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Epstein–Barr virus-positive T/NK-cell
lymphoproliferative disorders

Qingqing Cai1,2, Kailin Chen1 and Ken H Young2,3

Epstein–Barr virus, a ubiquitous human herpesvirus, can induce both lytic and latent infections that result in a variety of human

diseases, including lymphoproliferative disorders. The oncogenic potential of Epstein–Barr virus is related to its ability to infect

and transform B lymphocytes into continuously proliferating lymphoblastoid cells. However, Epstein–Barr virus has also been

implicated in the development of T/natural killer cell lymphoproliferative diseases. Epstein–Barr virus encodes a series of

products that mimic several growth, transcription and anti-apoptotic factors, thus usurping control of pathways that regulate

diverse homeostatic cellular functions and the microenvironment. However, the exact mechanism by which Epstein–Barr virus

promotes oncogenesis and inflammatory lesion development remains unclear. Epstein–Barr virus-associated T/natural killer cell

lymphoproliferative diseases often have overlapping clinical symptoms as well as histologic and immunophenotypic features

because both lymphoid cell types derive from a common precursor. Accurate classification of Epstein–Barr virus-associated

T/natural killer cell lymphoproliferative diseases is a prerequisite for appropriate clinical management. Currently, the treatment of

most T/natural killer cell lymphoproliferative diseases is less than satisfactory. Novel and targeted therapies are strongly required

to satisfy clinical demands. This review describes our current knowledge of the genetics, oncogenesis, biology, diagnosis and

treatment of Epstein–Barr virus-associated T/natural killer cell lymphoproliferative diseases.
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INTRODUCTION

Epstein–Barr virus (EBV), a member of the human herpesvirus
family, possesses oncogenic potential through its ability
to infect and transform B lymphocytes into continuously
proliferating lymphoblastoid cells. EBV infrequently infects
T cells and natural killer (NK) cells and can lead to a wide
range of T/NK cell lymphoproliferative diseases (LPD). It is
conceivable that pre-existing inflammatory lesions, such as
those caused by mucosal pathogens or inhaled materials
that become lodged in the nasal mucosa, may induce local
EBV-infected memory B cells to enter the lytic cycle and
thereby transmit virus to locally activated T and/or NK cells.
Persistent EBV infection is a risk factor for a wide range
of human tumors and malignant diseases such as T/NK
cell LPD.

BIOLOGICAL FUNCTIONS OF T AND NK CELLS AND

EBV INFECTION

The T-cell compartment is divided into CD4+ and CD8+

T cells; these are referred to T helper and cytotoxic T cells,
respectively. These cells play critical roles in the immune
system and in the regulation of immune responses.1 NK cells
initiate innate immune responses against invading pathogens
and cancers.2 NK cells are characterized by the absence of
T-cell receptor (TCR) gene rearrangement, lack of expression
of the TCR-CD3 complex and the expression of CD16 and
CD56.3 NK cells and cytotoxic T cells share a close relationship
in terms of ontogeny and function.4

EBV infects a very broad spectrum of in vivo target cells,
including B and T lymphocytes, NK cells, squamous and
glandular epithelial cells, and smooth muscle cells.5 Although
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EBV infection is normally restricted to B lymphocytes, the virus
has also been strongly linked to tumors of a T/NK cell origin
after the aberrant virus has gained entry into T or NK cells. The
intracellular signals within natural target cells that normally
govern viral behavior may cease to function properly, allowing
EBV to maintain a lifelong persistent latent infection in the
host.6

EBV is transmitted primarily through infected saliva and
establishes a latent infection in B lymphocytes in episomal
(circular) DNA form by undergoing episodic lytic replication in
B cells and epithelial cells, leading to viral reproduction and
high levels of salivary shedding in the throat.7 The EBV life
cycle demonstrates a number of distinctive viral features that
are also typical of other gamma herpesviruses, as follows:6

(i) Lytic infection (primary infection) most likely occurs when
EBV replicates in squamous epithelial cells and possibly locally
infiltrating lymphocytes. (ii) EBV colonizes B cells via growth
transformation in oropharyngeal lymphoid tissues. (iii) EBV
downregulates growth-transforming gene expression in the
transformed cells. (iv) In latent infection, EBV-infected but
quiescent memory cells persist in the recirculating memory
B-cell pool. (v) In some cases, latently infected B cells enter the
lytic cycle; when this occurs at a mucosal surface, the shed virus
particles can infect new host cells and produce new growth-
transforming B-cell infections.

