Fig 4). In addition, we analyzed association of cytokine levels and
multiple autoantibodies in blood. It was revealed that the level of IL-1β, IFNγ and GM-CSF

Table 5. Cytokine levels among controls and T1D patients.

Cytokine Controls T1D patients

median (IQR) median (IQR) U-values# p-values#

GM-CSF 18.0 pg/ml (10.7–26.7) 35.6 pg/ml (25.0–48.9) 169 0.0018**

IL-7 2.8 pg/ml (2.0–7.2) 7.1 pg/ml (4.5–10.1) 176 0.0034*

IL-1β 3.2 pg/ml (1.6–5.6) 6.4 pg/ml (4.2–8.5) 198 0.0104*

IL-6 2.6 pg/ml (1.7–6.9) 4.8 pg/ml (2.7–9.1) 239 0.0718

TNF-α 8.0 pg/ml (5.0–17.1) 11.9 pg/ml (9.1–14.1) 271 0.2220

IL-8 4.8 pg/ml (3.0–6.1) 6.5 pg/ml (4.4–9.6) 219.5 0.0352*

IL-12p70 4.3 pg/ml (2.4–12.9) 4.9 pg/ml (3.2–8.4) 311 0.6097

IFN-γ 4.8 pg/ml (3.1–12.6) 8.9 pg/ml (6.5–15.0) 235.5 0.0625

IL-2 4.2 pg/ml (2.8–6.3) 7.6 pg/ml (5.2–9.7) 193 0.0087*

IL-4 8.8 pg/ml (4.7–15.5) 14.0 pg/ml (7.7–25.7) 253 0.1212

IL-5 0.9 pg/ml (0.2–2.1) 0.8 pg/ml (0.6–1.6) 306 0.5485

IL-13 2.3 pg/ml (0.5–13.5) 4.7 pg/ml (2.2–8.7) 265 0.1817

IL-17A 36.1 pg/ml (21.0–65.0) 64.6 pg/ml (34.5–83.8) 246 0.0523

IL-17E 0.9 ng/ml (0.5–1.5) 1.3 ng/ml (1.0–1.7) 250.5 0.0623

IL-17F 0.03 ng/ml (0.01–0.04) 0.04 ng/ml (0.03–0.06) 240.5 0.0418*

IL-21 62.6 pg/ml (41.8–79.1) 101.6 pg/ml (70.1–125.3) 215.5 0.0138*

IL-22 0.3 ng/ml (0.2–0.5) 0.4 ng/ml (0.3–0.6) 265 0.1061

IL-23 2.4 ng/ml (1.7–3.7) 3.9 ng/ml (2.8–5.3) 232 0.0292*

IL-27 1.3 ng/ml (1.0–1.7) 1.8 ng/ml (1.5–2.2) 211 0.0111*

IL-10 16.8 pg/ml (9.4–26.6) 25.2 pg/ml (18.9–31.6) 203 0.0136*

# Differences in cytokine levels between controls and T1D patients. The Mann–Whitney U-test (two-tail) was used to calculate significant differences.

* A tendency remained after the Bonferroni correction (p < 0.05 but > 0.0025).

** Statistically significant difference after the Bonferroni correction (p � 0.0025).

doi:10.1371/journal.pone.0142976.t005
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was higher in T1D patients with two or more autoantibodies compared to the patients with sin-
gle autoantibody or without any (Mann–Whitney U-test; U = 12.36, p = 0.00044 for IL-1β;
U = 6.58, p = 0.010 for IFN-γ and U = 6.86, p = 0.0088 for GM-CSF).

Diabetes-related HLA haplotypes and cytokine levels
Most of the examined T1D patients were categorized as having a moderate or high risk for
T1D (28% and 25%, respectively) on the basis of HLA haplotypes (Table 1). Seven T1D
patients (19%) were categorized as having a decreased risk. In the control group, only two indi-
viduals (10%) were classified as being HLA risk for T1D. Besides, we detected no statistically
significant differences or tendencies in cytokine levels between T1D patients in the high-risk
HLA group compared to T1D patients in all other risk groups (data not shown).

Discussion
In general, T1D is considered to be a Th1-type autoimmune disease caused by pancreatic attack
by autoreactive T cells. Various inflammatory cells producing different proinflammatory cyto-
kines could also be involved, and pancreatic β-cell destruction accompanies the inflammatory

Fig 1. Association of time between T1D diagnosis and blood sampling with cytokine levels. After the Bonferroni correction, the levels of IL-7 (A), TNF-
α (B), IL-8 (C), and IL-13 (D) showed a tendency to decrease with an increasing number of days between T1D diagnosis and blood sampling. Spearman’s
rank correlation test was used.

doi:10.1371/journal.pone.0142976.g001
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response (insulitis) within the islets [22]. Destructive insulitis is associated with elevated levels
of Th1 cytokines (IL-2, IL-12, and IFN-γ) and proinflammatory cytokines (IL-1β, IL-6, TNF-β,
and IFN-α) in animal models [1,23]. However, despite evidence for the upregulation of several
of the aforementioned cytokines at [1,24] and before [4,25] T1D onset in humans, the pub-
lished results are inconsistent across studies [3].

