
RESEARCH ARTICLE

Automatic lung nodule detection using multi-

scale dot nodule-enhancement filter and

weighted support vector machines in chest

computed tomography

Yu GuID
1,2, Xiaoqi Lu1,2*, Baohua Zhang1,2, Ying Zhao2, Dahua Yu2, Lixin Gao2,3,

Guimei Cui2*, Liang Wu2, Tao Zhou2

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China, 2 Inner Mongolia

Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering,

Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China, 3 School of Foreign

Languages, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China

* lxiaoqi@imut.edu.cn (XL); cguimei1@163.com (GC)

Abstract

A novel CAD scheme for automated lung nodule detection is proposed to assist radiologists

with the detection of lung cancer on CT scans. The proposed scheme is composed of four

major steps: (1) lung volume segmentation, (2) nodule candidate extraction and grouping,

(3) false positives reduction for the non-vessel tree group, and (4) classification for the ves-

sel tree group. Lung segmentation is performed first. Then, 3D labeling technology is used

to divide nodule candidates into two groups. For the non-vessel tree group, nodule candi-

dates are classified as true nodules at the false positive reduction stage if the candidates

survive the rule-based classifier and are not screened out by the dot filter. For the vessel

tree group, nodule candidates are extracted using dot filter. Next, RSFS feature selection is

used to select the most discriminating features for classification. Finally, WSVM with an

undersampling approach is adopted to discriminate true nodules from vessel bifurcations in

vessel tree group. The proposed method was evaluated on 154 thin-slice scans with 204

nodules in the LIDC database. The performance of the proposed CAD scheme yielded a

high sensitivity (87.81%) while maintaining a low false rate (1.057 FPs/scan). The experi-

mental results indicate the performance of our method may be better than the existing

methods.

Introduction

Lung cancer is a serious public health problem in the world. Lung cancer prevalence estimates

for 5 years was over 884,000 cases in 2011, which is the third most prevalent cancer after breast

cancer and colorectal cancer in China[1]. Five-year survival of lung cancer is 16.1% in China

[2], Seventeen per cent in the United States[3] and 13% in Europe[4]. If the lung nodule is

detected in the earlier stages of lung cancer, the overall 5-year survival rate can increase to 55%
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[5, 6]. Therefore, screening programs for early detection and diagnosis of lung cancer have

been attempted in many countries, which is designed to allow patients to be treated early

enough to reduce lung cancer mortality[7]. According to the National Lung Screening Trial,

low dose computed tomography (LDCT) screening can reduce lung cancer mortality by 20%

compared with chest x-ray screening[8, 9]. In a screening program with LDCT, radiologists

must read many medical images and are likely to overlook some subtle nodules which could

be lung cancers. Therefore, computer-aided detection (CAD) schemes, which can provide the

locations of nodule candidates, serve as a “second opinion” to aid the radiologists in making

faster and more accurate diagnoses.

Juxta-vascular nodules are challenging nodules, which are often missed by CAD systems

[10]. Thus, the proposed scheme aimed to detect lung nodules, especially juxta-vascular nod-

ules. Furthermore, it was found that it was much more difficult for CAD systems to detect

juxta-vascular nodules attached to tiny vessels than those attached to large vessels. Meanwhile,

isolated nodules and juxta-pleural nodules usually did not appear in the vessel tree group.

Therefore, two nodule candidate groups—the non-vessel tree group and the vessel tree group

—were formed to detect lung nodules.

This paper contains two main innovations. The first innovation is that juxta-vascular nod-

ules attached to tiny vessels are detected in the non-vessel tree group for the first time; also,

instead of a uniform threshold, different thresholds are used to extract juxta-vascular nodules

attached to the vessel tree or tiny vessels when nodule-enhanced image obtained from dot filter

is binarized. Not only surface gradient features, but also shell-based gradient features are

extracted. As surface gradient features are susceptible to the accuracy of nodule segmentation,

shell-based gradient features combined with surface gradient features can improve the classifi-

cation accuracy when discriminating juxta-vascular nodules from vessel bifurcations.

Related work

The definition for nodule by thoracic CT based on the Fleischner’s Society is “a round opacity

that is at least moderately well marginated and no greater than 3 cm in maximum diame-

ter”[11]. Many researchers developed schemes to detect lung nodules. Wu et al[12] developed

a technique based on the thresholding method and region growing algorithm to obtain nodule

candidates. Next, false positives were removed by using invariant moments. However, some

vessels cut by the segmentation procedure of ROI could be misclassified as nodules since they

have similar shapes. S.Sivakumar et al.[13] adopted weighted fuzzy-possibilistic C-Means com-

bined with a SVM classifier to detect nodules. As the clustering methods are threshold-based

methods, these types of methods may not detect ground-glass lung nodules. Ayman et al.[14]

proposed a deformable 3D and 2D templates-matching method to detect nodules. It may be

hard to detect some small nodules by this method because they are often confused with bron-

chioles and small blood vessels. Li et al.[7, 15] constructed selective enhancement filters to

detect nodules. However, the scheme they proposed could not distinguish the juxta-vascular

nodules from the vessel bifurcations because with the intensity of the vessel bifurcations

changed by Gaussian smoothing, it was transformed into a blob-like structure; this led to

incorrect enhancement at these bifurcation regions. Chen et al.[16] proposed a method of

local intensity structure analysis combined with front surface propagation for nodule detec-

tions. Their method had satisfactory performance, and it would be beneficial to verify the algo-

rithm on large data sets. Riccardi et al.[17] proposed a 3D fast radial filter to detect nodules.

Then, false positives were removed by using a heuristic FPR method and a supervised FPR

method. They demonstrated outstanding performance for nodule detection, but the overall

performance of their scheme could be further improved by removing some false positives
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close to the pleura with specific methods. Li et al.[18] proposed a two-stage classification

approach using rule-based and C-SVM classifiers for detecting both solid nodules and

ground-glass opacity (GGO) nodules. Their method can be further improved if 3D features

can be further extracted and an adaptive smoothing method can be further investigated to deal

with image noise. Tan et al.[19] applied the Feature-Deselective Neuro-Evolving Augmenting

of Topologies (FD-NEAT) classifier to discriminate lung nodules from false positives. This

bypassed the need to pre-define the topology of the neural networks, which also incorporated

the feature selection into the classification step. GGO nodules were not considered in their

research. Setio et al.[20] adopted multi-view convolutional networks to detect lung nodules.