Exposure to EBV usually occurs early in childhood, and
more than 90% of adults worldwide are EBV seropositive.
Most primary EBV infections are asymptomatic in young
children, although some cases may present as acute infectious
mononucleosis if infection is delayed until the second decade of
life or later.7–9 Persistent EBV infection is a risk factor for a
wide range of human tumors.

During the EBV life cycle, some imbalances between the
inherent transforming abilities of the virus and the host
immune system can lead to the development of different
diseases.10 These imbalances include suppression of the most
immunogenic latent proteins, expression of lytic proteins that
interfere with antigen-processing machinery and major histo-
compatibility complex molecule expression in infected cells,
and production of viral homologues of human cytokines.10

In immune-competent hosts, protective immunity is
mediated by strong cell-mediated responses to primary infec-
tion. These responses involve NK cells, CD4+ T cells, and
particularly, EBV-specific cytotoxic CD8+ T lymphocytes
(CTLs) and act collectively not only to control the primary
infection and limit periodic reactivation but also to control
the re-emergence of virus-transformed lymphoproliferative
lesions.6 After primary infection clearance, EBV persists as a
lifelong latent infection in infected memory B cells by
suppressing the expression of the most immunogenic latent
proteins and expressing only nonpathogenic and completely
silent transcripts for EBV small RNAs (EBERs).11 Thereby,
EBV can escape immune recognition and establish a true
antigen-negative form of latency (L0) within cells in the
recirculating memory B-cell pool.6 In immune-compromised

hosts, however, primary EBV infections may efficiently
transform B cells, resulting in life-threatening diseases.6

ONCOGENESIS OF EBV-POSITIVE T/NK CELL LPD

EBV gene expression and cellular genomic alterations
Like all herpesviruses, EBV experiences both latent and lytic
replication stages, allowing it to evade immune surveillance and
maintain lifelong infection. Latent infection is characterized by
the absence of infectious virus production and integration into
host cell chromosomes via replication of the viral genome,
whereas lytic infection occurs when the virus produces a large
number of functional and structural proteins to replicate its
DNA and produce infectious viral particles.12,13 After lytic
replication, the expression of latent programs is required to
trigger associated diseases.14 The EBV genome limits gene
expression to nine latent viral proteins in varying patterns to
evade immune recognition within infected resting memory
cells. Latent proteins, including nuclear antigens (EBV-deter-
mined nuclear antigen (EBNA)-1, -2, -3A, -3B and − 3C) and
leader protein, are responsible for maintaining the viral
genome as well as controlling the expression of three latent
membrane proteins (LMP-1, -2a and -2b). BamHI A rightward
transcripts (BARTs) and two small non-coding RNAs, EBER-1
and EBER-2, are also expressed (Table 1).15,16 Latency can be
classified into three patterns, depending on which latent genes
are expressed.9 Overexpression of these oncoproteins is an
important mechanism of associated lymphoproliferative
disorders (Figure 1).

LMP-1, the main oncogenic protein of EBV, is considered an
analogue of TNF-receptor 117 and provides both growth and
differentiation signals to B cells. LMP-1 can activate several
downstream signaling pathways that contribute to the induc-
tion of genes encoding anti-apoptotic proteins (for example,
Bcl-2 and A20) and cytokines (for example, interleukin (IL)-10
and CD40L) and induces immortalization in B cells. Involved
signaling pathways include the nuclear factor kappa B (NF-κB),
MAPK/ERK1/2,13 PI3K/Akt, Notch, Jun N-terminal protein
kinase (JNK),17 JAK/STAT, extracellular signal regulated kinase
(ERK), interferon-regulatory factor 4 (IRF4) and Wnt
pathways.14 In addition, the PI3K/Akt pathway seems to be
most important in EBV-induced malignancies. This pathway is
activated by LMP-1 in a manner that depends primarily on its
C-terminal tail signaling domains, and in particular, the
carboxy-terminal activating region 1 (CTAR1).17 Moreover,
activation of the PI3K/Akt pathway and its downstream effector
Bcl-2 will in turn suppress the pro-apoptotic activity of prostate
apoptosis response-4.18 LMP-1 also downregulates BLIMP1α
expression to prevent the differentiation of B cells to
plasma cells, an important step related to lymphomagenesis
(Figure 2).19