In our study population, we demonstrated the differences in proinflammatory cytokine (IL-
1β and IL-8) levels between young newly diagnosed T1D patients compared to age-matched
healthy controls. The highest level of proinflammatory cytokines was observed in patients
exhibiting IA-2 and Zn-T8 autoantibodies. These signs of activation of the innate immune sys-
tem are partly consistent with reports of IFN-α/γ and IL-1β pathway activation associated with
altered Toll-like receptor responsiveness and enhanced nuclear factor (NF)-κB signaling in the
dendritic cells (DCs) and monocytes of newly diagnosed T1D patients [9,26]. However, in con-
trast to the decreased IL-6 levels reported in these previous publications, we found no changes
in IL-6 or TNF-α levels in our T1D patients with young age of onset.

In terms of pathogenesis, we did not detect an obvious imbalance of Th1/Th2 polarization
towards prominent activation of Th1. A recent publication showed that a dominant Th1-associ-
ated immune profile in the prediabetic phase could switch to a Th3-associated profile, with a
burst of inflammatory cytokines, immediately before clinical onset of T1D [27]. These results
suggest the consequences of an imbalance of the innate immune system, which would trigger
islet disturbances and apoptosis that, in turn, could lead to clinical onset of the disease. Meta-
bolic disorders could complicate the early clinical situation of T1D to which implies a systemic
elevation of IL-8 in T1D patients with DKA in our study. Several ongoing clinical trials are
investigating the effect of proinflammatory cytokine blockade in subjects with recent-onset
T1D, demonstrating the interest in regulating the innate immune system in this disease [28].

Perhaps the most surprising and statistically significant (p< 0.005) result of the current
study was the upregulation of the growth factors GM-CSF and IL-7 in the peripheral blood of
T1D patients. Although GM-CSF is best known for its role in myeloid differentiation, it is also
a potent growth factor for monocytes, macrophages, and DCs. Previous reports have proposed
that the increased GM-CSF levels in nonobese diabetic (NOD) mice and T1D patients may
represent the organisms’ efforts to compensate for the defective responses of the hematopoietic
cells (including bone marrow-derived DCs and pancreatic macrophages) to this growth factor

Fig 2. Differences in cytokine levels between T1D patients with and without ketoacidosis. Compared to T1D patients without ketoacidosis, patients
with ketoacidosis had a tendency for higher IL-8 (A) and IL-10 levels after Bonferroni correction* (B). Lines represent median and interquartile range values.
* P-values� 0.0025 were considered statistically significant after Bonferroni correction in Mann-Whitney U-test.

doi:10.1371/journal.pone.0142976.g002
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[29,30]. Supporting this suggestion, recent studies have demonstrated that GM-CSF/IL-3–defi-
cient mice develop insulitis, precipitated by the administration of anti–CTLA-4 blocking anti-
bodies, with destruction of insulin-producing β-cells and compromised glucose homeostasis
[31]. Defects in the phagocytosis of apoptotic cells by macrophages might contribute to auto-
immune diabetes by decreasing the production of immunoregulatory cytokines and increasing
the production of proinflammatory cytokines [32]. However, we observed the joint elevation of
GM-CSF and IL-10 in the blood of T1D patients, which may reflect the activation of protective

Fig 3. Differences in cytokine levels between T1D patients with and without IA2A.Compared to T1D patients without IA2A, T1D patients with IA2A
showed a tendency for higher GM-CSF (A), IL-1β (B), TNF-α (C), IFN-γ (D), and IL-10 (E) levels Bonferroni correction*. Lines represent median and
interquartile range values. * P-values� 0.0025 were considered statistically significant after Bonferroni correction in Mann–WhitneyU-test.

doi:10.1371/journal.pone.0142976.g003
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immune mechanisms. Repeated treatment of NOD mice with GM-CSF was shown to prevent
the development of insulitis by inducing tolerogenic DCs, which sustained the persistent sup-
pressive function of IL-10–producing Treg cells [33]. Interestingly, GM-CSF was more effective
when administered at later stages of insulitis. Similarly, the therapeutic potential of GM-CSF in
human T1D could be speculated [34].