The training data were multi-planner views of CT scans. The overall performance of their

scheme may be further increased if the candidate detection algorithm is improved. Javaid et al.

[21] divided nodule candidates into six groups based on their thickness and extracted different

features from nodules in each group to eliminate false positives (FPs), then an SVM classifier

was used for classification. The performance of GGO nodule detection may be further

improved. Filho et al.[22] adopted quality threshold clustering, genetic algorithms and diver-

sity indices to detect solitary lung nodules. The performance of their method may be further

improved when dealing with juxta-vascular nodules. Gong et al.[23] combined 3D tensor fil-

tering with local image feature analysis to detect lung nodules. As their method is based on the

hypothesis that the nodules have ball-like or dot-like structures, some irregularly shaped nod-

ules may be omitted by their scheme. Torres et al.[24] extracted a set of 13 features for nodule

candidate analysis, including intensity, spatial and shape features. Then, they proposed a feed-

forward artificial neural network (FFNN) to classify the candidates. The performance of GGO

and subtle nodule detection may be further improved.

Methods

Overview

In this section, the proposed CAD scheme is described. The proposed CAD scheme contains

four major steps: lung segmentation, nodule candidate extraction, reduction of false positives

and classification. The overall diagram of the proposed CAD scheme is displayed in Fig 1.

Improved DICOM window display technology

Before lung segmentation was performed, the chest CT scans were displayed with lung (width,

1600 HU; level,-600 HU) windows instead of mediastinal windows (width, 400 HU; level,

20HU) because the area of GGO—corresponding to the area of the bronchioloalveolar carci-

noma (BAC) component of the lung adenocarcinomas—disappears when the images are

viewed via mediastinal window in pathologic correlative studies[23]. Then, the pixel value of

CT scans was converted to 0–1 based on the lung window. Decimals—rather than 256 level

gray scales—were used to represent gray intensity to avoid rounding errors.

Lung segmentation

The lung segmentation was performed to identify the boundaries of the lungs as a prerequisite

step for lung nodule detection[25, 26]. The precise segmentation of lung regions is a very cru-

cial step because it ensures that the lung nodules—especially juxta-pleural nodules—are not

missed due to inaccurate segmentation; also, it restricts subsequent processes to the lung

regions in order to exclude FPs outside the lung region as much as possible. Many state-of-

the-art lung segmentation methods have been proposed in recent years for the early diagnosis

of lung cancer[27–31]. Filho et al.[28] proposed a novel and powerful 3D adaptive crisp active

Automatic lung nodule detection in chest CT
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Fig 1. The overall block diagram of the proposed CAD scheme.

https://doi.org/10.1371/journal.pone.0210551.g001
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contour (3D ACACM) method for lung segmentation. The proposed 3D ACACM method

obtained higher performance levels than watershed, region growing, mathematical morphol-

ogy and conventional active contour techniques. Furthermore—on the basis of ACACM lung

volume segmentation—they adopted an optimum-path forest classifier to identify lung fibrosis

structures and Chronic Obstructive Pulmonary Disease (COPD)[32]. Zhang et al.[29] pro-

posed a novel region- and edge-based geometric active contour (REGAC) model for lung seg-

mentation, which improved segmentation accuracy when dealing with lung regions with weak

boundaries. Soliman et al.[30] adopted an adaptive appearance-guided shape modelling

method to segment pathological lungs. Hosseini et al.[31] applied a novel incremental con-

strained non-negative matrix factorization (ICNMF)-based lung segmentation method, which

extracted voxel-wise features by using a few parameters. All these methods mentioned above

have achieved satisfactory results for lung volume segmentation.

In this research, we proposed a concise and accurate lung volume segmentation method for

lung nodule detection. The proposed lung volume segmentation method consists of four sub-

steps, shown in Fig 2: (1) the initial lung region was extracted by using Otsu’s method, (2) the

main trachea and bronchus tree was removed by adopting 3D region growing technology, (3)

the fused lung region was separated into two distinct regions after automated location of the

anterior junction line—if it exists—by utilizing the gray integral projection method and (4) the

indentations along the lung contour lines were filled by utilizing rolling ball technology[33].

When the indentations were filled, a ball was tangentially placed and then rolled along the

Fig 2. Lung volume segmentation steps. a) Original image, b) 3D image of the main trachea and bronchus tree, c) binary image in which the main trachea and

bronchus tree were filled, d) initial segmented lung regions and local enlarged view of the fused position, e) fused lung region separated into two distinct regions and

local enlarged view of indentation location, f) boundary repairing, g) 3D image of lung volume with artifacts and other tissue and h) 3D image of lung after removing

other structures.

https://doi.org/10.1371/journal.pone.0210551.g002
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lung contour lines. Indentations were filled when the ball contacted the lung contour lines at

more than one point. The radius of the ball was set experimentally to 15 mm, which was suit-

able to most of the conditions, as the nodules are no greater than 3 cm in maximum diameter.

The processing procedure for lung volume segmentation is shown in Fig 2, in which picture

(a) is the original chest CT image, picture (b) illustrates the 3D view of the extracted main tra-

chea and bronchus tree, picture (c) represents the binary image after the main trachea and the

bronchus tree are filled, picture (d) shows the initial segmented lung regions and the local

enlarged view of the fused position, picture (e) demonstrates the fused lung region which is

separated into two distinct regions and the local enlarged view of the indentation location, pic-

ture (f) is the result of boundary repair, picture (g) is the 3D image of the lung volume with

artefacts and other tissue and picture (h) shows the final result of the segmented lung volume

after removing other structures.