LMP2 is transcribed from two different promoters to
produce either LMP2A or LMP2B. It plays a key role in
inhibiting normal B-cell development by suppressing B-cell
receptor-mediated proliferation signals through inhibition of
calcium mobilization and tyrosine phosphorylation and thus
plays a key role in abrogating normal B-cell development and
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activation of the lytic viral replication cycle. LMP2 also
provides the tonic signals required for B-cell survival by
co-opting SYK and SRC-family kinases.20 In AIDS-related
lymphomas, LMP2A also contributes to NF-κB signaling via
LMP1 signaling activation.12

EBNA-1 is the only consistently expressed latent protein in
all EBV-positive malignancies. It plays a key role in maintaining
EBV in infected cells and facilitating episomal replication.
EBNA-1 has also been characterized as a transcriptional
activator and activates EBV transcript expression via the latent
C promoter.8 EBNA2 plays an important role in B-cell
transformation. It initiates and maintains transformed cell
proliferation and prevents transformed B-cell apoptosis.8

EBERs are small noncoding RNAs that are expressed in EBV-
infected cells and have been reported to protect cells from
apoptosis through IRF-3 and NF-kB signaling.12,20 EBERs can
also suppress IFN-α-mediated apoptosis; induce growth-
promoting cytokines such as IL-10, IGF-1, IL-9 and IL-6;
induce B lymphocyte growth transformation;20 and upregulate
the Bcl-2 oncoprotein. MicroRNAs are also expressed during

EBV latency. In human primary B cells, microRNAs in the
BHRF1 region inhibit apoptosis and contribute to cell cycle
progression and proliferation during the early infection phase.21

The lytic cycle also contributes to the growth of EBV-
associated malignancies by enhancing angiogenesis. B cells
infected with a virus competent for expression of the lytic
protein BZLF-1 release greater amounts of vascular endothelial
growth factor and IL-6 than do cells infected with BZLF-1-
defective virus.22 Lytically infected cells have been suggested to
promote EBV-driven lymphomagenesis.23 BZLF1 is a master
regulator of the expression of several early viral genes critical to
productive viral replication and is sufficient alone to activate
the entire lytic cascade.8

Immunologic mechanism
Primary immunodeficiencies. Some types of primary
immunodeficiencies are well known because their main feature
is the development of EBV-associated disease.9 These
immunodeficiencies mainly comprise defects related to the
lymphocyte cytotoxic pathway or T-cell dysfunction, including

Table 1 Functions of EBV-latent genes in T/NK-cell LPD

EBV-latent genes Function

LMP1 Main oncogenic protein of EBV; interacts with the TRAF family member so as to activate several downstream signaling pathways
which include NF-κB, p38, MAPK/ERK1/2, JAK/STAT, ERK, MAPK, IRF4, PI3K/Akt and Wnt pathways, and activation of NF-κB will
inhibit TNF-α-mediated apoptosis on EBV-positive T cells via the downregulation of TNFR-1; upregulating genes inhibiting the
intrinsic (BCL2, A20, BFL1, CIAP2) and extrinsic (CFLIP) apoptotic pathways; upregulating genes encoding anti-apoptotic proteins
(e.g., BCL-2 and A20) and cytokines (IL10, IL6, IL8 and CD40L) and provides immortalization to B cells; induces hsa-miR-146a
regulating the interferon response pathway, and hsa-miR-155 regulating NF-κB and stabilizing the EBV copy number; responsible for
clumping of LCL and expression of markers of B -cell activation such as CD23, CD30 and cell adhesion molecules; damages cis-
presentation of its own epitopes actively; interacts with IL10 to upregulate CD25 and enhance IL-2-mediated proliferation; inhibit
DNA repair pathways and the DNA damage checkpoint activation to promote genomic instability.

LMP2 Including LMP2A and LMP2B; neither is essential for B-cell transformation; activates the PI3K/Akt, which increases cell
proliferation, genomic instability and cytoskeleton dynamics and decreases apoptosis by enhancing LMP1; delivers a BCR homolog
signal to latently infected cells through Syk, Lyn, Btk, BLNK, PI3K/Akt and other signaling mediators coordinated by Syk activation,
which maintain viral latency, persistent survival and induce expression of genes inducing cell cycle, apoptosis inhibiting and evading
immunosurveillance.