IL-7 is a major homeostatic cytokine for several cell types of the immune system. Overex-
pression of this growth factor or its receptor has been associated with the severity of autoim-
mune disease in animal models [35] and humans [36,37]. A study proposed that the provision
of exogenous or lymphopenia-induced endogenous IL-7 promotes the expansion of self-reac-
tive clones, even in the presence of Treg cells, thereby explaining the relevance of IL-7 in the
development of diabetes [38]. However, a recent study reported the existence of diabetes-sup-
pressive IL-17–expressing DCs that were capable of promoting the maturation of IL-7–respon-
sive CD25+ CD127+ Treg cells [39]. In these T cells, IL-7 maintains the expression of FoxP3 and
CTLA4, which could represent an additional non-IL2–dependent compensatory mechanism
for Treg cell survival and functional activity.

We discovered an increased level of IL-27 in the peripheral blood of newly diagnosed T1D
patients compared to healthy individuals. To our knowledge, this is the first study demonstrat-
ing the up-regulation of IL-27 in human T1D. Previously, this phenomenon has been described
in granulomatous diseases [40], inflammatory bowel disease [41], and multiple sclerosis [42].
IL-27 is a pleiotropic cytokine of the IL-12 family with both inhibitory and activating functions
on innate and acquired immunity. IL-27 is secreted by activated antigen presenting cells (mac-
rophages, DCs) and demonstrates inhibitory effects on the development of Th1, Th2, and Th17
cells, as well as on the expansion of Treg (reviewed in [43]).

The role of IL-27 in autoimmune diabetes has been insufficiently investigated and the
results obtained have been inconsistent. Blockade of IL-27 delays the onset of diabetes in NOD
mice [44]. However, it was recently reported that IL-27 can inhibit streptozotocin-induced
hyperglycemia and pancreatic islet inflammation in an animal model and therefore could rep-
resents a potential novel therapeutic approach for T1D [45]. In humans, the association of IL-
27 polymorphisms with T1D has been reported in genome-wide association studies [46], but
these results were not confirmed by others [47].

IL-27 suppresses effector Th17 cells and promotes the generation of type 1 regulatory T
(Tr1) cells, which, in turn, could dampen autoimmunity and tissue inflammation by secreting

Fig 4. Differences in cytokine levels between T1D patients with and without ZnT8A.Compared to T1D patients without ZnT8A, T1D patients with
ZnT8A showed a tendency for higher GM-CSF (A) and IL-1β (B) levels after Bonferroni correction*. Lines represent median and interquartile range values. *
P-values 0.05–0.0025 were considered as a tendency after Bonferroni correction in Mann–Whitney U-test.

doi:10.1371/journal.pone.0142976.g004

Cytokines in Type 1 Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0142976 December 4, 2015 12 / 16



the immunosuppressive cytokine IL-10 [48]. We found that the IL-27 level correlated very
strongly (rho> 0.9) with the levels of several Th17 cytokines, but relatively weakly with IL-10
levels (rho = 0.39). Moreover, the Th17 cytokines IL-17A, IL-21, and IL-23 and the regulatory
cytokine IL-10 demonstrated notable upregulation in the T1D group compared to the control
group. Taken together, these findings could support the hypothesis that several regulatory
mechanisms, in particular those acting via IL-27 and IL-10, attempt unsuccessfully to dampen
the harmful effects of Th17 immunity in T1D patients. Not only Th1, but also Th17 cells and
hyperfunction of proinflammatory cytokines may play detrimental roles at the onset and dur-
ing metabolic decompensation in recent-onset young-age T1D [1,49].

Limitations of this study include the assessment of cytokine concentrations in plasma alone.
As peripheral blood cells from the current study groups were not available to us, we could not
detect the spontaneous or stimulated production of cytokines by distinct immune cells. How-
ever, we believe that careful profiling of circulating cytokines in blood provides valuable data
about the (dys)regulation of the immune system in vivo. The peripheral blood is arguably more
appropriate for clinical purposes, especially for large cohorts with limited volumes of material
(e.g., from children).

We stress the importance of the correct preparation and storage of plasma samples, as well
as the avoidance of freeze/thaw cycles before the cytokines are studied. For some biomarkers,
the measured level may either decrease or increase several times after repeated freeze/thaw
cycles [50]. Another strength of this study was the ability to measure multiple cytokines simul-
taneously with the same small amount of probe by a highly sensitive method. This approach is
an important element for the correct measurement of low-concentration cytokines in human
serum, which often require highly sensitive assays for detection. The careful selection of the tar-
get patient population was also important, because the variability of insulin treatment length
and the concurrence of other autoimmune/inflammatory diseases may significantly affect the
results. The same consideration also applies to the choice of control children, who are the most
difficult study group in humans.

Conclusions
Our findings broaden the current understanding of the dysregulation of systemic cytokine lev-
els at the onset of young-age T1D. This dysregulation includes the upregulation of growth fac-
tors (GM-CSF and IL-7) and proinflammatory factors (IL-1β but not IL-6 or TNF-β) of the
innate immune system, as well as Th17 cytokines and regulatory cytokines (IL-10, IL-27).
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