Extraction of nodule candidates

Three types of lung nodules were detected, including isolated nodules, juxta-pleural nodules

and juxta-vascular nodules. Juxta-vascular nodules may also be attached to pleural tissues, as

shown in Fig 3. In Fig 3, the pictures (a), (b), and (c) respectively represent the isolated nodule,

juxta-pleural nodule and juxta-vascular nodule; the pictures (d), (e), and (f) show the 3D view

of the pictures (a), (b), and (c). Extraction of nodule candidates in the proposed scheme

requires three substeps: grouping and labeling processes; extraction of nodule candidates

attached to the vessel tree in the vessel tree group; and extraction of isolated nodule candidates,

Fig 3. Three types of lung nodules. a) isolated nodule, b) 3D image of isolated nodule, c) juxta-pleural nodule, d) 3D image

of juxta-pleural nodule, e) juxta-vascular nodule and f) 3D image of juxta-vascular nodule.

https://doi.org/10.1371/journal.pone.0210551.g003
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juxta-pleural nodule candidates, and juxta-vascular nodule candidates attached to tiny vessels

in the non-vessel tree group.

Grouping and labeling processes. After the lung region was obtained, the vessels and

nodule candidates were extracted by the improved Otsu’s method. It was improved to calculate

the multilevel thresholds of chest CT scans. Then, the 3D labeling technology with 26-neigh-

borhood was performed to generate a 3D data set. In each lung, the largest connected structure

corresponds to the pulmonary vessel tree. The juxta-vascular nodules attached to the pulmo-

nary vessel tree were also included in this vessel tree group. The remaining structures were

labeled as the non-vessel tree group. However, with the utilization of Otsu’s method, tiny

blood vessels probably attached with juxta-vascular nodules—which are tiny branches at the

end of the vascular tree—would be displayed as not connecting with the pulmonary vessel tree;

the gray intensity of some parts of the tiny blood vessel is near to that of pulmonary paren-

chyma, as shown in Fig 4. In Fig 4, the pictures (a), (b) and (c) are three examples of these

components mentioned above, while the pictures (d), (e) and (f) are the 3D views of the pic-

tures (a), (b) and (c), respectively. Thus, the remaining structures were labeled as the non-ves-

sel tree group—which contained isolated nodules—juxta-pleural nodules, tiny blood vessels,

juxta-vascular nodules attached to tiny blood vessels, other kinds of lesions, and noise. The

false positives in the non-vessel tree group were removed at the false positives step.

Extraction of juxta-vascular nodule candidates attached to the vessel tree. Extraction

of juxta-vascular nodules is difficult because juxta-vascular nodules are attached to the pulmo-

nary vessels and the gray intensity of them is close. Thus, the dot-shape selective enhancement

filter proposed by Li et al.[7, 15] was applied to cut away the juxta-vascular nodules from the

blood vessels attached.

Fig 4. Examples of juxta-vascular nodules attached to tiny vessels. a), c) and e) are images that contain juxta-vascular

nodules in the box. b), d) and f) are 3D views of juxta-vascular nodules related to juxta-vascular nodules in images a), b)

and c), respectively.

https://doi.org/10.1371/journal.pone.0210551.g004
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The dot-shape selective enhancement filter was used not only to distinguish the spherical

structure from the tubular structure or planar structure but also to cut away the juxta-vascular

nodules from the blood vessels attached, shown in Eq 1.

dðx; y; zÞ ¼ expð�
x2 þ y2 þ z2

2s2
Þ ð1Þ

In Eq 1, d(x, y, z) is a ‘‘fuzzy” dot in the form of a 3D Gaussian function[7, 15].

The dot-shape selective enhancement filter was constructed by use of Eq 2.

Zdotðl1; l2; l3Þ ¼ jl3j
2
=jl1j; if l1 < 0; l1 < 0; l1 < 0; 0 otherwise ð2Þ

In Eq 2, λ1, λ2 and λ3 are the three eigenvalues of the Hessian matrix, which satisfy

|λ1|�|λ2|�|λ3|.

The dot-shape selective enhancement filter was used to enhance the spherical shapes and to

suppress other shapes in the vessel tree group[34]. Thus, the nodule-enhanced image of the

vessel tree group was obtained. Then, the nodule-enhanced image of the pulmonary vessels

tree group was given a threshold with the parameter Tnodulemask_vesseltreegroup. The proposed

scheme detects subtle nodules, though the vessel bifurcations are also enhanced. The vessel

bifurcations are addressed in the classification method introduced in section “Classification of

lung nodules in the vessel tree group using WSVM with imbalance data”.

Then, a 3D labelling technique was used to identify the isolated objects in nodule-enhanced

images with 26-neighborhood. Different from Li et al., we did not eliminate small objects

because small nodules would be removed along with false positives. As the nodule candidates

obtained from the nodule-enhanced image appear slightly smaller, a 3D constrained region-

growing technique was performed to constrain growth up to 5 mm. So far, the juxta-vascular

nodule candidates in the vessel tree group were extracted.

However, the gray intensity of vessel bifurcations change when the image is convolved with

Gaussian filter so that the vessel bifurcations are similar to blob structures, which may be

enhanced by dot-shape enhancement filter incorrectly[16]. The method for eliminating vessel

bifurcations will be introduced in the subsequent sections.

False positives reduction for nodule candidates in non-vessel tree group

Remove obvious false positives by using a rule-based classifier. Firstly, rule-based classi-

fiers are designed to remove obvious false positives. The volume of the candidates was con-

strained first. As nodules range in size from 3–30 mm, a nodule candidate with a volume

larger than 14.14 cm3 (30 mm in maximum diameter) should be considered a mass or non-

nodule. Similarly, a nodule candidate with a volume smaller than 14.14 mm3 should be consid-

ered a non-nodule or background noise.

Considering that nodules are typically spherical and compact, three features were extracted

from nodule candidates to eliminate obvious false positives.

The elongation factor of each candidate was computed as the distance ratio of the major

axis to the minor axis of a minimum bounding ellipse in transverse section, shown as Eq 3.

RelongationFactor ¼ majorAxisLength=minorAxisLength ð3Þ

In Eq 3, majorAxisLength and minorAxislength denote the length of the major and the

minor axis, respectively.