EBNA1 Actively suppresses presentation of EBV antigens; reduces MYC expression to protect from apoptosis; binds to USP7 to prevent
stabilization of gene p53 and acts as an apoptosis inhibitor; ensures passage of the viral episome during cell division; activates ROS
production to mediate chromosomal aberrations and double-strand breaks.

EBNA2 Essential function in B-cell transformation; activates transcription of LMP1, LMP2 and switches EBV promoter usage from Wp to Cp;
transactivates the Myc c protooncogene; represents an active role in the Notch signaling pathway.

EBNA-LP Encoded by the leader of each of the EBNA mRNAs; promotes EBNA2-mediated transcription.

EBNA3A/3B/3C Interacts with the cellular DNA-binding protein CBF1 that targets EBNA2 to promoters so as to insure the continued proliferation of
LCLs; combination ofEBNA3A and EBNA3C inhibits the pro-apoptotic protein BIM and the tumor suppressor p16INK4A.

EBERs Expressed in EBV-infected cells abundantly and represent diagnostic markers for EBV infection; (i) resistance to apoptosis: activate
retinoic acid inducible gene RIG-I to induce type-I IFNs and protect from apoptosis through IRF-3 and NF-kB signaling; inhibit PKR’s
phosphorylation thus suppress IFN-ɑ-mediated apoptosis; upregulate the bcl-2 oncoprotein. (ii) Induction of growth-promoting
cytokines: induce autocrine growth factors like IL-10, IGF-1, IL-9 and IL-6. (iii) Maintenance of malignant phenotypes by inducing
growth transformation of B lymphocytes.

BHRF1 miRs Inhibit apoptosis and promote cell cycle progression and proliferation in early stage of infected human primary B lymphocytes.

Abbreviations: EBV, Epstein–Barr virus; IL, interleukin; T/NK-cell LPD, T/natural killer cell lymphoproliferative disorders.
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disruptive interactions between B cells and T cells. These
genetic defects are responsible for the development of an acute
fulminant life-threatening condition after EBV infection.7

Acquired immunosuppression. The manifestation of EBV-
related tumors often varies according to the patient’s immune
status (for example, HIV infection or transplant-related immu-
nosuppression). In healthy individuals, the lifelong asympto-
matic latency established by EBV in B lymphocytes is effectively
controlled by EBV-specific CTLs after primary infection. In
transplant patients, however, the administration of powerful
immunosuppressive agents impairs CTL responses, thus
allowing virus-infected B cells to accumulate and possibly
leading to uncontrolled EBV-driven lymphoproliferation and
tumor formation.24 The resolution of a high percentage of
posttransplant lymphoproliferative disorders (PTLDs) in
response to a reduction in immunosuppression as well as the
success of donor lymphocyte infusion25 strongly suggests that
the underlying state of immunosuppression is among the most
important permissive factors for PTLD development.

Infiltration of regulatory T cells. EBV-positive malignant cells
can attract infiltrating T regulatory cells in the tumor

microenvironment or can induce differentiation of the Tr1
phenotype from naïve CD4+ T cells in the tumor lesion. At
increasing numbers and cell activation levels, regulatory T cells
can inhibit anti-tumor immunity in the EBV-associated cancer-
bearing host that has maintained a long-term latent EBV
infection. In addition, the number of infiltrating regulatory
T cells and their activation status will affect tumor development
and patient outcomes in cases of EBV-positive malignancies.26

Defects in lymphocyte cytotoxic function and NK cells. CD8+ T
lymphocytes and NK cells are essential for immunosurveillance
against cellular anomalies and virus-infected cell elimination.
Defects in CTL and NK cell cytotoxic function preclude
downregulation of the elicited immune response, resulting in
persistent hyper-activation and proliferation of these effector
cells.7 This condition also leads to an uncontrolled but
ineffective immune response mediated through the granule-
dependent pathway, resulting in hemophagocytic lymphohis-
tiocytosis (HLH).27

Defects in T-cell signaling and T-cell/B-cell interaction. A
heterogeneous complex of T-cell defects that may essentially
preserve CTL function but exhibit genetic aberrations in