Automatic lung nodule detection in chest CT

PLOS ONE | https://doi.org/10.1371/journal.pone.0210551 January 10, 2019 8 / 25

https://doi.org/10.1371/journal.pone.0210551


The compactness of each candidate was computed as the ratio of its area to the area of the

smallest bounding box in each transverse section, shown as Eq 4.

Rcompactness ¼ area=areaofboundingbox ð4Þ

In Eq 4, area and areaofboundingbox denote the area of each candidate and its smallest

bounding box, respectively.

The feature of sphericity was calculated as the proportion of structure volume included

within a sphere of equivalent volume centered at the structure’s center of mass[33], shown as

Eq 5.

Rsphericity ¼ ðS \ CÞ=S ð5Þ

In Eq 5, S is the set of voxels encompassed by the structure in all transverse sections and C

is the set of voxels encompassed by the volume-equivalent sphere. A candidate was also elimi-

nated if sphericity of the candidate was less than 0.3.

A candidate was not considered to be a nodule and then was eliminated if RelongationFactor >

6, or Rcompactness < 0.3, or Rsphericity < 0.3.

The cut-off thresholds of these three features were very lax since we found that juxta-vascu-

lar nodules attached to tiny vessels were in the non-vessel tree group as mentioned above.

Those thresholds were set experimentally to ensure juxta-vascular nodules attached to tiny ves-

sels would not be eliminated.

Remove false positives by using dot filter. To further remove the false positives and to

separate juxta-vascular nodules from tiny vessels, the dot filter was used again to extract the

spherical shapes and to suppress other shapes in the non-vessel tree group. Then, the nodule-

enhanced image from the non-vessel tree group was compared to the threshold using the

parameter Tnodulemask_non-veseltreegroup. The bifurcations of the tiny vessels—which were also

enhanced by dot filter—would not be selected because the response by the dot filter was

weaker than that of the vessel tree group when the parameter Tnodulemask_non-veseltreegroup was set

appropriately. The proposed scheme detects subtle nodules, although it also enhances vessel

bifurcations. Meanwhile, the juxta-vascular nodule is not missed. Then, objects smaller than

4.19 mm3 (2 mm in diameter) were not considered to be nodules and were removed. Finally,

the constrained region growing technique was adopted to get a maximum of 5 mm of growth.

The nodule candidates that survived the rule-based classifier and not screened out by the dot

filter were classified as nodules.

Features extraction of juxta-vascular nodule candidates in the vessel tree group. Fea-

tures were calculated based on the gray-level, gradient and shape to form the feature pool.

Gray-level based features. As nodules often have higher CT attenuation than false posi-

tives caused by vessel bifurcation, four three-dimensional gray-level based features were

extracted: 1) maximum value of gray level (gray_level_max), 2) minimum value of gray level

(gray_level_min), 3) mean value of gray level (gray_level_mean), and 4) standard deviation of

gray level (gray_level_std).

Gradient-based features. The gray-level distribution of nodules is approximately sym-

metric radially, while the gray-level distribution of vessel bifurcations is highly asymmetric.

Thus, the gradient distributions of nodules and vessel bifurcations are different. To represent

gradient distribution accurately, surface gradient features and shell-based gradient features

were both extracted.

Surface gradient features were extracted. Firstly, surface voxels of lung nodule candidates

were extracted. 26-connected neighborhood was adopted for this research. Then, three 3 × 3 ×
3 isotropic convolution kernels were constructed, and the 3D isotropic kernel coefficients

Automatic lung nodule detection in chest CT
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were set. The surface voxels were convolved with three 3 × 3 × 3 isotropic gradient kernels,

one for each of the x, y, z directions, and components of gradient vectors for each direction,

designated Gx, Gy, Gz, were obtained. Finally, these seven features: maximum (SurGmax), mini-

mum (SurGmin), mean (SurGmean), standard deviation (SurGstd), skewness (SurGskewness), kur-

tosis (SurGkurtosis), and small value ratio (SurGsvr), that is, the percentage of the gradient vector

with small magnitude, of the surface gradient magnitude were extracted. The features mean

(SurGmean), standard deviation (SurGstd), skewness (SurGskewness), and kurtosis (SurGkurtosis) of

surface gradient magnitude were shown as Eqs 6, 7, 8 and 9.

SurGmean ¼
1

n

Xn

i¼1

SurGi

 !

ð6Þ

SurGstd ¼
1

n � 1

Xn

i¼1

ðSurGi � SurGmeanÞ
2

 !1
2

ð7Þ

SurGskewness ¼

1

n

Xn

i¼1

ðSurGi � SurGmeanÞ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

ðSurGi � SurGmeanÞ
2

s !3
ð8Þ

SurGkurtosis ¼

1

n

Xn

i¼1

ðSurGi � SurGmeanÞ
4

1

n

Xn

i¼1

ðSurGi � SurGmeanÞ
2

 !2
ð9Þ

In the equations mentioned above, SurGi denotes the surface gradient magnitude of the ith

surface voxel while SurGmean represents the mean surface gradient magnitude for all the sur-

face voxels.

Shell-based gradient features[35] were also extracted. The aim of adopting shell-based gra-

dient features was to supplement the surface gradient features, as surface gradient features are

susceptible to the accuracy of lung nodule segmentation.

Five shell-based gradient field strength features were extracted, which were average

(ShellGMav), standard deviation (ShellGMstd), coefficient of variation (ShellGMcv), maximum

value (ShellGMmax) and minimum value (ShellGMmin).

Besides the strength features which were extracted, five orientation features of the shell-

based gradient field were also used to discriminate nodules from vessel bifurcations. They

were the maximum value (ShellGDmax), minimum value (ShellGDmin), median value

(ShellGDmed), squared ratio of the minimum value to the maximum value (ShellGD2

ðmin=maxÞ
),

and squared ratio of median value to maximum value (ShellGD2

ðmed=maxÞ
) of the shell-based gra-

dient field orientation feature.

Shape-based features. Lung nodules have different shapes with vessel bifurcations. Six

three-dimensional gray-level based features were extracted as follows: 1) compactness, 2) irreg-

ularity[7], 3) sphericity, 4) elongation-shape, 5) flatness-shape, and 6) non-compactness.

Features of elongation-shape, flatness-shape, and non-compactness are based on the

moment of inertia tensor which describes how the mass of an object is distributed. The
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moment of inertia tensor of nodule candidate C can be calculated according to Eq 10.

IðCÞ ¼

IxxðCÞ IxyðCÞ IxzðCÞ

IyxðCÞ IyyðCÞ IyzðCÞ

IzxðCÞ IzyðCÞ IzzðCÞ

2

6
6
4

3

7
7
5 ð10Þ

With

IxxðCÞ ¼
XN

k¼1

mkððyk � �yÞ2 þ ðzk � �zÞ2Þ ð11Þ

IyyðCÞ ¼
XN

k¼1

mkððxk � �xÞ2 þ ðzk � �zÞ2Þ ð12Þ

IzzðCÞ ¼
XN

k¼1

mkððxk � �xÞ2 þ ðyk � �yÞ2Þ ð13Þ

IxzðCÞ ¼ IzxðCÞ ¼ �
XN

k¼1

mkðxk � �xÞðzk � �zÞ ð14Þ

IxyðCÞ ¼ IyxðCÞ ¼ �
XN

k¼1

mkðxk � �xÞðyk � �yÞ ð15Þ

and

IyzðCÞ ¼ IzyðCÞ ¼ �
XN

k¼1

mkðyk � �yÞðzk � �zÞ ð16Þ

Variables in the equations mentioned above are interpreted as below. I(C) denotes the

moment of inertia tensor of nodule candidate C. Ixx(C), Iyy(C), and Izz(C) indicate rotational

inertia around the x, y and z axis, respectively. Ixy(C) represents the moment of inertia around

the x-axis when the object rotates around the y-axis. Similar conclusions can be obtained for

Ixz(C) and Iyz(C). The index k runs over all the voxels of a lung candidate. (xk, yk, zk) denotes

the coordinates of the voxel k. ð�x; �y; �zÞ denotes the coordinates of the weighted centroid of

nodule candidate C.mk is the mass of the voxel k, which is equal to the CT density associated

with the voxel k (in HU) multiplied by the voxel volume (in mm3). As the 3D image of the pul-

monary vessel tree group has been made isotropic, with the size of the voxels equal to 1 mm in

each dimension in the prior step,mk is numerically equivalent to the CT density of voxel k.

Once each component of the moment-of-inertia tensor is calculated, the moment of inertia

tensor for each nodule candidate is obtained.

Then, three features were extracted based on the three eigenvalues of the moment of inertia

tensor, including elongation-shape, flatness-shape and non-compactness. The elongation-

shape was computed as the ratio of the first two eigenvalues of the moment of inertia tensor,

which was sensitive to elongated structures, shown in Eq 17. The flatness-shape was computed

as the ratio of the last two eigenvalues of the moment of inertia tensor, which is sensitive to flat

or sheet-like objects, shown as Eq 18. The non-compactness was computed as the ratio of the

trace of the moment-of-inertia tensor to the volume raised to the power 5/3, which is sensitive
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to any deviation from spherical shape, shown as Eq 19.

elongation � shape ¼ e1=e2 ð17Þ

flatness � shape ¼ e2=e3 ð18Þ

non � compactness ¼
TrðIðCÞÞ

VðCÞ
5=3
¼
e1 þ e2 þ e3

VðCÞ
5=3

ð19Þ

In the equations mentioned above, e1, e2 and e3 are the three eigenvalues of the moment of

inertia tensor, which satisfy e1� e2� e3.

Random subset feature selection

The classifier’s performance will often degrade with high-dimensional features. Both feature

selection and feature extraction can reduce feature dimensionality to improve the performance

on a classification task[36].

Feature extraction is a kind of method in which one tries to develop a transformation of the

input space into the low-dimensional subspace that preserves most of the relevant information;

feature selection is a kind of method in which one selects only those input dimensions that

contain the relevant information for solving the particular problem[37, 38].

A drawback of feature extraction is the fact that the linear combination of the original fea-

tures is usually not interpretable, and the information about how much an original feature

contributes is often lost[39, 40]. Thus, feature selection technology was adopted in this

research to reduce feature dimensionality by selecting an optimal feature subset. However, it is

a challenging task.

After considering classification accuracy and computation time, the Random Subset Fea-

ture Selection (RSFS)[41] algorithm was chosen to select the most discriminating features

from the feature pool. The RSFS algorithm repetitively chooses a random subset of features

from the set of all possible features. Then, it classifies the data with a kNN classifier using these

features. During each iteration, relevance of each feature is updated according to the classifica-

tion performance of the subset that the feature participates in. Each feature is evaluated based

on its average usefulness. Finally, the optimal features are chosen from the feature pool by

comparing the relevance values of the features to random walk statistics.

Classification of lung nodules in the vessel tree group using WSVM with

imbalance data

The class of false positives is outnumbered by the class of true nodules once the lax threshold

was adopted in the prior step. Thus, the performance of the RSFS feature selection may be

degraded as the minority class could be easily overlooked. To avoid problems caused by class

imbalance, the undersampling approach[42]—which selects the false positives located near the

decision boundaries—was adopted. The false positives far away from the decision boundaries

are more likely to be classified correctly, whereas false positives near the decision boundaries

—i.e. lying close to the true nodules—are more likely to be incorrectly classified. Thus, most

discriminating features from the feature pool were selected to discriminate true nodules from

false positives.

The method of using an undersampling technique combined with the Weighted Support

Vector Machine (WSVM) was adopted to deal with an imbalanced dataset.
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Gmean was adopted to avoid poor prediction accuracy for the minority class, shown as Eq

20.

Gmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity� Specifity

p
ð20Þ

With

SensitivityðTPRÞ ¼
TP

TPþ FN
ð21Þ

SpecifityðTNRÞ ¼
TN

TN þ FP
ð22Þ

In the equations mentioned above, TP, TN, FP, and FN stand for True Positive, True Nega-

tive, False Positive and False Negative, respectively.