Figure 1 Epstein–Barr virus (EBV)-encoded proteins are associated with cellular proliferation, survival, differentiation and angiogenesis.
Lytic cycle genes BCRF1 (viral IL-10) and BARF1 (sCSF-R) facilitate blunting of T-cell responses by suppressing antiviral cytokine
production. BHRF1, a Bcl-2 homologue, preserves mitochondrial membrane potential and contributes to apoptosis resistance. Latent genes
(EBNA1, EBNA2, LMP2A and LMP1) also protect host B cells from multiple apoptotic stimuli mediated by p53, Nur77, BCR and DR
signals. For example, LMP1-mediated NF-κB activation upregulates several antiapoptotic genes capable of blocking intrinsic and extrinsic
cell death pathways.
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intracellular T-cell signaling and/or T cell–B cell interactions
can occur and affect T-cell survival, proliferation, differentia-
tion, homeostasis and migration. These defects involve
the signaling lymphocytic activation molecule (SLAM),
SLAM-associated protein (SAP), X-linked inhibitor of apopto-
sis (XIAP), IL-2-inducible T cell kinase (ITK) (Figure 3),
magnesium transporter 1 (MAGT1) and coronin-1A.7 The
programmed death (PD)-1/PD-1 ligands (PD-Ls) pathway, a
new member of the B7/CD28 family, is also involved in various
T-cell-mediated diseases in reactive lymphoid tissues and
inhibits tumor-associated T-cell activity.28

Chronic inflammation
Abnormal T lymphocyte cytotoxic activity fails to clear
EBV-infected cells, resulting in the continuous activation and
proliferation of both CTLs and NK cells. Various murine gene
knockout models have formally demonstrated the involvement
of pro-inflammatory cytokine genes during tumor
development.29 Cytokine-induced mutagenesis is one such
mechanism. Activated inflammatory cells induce reactive oxy-
gen species-associated DNA damage and genomic instability.
Mutagenesis may also repress mismatch repair response genes
or induce the ectopic expression of activation-induced cytosine
deaminase, which is normally involved in the somatic mutation

of immunoglobulin genes in B cells but can cause off-target
effects. Furthermore, cytokines released from inflammatory
cells may mediate growth promotion by activating the NF-κB,
STAT3 or AP1-associated growth or pro-survival pathways,
leading to the proliferation of malignant cells and promotion of
tumor angiogenesis.30

Clearly, chronic active EBV infection, HLH and T/NK-cell
lymphomas are all associated with an inflammatory environ-
ment containing high serum pro-inflammatory cytokine levels.
Factors related to EBV-positive T/NK-cell growth include IL-2
(Figure 2), IL-9, IL-10, CD70 and sCD27.6 Invasive factors
such as IFN-γ, IP10 and IL-15 contribute to tumor infiltration.

Age-related immunosenescence
Numerous factors and complex mechanisms, such as telomere
shortening, are involved in immune system remodeling during
the aging process. The activation of telomerase, which is
critically involved in telomere length maintenance, is also
required for the transformation of virus-infected primary B
lymphocytes; these cells are critically involved in maintaining
telomere length and overcoming replicative senescence to
facilitate unlimited replication.31 LMP-1 was found to activate
transcriptase (TERT) at a transcriptional level via the
NF-κB and MAPK/ERK1/2 pathways.32,33 Other factors that

Figure 2 Signaling pathways in T/NK-cell proliferation. NF-κB pathway in EBV-positive T-cell lymphoma: a diagrammatic depiction of the
pathogenesis and molecular mechanisms associated with progression from hemophagocytic lymphohistiocytosis (HLH) to chronic active
disease or T-cell lymphoma in Epstein–Barr virus (EBV)-infected T cells. EBV latent membrane protein-1 (LMP-1) upregulates tumor
necrosis factor-α (TNF-α) via TNF receptor (TNFR) associated factors (TRAF)/nuclear factor-κB (NF-κB) signals on one hand to kill
bystander lymphoid cells and downregulates TNFR-1 on the other hand to suppress the apoptotic signaling pathway, thus conferring
survival from TNF-α-induced apoptosis on LMP-1-expressing T cells.
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contribute to lymphomagenesis include alterations in T-cell
homeostasis and transduction, impaired DNA repair and
dysregulated antioxidant mechanisms.13

Other cofactors
Increasing evidence has shown that cofactors may play a role in
the development of EBV-associated neoplasms. These cofactors

include genetic susceptibility, environmental factors, host
immune status reactivation and nutritional status.34