Two-layer cross validation was used in this research. Outer K-fold cross validation was

adopted to calculate average detection performance of juxta-vascular nodules in the vessel tree

group. Inner L-fold cross validation was adopted to estimate parameters of integer imbalanced

sample ratio, cost and gamma (SVM parameters), with a grid search method used. When the

best average Gmean was obtained based on inner L-fold cross validation, the optimal combi-

nation of parameters was found.

Experiments

In this section, the performance of the proposed scheme was evaluated to validate the effective-

ness of the method. The overall performance using the LIDC database was presented and then

compared with other existing methods.

Evaluation methods

The CT scans were obtained from the Lung Image Database Consortium (LIDC), which is a

resource available for public use, purposely used for the evaluation of a CAD scheme for lung

cancer detection. Setio et al. excluded thick-slice scans (> 2.5 mm) in LIDC and published the

list of selected scans on a public website (http://luna.grand-challenge.org/), which contained

888 scans[20]. For this study, 154 thin-slice scans with a total of 204 nodules were used from

that public website.

The gold standard reference of this study was defined as the nodules with diameters

between 3 and 30 mm annotated by at least two radiologists. Smaller nodules (the nodules in

the< 3 mm category) were not included due to their decreased clinical relevance[7, 43].

Meanwhile, non-nodules, nodules with diameters > 3 mm annotated by only 1 or 2 radiolo-

gists, and the nodules < 3 mm were classified as irrelevant findings in the evaluation of the

Receiver operator characteristic (ROC) curves.

In this experiment, the weighted SVM classifier was constructed with LIBSVM (version

3.21)[44] when lung nodules were discriminated from false positives in the vessel tree group.

Then, the nodule detection performance in the vessel tree group was evaluated by ROC curve.

After sensitivity, FPs per case, Gmean, area under curve (AUC) values and overall accuracy

were obtained, the proposed scheme was eventually implemented on a desktop PC with Inter

(R) Core i7-3770 CPU@ 3.40GHz, 16GB RAM, with Matlab R2014a on Windows XP.
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Evaluation of the threshold value during binarization of the nodule-

enhanced image

The parameter Tnodulemask_vesseltreegroup represented the threshold value during binarization

of the nodule-enhanced image of the pulmonary vessels tree group. Similarly, the parameter

Tnodulemask_non–vesseltreegroup represents the threshold value to binarize nodule-enhanced images

of the non-vessel tree group. If these parameters were set to higher values, more false positives

would be removed; meanwhile, subtle nodules would be undetected. The relationship between

the proportion of detected juxta-vascular nodules and the values of Tnodulemask_vesseltreegroup and

Tnodulemask_non–vesseltreegroup was illustrated in Fig 5. From Fig 5, it can be concluded that most of

the juxta-vascular nodules in the vessel tree group and non-vessel tree group could be detected

when Tnodulemask_vesseltreegroup and Tnodulemask_non–vesseltreegroup were set to 15/256 and 10/256,

respectively. The values were divided by 256 since the pixel values were normalized to the 0–1

range at the window display step.

The effects of parameter Tnodulemask_vesseltreegroup on juxta-vascular nodule detection in the

vessel tree group are illustrated in Fig 6. Fig 6a shows 3D images of the vessel tree group. As

shown in Fig 6b, a threshold level of 40—as suggested by Li[7]—would miss some nodules in

the LIDC dataset. By setting the parameter Tnodulemask_vesseltreegroup to 15/256, the proposed

scheme can detect subtle nodules which were missed by using Li’s threshold, though the vessel

bifurcations were also enhanced (See Fig 6c). In Fig 6c, detected nodules and vessel bifurca-

tions detected by mistake were marked in the boxes and in the ellipses, respectively. The

Fig 5. The relationship between the percentage of detected juxta-vascular nodules and the values of

Tnodulemask_vesseltreegroup and Tnodulemask_non–vesseltreegroup.

https://doi.org/10.1371/journal.pone.0210551.g005
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enlarged view of subtle nodules is seen in Fig 6d. The vessel bifurcations were removed by

using the WSVM classification.

The parameter Tnodulemask_non–vesseltreegroup was set to 10/256. The bifurcations of the tiny

vessels—which were also enhanced by dot filter—were not selected because the response of the

dot filter was much weaker than that of the vessel tree group.

Evaluation result

Extraction of nodule candidates. Fig 6 indicates the flow of nodule candidates’ extrac-

tion. Otsu’s method was applied to generate a 3D data set with a high CT value from lung vol-

ume, shown in Fig 7a. 3D labeling technology with 26-neighborhood was used to divide the

3D data set into two groups: a vessel tree group, which was shown in Fig 7b, and a non-vessel

tree group, which was illustrated in Fig 7f. For the vessel tree group, a dot filter was utilized to

extract juxta-vascular nodule candidates, but it also extracted vessel bifurcations, as seen in Fig

7c. Then, the nodule candidates in the vessel tree group were further classified by using

WSVM, with the most suitable features selected by RSFS feature selection to eliminate the false

positives, as shown in Fig 7d. In Fig 7d, TP and TN represent true nodules and true bifurca-

tions detected by the WSVM classifier. For the non-vessel tree group, a rule-based classifier

was implemented to remove obvious false positives and noise voxels, which is shown in Fig 7g.

Then, a dot filter was utilized to extract nodule candidates, shown in Fig 7h. Next, objects with

volumes smaller than 4.19 mm3 were removed. Finally, a constrained region growing method

was adopted, as shown in Fig 7i. Fig 7e and 7j represent the enlarged view of subtle nodules

and bifurcations, respectively.

Feature selection when classifying nodule candidate in the vessel tree group. The most

discriminating features selected by the RSFS feature selection algorithm were: gray_level_max,

gray_level_min, gray_level_mean, gray_level_std, SurGmax, SurGstd, SurGskewness, SurGsvr,
ShellGMav, ShellGMcv, ShellGMmin, ShellGD2

min=maxð Þ
, sphericity, irregularity, compactness3D,

and flatness—shape.
In order to determine the optimal feature subset before selecting the best cross-validation

fold combination for the WSVM classifier, an ordinary SVM classifier with balanced training

data was constructed.

First, 30 positive samples and 30 negative samples were randomly selected to form a train-

ing set. Then, the Particle Swarm Optimization (PSO) algorithm was utilized to find the

Fig 6. Nodule-enhanced image of the vessel tree group. a) 3D image of the vessel tree group, b) nodule-enhanced image obtained

by using Li’s threshold, c) nodule-enhanced image obtained by using the proposed threshold containing nodules in the boxes and

vessel bifurcations in the ellipses and d) enlarged view of subtle nodules.

https://doi.org/10.1371/journal.pone.0210551.g006
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optimal combination of “c” and “gama” parameters with the given features. The fitness curve

was drawn when training the selected feature subset mentioned above, as shown in Fig 8. The

fitness values in the PSO algorithm—which were evaluated by the fitness function—were con-

tinuously optimized through iterations. In Fig 8, the values of both the best fitness and average

fitness in the PSO algorithm were satisfactory. When the best values of the c and gama parame-

ters were found, the SVM classifier with optimal parameters was obtained. Using this feature

subset selected by the RSFS feature, the training and testing accuracy could reach 92.86% and

92.23%, respectively. This conclusion showed that the selected features mentioned above were

highly suitable for lung nodule detection.

Performance evaluation of the WSVM classifier with different fold combinations for

cross validation. In this research, Radial Basis Function (RBF) was selected as the kernel

function of the WSVM classifier. The grid search method was adopted to select the optimal

value of the WSVM parameters. The integer sample ratio ranged from 1 to the imbalance

ratio, and the imbalance ratio was calculated as the ratio of the negative samples to the

positive samples in the training dataset. Additional, the cost parameter of WSVM ranged from

2−1, 20, . . . 213, while the range of gamma was 2−7, 2−5,. . .2−1,20. The negative samples were

selected to compose the modified training data set with positive samples by using the under-

sampling approach[42], and the number of selected negative samples depended on the integer

sample ratio.

Fig 7. The flow of the nodule candidates’ extraction. a) 3D image of all nodule candidates, b) 3D image of the vessel tree group, c) 3D image after utilizing dot filter in

the vessel tree group, d) 3D image with the WSVM classification result where lung nodules were classified as true positives and vessel bifurcations were classified as true

negatives, e) enlarged view of subtle nodules in image d, f) 3D image of the non-vessel tree group, g) 3D image after removing obvious false positives and noise voxels, h)

3D image after utilizing a dot filter in the non-vessel tree group, i) 3D image after adopting a constrained region growing method that contained 2 nodules (true positive,

TP) with 1 other kind of lesion (false positive, FP) and j) enlarged view of nodule candidates from image i.

https://doi.org/10.1371/journal.pone.0210551.g007
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As mentioned before, the proposed scheme used a two-layer cross validation method. Dif-

ferent fold combinations were studied to get the best result. Five performance measures were

shown in Table 1.

As overall accuracy is not a preferred performance measure for imbalanced datasets,

Gmean was adopted as a primary evaluation measure in this research. Thus, it is concluded

from Table 1 that the best performance of the WSVM classifier is obtained when K = 10, and

L = 3.

Fig 8. Fitness curve of the PSO algorithm using SVM parameter optimization.

https://doi.org/10.1371/journal.pone.0210551.g008

Table 1. Performance comparison of different fold combinations based on the five measures.

Different fold combinations Gmean AUC Accuracy Sensitivity Specificity

K = 12, L = 7 0.8959 0.9514 0.9049 0.8889 0.9066

K = 12, L = 5 0.8933 0.9508 0.9056 0.8819 0.9080

K = 12, L = 3 0.8916 0.9545 0.9089 0.8750 0.9124

K = 10, L = 7 0.8908 0.9465 0.9065 0.8733 0.9101

K = 10, L = 5 0.8973 0.9479 0.9071 0.8867 0.9094

K = 10, L = 3 0.9020 0.9477 0.9097 0.8933 0.9115

K = 8, L = 7 0.8938 0.9434 0.9100 0.8750 0.9138

K = 8, L = 5 0.8914 0.9456 0.9054 0.8750 0.9088

K = 8, L = 3 0.8905 0.9419 0.9100 0.8684 0.9145

Best measure results for each fold combination are shown in bold.

https://doi.org/10.1371/journal.pone.0210551.t001
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Performance of nodule classification. The nodule candidates in the non-vessel tree

group which survived from the screening technology mentioned above were classified as nod-

ules; meanwhile, the nodule candidates in the vessel tree group classified as true positives by

the WSVM classifier were identified as nodules. Fig 9 shows examples of the nodules that were

detected by using the proposed scheme. The detailed performance of the nodule classification

system was analyzed according to different categories.

For the non-vessel tree group, 115 nodule candidates were detected in the 154 LIDC CT

scans, including 77 true positives (63 nodules and 14 micronodules) and 38 FPs. The sensitiv-

ity for nodule detection in this group was 92.65% (63/68) and the number of FPs/scan was

0.2468.

Fig 9. Examples of detected nodules under the proposed scheme, marked with red circles.

https://doi.org/10.1371/journal.pone.0210551.g009
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Five lung nodules were missed in the non-vessel tree group. Three nodules attached to

pleura were excluded at the lung segmentation step. This was due to special cases where the

lung parenchyma was blocked and divided into multiple parts by lung nodules, some of which

were possibly mistaken for lung borders. This eventually led to these lung nodules’ being

hardly detected and possibly overlooked, all of which is shown in Fig 10a, 10b and 10c. Two

other nodules located adjacent to fissures were weakly visible and missed due to low contrast

resolution, which is shown in Fig 10d and 10e.

For the vessel tree group, nodule detection was composed of two steps. At the prescreening

stage, 1562 nodule candidates were detected in 154 LIDC CT scans, including 153 true posi-

tives (130 nodules and 23 micronodules) and 1409 FPs. The sensitivity for detecting nodules in

the vessel tree group at the prescreening stage was 95.59% (130/136), and the number of FPs/

scan was 9.15. The shape of six missed lung nodules in the vessel tree group was irregular,

either because these lung nodules were attached to both the vessel tree and pleural nodules or

because they had nodule tails, seen in Fig 11. Thus, these nodules were excluded by dot filter

because of their irregular shape. Most of the detected FPs will be removed at the subsequent

classification stage.

At the classification stage, the undersampling technique combined with the WSVM classi-

fier was adopted to further remove false positives. The ability to detect nodules in the vessel

tree group at the classification stage was represented by the ROC curve, seen in Fig 12. The

AUC of the ROC curve was 0.9477, Gmean was 0.9020, and the accuracy was 90.97%, with a

false positive rate of 8.85% and 89.33% sensitivity.

The sensitivity for nodule detection in the vessel tree group is the sensitivity of nodule pre-

screening multiplied by the sensitivity of the WSVM classifier. Similarly, the false positive

number for nodule detection in the vessel tree group was the false positive number/scan of the

nodule during prescreening multiplied by the false positive rate of the WSVM classifier. Thus,

the sensitivity for nodule detection in the vessel tree group is 85.39% and the number of FPs/

scan is 0.8098.

In summary, the sensitivity of the proposed CAD scheme is 87.81%(63þ136�85:39%

204
), and the

number of FPs/scan of the proposed CAD scheme is 1.057.

Comparison with the state-of-the-art methods. Two typical types of CAD schemes—

conventional method-based and deep learning method-based schemes—were often used for

lung nodule detection. Deep learning-based schemes could generally yield a higher perfor-

mance than conventional method-based schemes. However, these deep learning method-

based schemes require a large number of training datasets and a specialized graphics process-

ing unit (GPU) to implement[23]. Thus, a conventional method-based scheme was

Fig 10. Five undetected nodules in the non-vessel tree group, marked with red circles.

https://doi.org/10.1371/journal.pone.0210551.g010
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implemented in this research for lung nodule detection. Twelve recently reported CAD

schemes using the LIDC database were chosen for comparison.

Although those limitations (different CT protocols for image datasets, different evaluation

methods, and different lung segmentation methods) have an impact on performance evalua-

tion, a relative comparison is still helpful in order to validate the performance of the proposed

scheme. The summary of the comparison is presented in Table 2.

As shown in Table 2, the sensitivity of our method is higher than 85%; meanwhile, FPs/scan

is lower than most of the existing methods recently reported. When compared with deep learn-

ing method-based schemes, the performance of our method is similar to—or slightly higher

than—that of Xie’s scheme, Gu’s scheme, Dou’s scheme and DeepLung at 1 FPs/scan. How-

ever, these deep learning method-based schemes can yield higher performance than our

scheme at 4 FPs/scan. Thus, these deep learning method-based schemes can obtain higher per-

formance. When compared with conventional method-based schemes, our method is similar

to Lu’s scheme, Wang’s scheme, and Tan’s scheme in terms of sensitivity, but our method

maintained a lower rate of false positives. The proposed scheme gets higher performance than

that of Gong’s scheme, MOT_M5Lv1 and Visia CT Lung CAD, but these CAD systems were

validated with larger datasets than that of our scheme. It prompts us to test the performance of

the proposed scheme with much bigger data sets in the next step. In conclusion, as indicated

by Table 2, the performance of our method may be similar to deep learning method-based

schemes with low false positive rate and may be better than the existing conventional methods

recently reported.

Fig 11. Six undetected nodules in the non-vessel tree group prescreening stage, marked with red circles.

https://doi.org/10.1371/journal.pone.0210551.g011
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Fig 12. ROC curve of the proposed method dealing with nodule candidates in the vessel tree group.

https://doi.org/10.1371/journal.pone.0210551.g012

Table 2. Performance comparison of the proposed scheme with other existing methods.

CAD Scheme Type of Method LIDC scans Nodule Number Sensitivity FPs/scan

Xie et al[45] Deep Learning 888 1186 86.4%

85.2%

4

1

Gu et al[46] Deep Learning 888 1186 92.9%

87.9%

4

1

Dou et al [47] Deep Learning 888 1186 93.3%

86.5%

4

1

DeepLung[48] Deep Learning 888 1186 91.7%

86.5%

4

1

Lu et al [49] Conventional 98 223 85.2% 3.1

Wang et al [50] Conventional 103 127 88% 4

Teramoto et al [51] Conventional 84 103 80% 4.2

Riccardi et al [52] Conventional 154 117 71% 6.5

Tan et al [19] Conventional 125 80 87.5% 4

Gong et al[23] Conventional 888 1186 79.3% 4

MOT_M5Lv1[24] Conventional 888 1186 81.6% 4

Visia CT Lung CAD[23] Conventional 888 1186 78.8% 4

Proposed method Conventional 154 204 87.81% 1.057

https://doi.org/10.1371/journal.pone.0210551.t002
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Discussion

The proposed method has three advantages. The first advantage is that decimals were used to

represent gray intensity more accurately. Secondly, different thresholds were used to extract

juxta-vascular nodules attached to vessel trees or tiny vessels when nodule-enhanced images

were binarized. The final advantage is that the false positive rate of the proposed scheme is

much lower than that of the existing methods recently reported, while the sensitivity of the

proposed scheme maintained a good performance (87.81%).

At the same time, the proposed method had one limitation. Ground glass opacity nodules

were not considered, which would require a modification of the current detection method.

Conclusion

In this paper, a novel method is proposed to detect lung nodules in chest CT images. The

DICOM windows display technology was improved. Then, the lung volume was extracted

from the chest CT scan. The nodule candidates were divided into two groups and were

detected with different methods. For the non-vessel tree group, the sensitivity of nodule detec-

tion was 92.65% with 0.2468 FPs/scan. For the vessel tree group, the sensitivity of nodule

detection was 84.76% with 0.8289 FPs/scan. Thus, the proposed CAD scheme detected only

1.076 FPs/scan with 87.46% sensitivity in the LIDC dataset. It could be concluded that the per-

formance of our method may be better than that of the existing methods recently reported.

Our future research work will focus on detecting GGO nodules.
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