Genetic susceptibility has been identified in several diseases
associated with EBV infections. A clear association exists
between EBV and extranodal NK/T-cell lymphoma, nasal type.
This malignancy, of which each case is EBV-genome-positive,
is characterized by vascular damage, necrosis and a cytotoxic

Figure 3 (A) IL-2-dependent tumor cell proliferation in Epstein–Barr virus (EBV)-positive NK-cell LPD. Activated tumor-infiltrating T cells
produce inflammatory cytokines such as IL-2 and the related cytokine IL-15 (far left panel). In the next panel, these lymphocytes make
contact with malignant cells and supply IL-2, which in turn induces IL-10. In the next panel, IL-10 elevates the level of LMP-1 in the
EBV-infected cells, which consequently upregulates CD25 expression (IL-2R-α). Finally, a lower IL-2 concentration can greatly induce
targeted cell proliferation after IL-2R upregulation. (B) Morphologic and pathologic presentations of NK/T-cell lymphoma subtypes.
Extensive coagulative necrosis is observed (a). Tumor cells generally exhibit an angiocentric growth pattern (b). Pleomorphic large atypical
cells, some of which feature a cucumber-like morphology (c). In situ hybridization for EBV-encoded early small RNA (EBER) shows
numerous positive cells (d).
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T-cell phenotype.12 It is most common in Asia, followed
by Native Latin America where the populations are somewhat
genetically linked with Asian populations.35 People in
these areas may harbor genetic susceptibility. Regarding
nasopharyngeal carcinoma, a surface epithelial tumor, a genetic
susceptibility in some individuals (particularly human leuko-
cyte antigen haplotypes) is a well-defined etiological factor.36

Environmental factors such as parasitic infections may also
play an important role in EBV-positive T/NK-cell LPD, similar
to the roles played by malaria and EBV as co-factors in Burkitt
lymphomagenesis and by HIV and EBV as co-factors in
B-lymphomagenesis.6 Regarding gastric carcinoma, the status
of EBV as a co-factor versus Helicobacter pylori is key and
cannot be ignored. The possibility of synergy between these
two infectious agents has been suggested by a recent study of
gastritis in pediatric patients, in which individuals with
serologic evidence of Helicobacter pylori and EBV co-infection
were more likely to develop more severe inflammatory lesions
than were those with Helicobacter pylori infection alone.37

Additionally, the host immune status is essentially related to
disease development. As previously mentioned, impaired
immunosurveillance against EBV may favor the development
of EBV-associated diseases in posttransplant patients and
HIV-1-infected individuals. For example, patients with
AIDS-associated leiomyosarcoma are all EBV-genome-positive,
an incidence that is much higher than that among
HIV-negative patients.38

The host nutritional status is also an important factor.
Malnutrition and the consumption of food with possible
carcinogens such as volatile nitrosamines may also contribute
to the development of these diseases.

GENETICS OF EBV-POSITIVE T/NK-CELL LPD

Cellular genetic alterations are of great importance to patho-
genesis. Such alterations include gene deletion, gene rearrange-
ment, gene insertion and tumor-suppressor gene mutation,
and are critical for proliferation, apoptosis and differentiation
in lymphomagenesis. Although most of these mechanisms
occur mainly in B-lymphomagenesis, similar effects may also
be relevant in T/NK-cell infection.

In T/NK-cell infection, the risk of genome mutation
increases in latency I/II infection (expression of EBNA1 and
LMP1). EBNA1 activates reactive oxygen species production
that induces chromosomal aberrations and double-strand
breaks, whereas LMP1 promotes genomic instability by inhi-
biting DNA repair pathways and suppressing the DNA damage
checkpoint.39,40 Studies of nasal tumors have found chromo-
some 6q21-25 deletions, CD95 (Fas) gene mutation and TP53
gene mutation in some cases.41 Loss of chromosome regions at
9p21 and 3p is also commonly observed and thought to occur
during early nasopharyngeal carcinoma pathogenesis. The high
frequencies of 3p and 9q losses may contribute to latent EBV
infection, a crucial event in the multistep progression towards
nasopharyngeal carcinoma.42,43

MYC is a nuclear phosphoprotein with gene-activating
and -repressing capabilities. Lymphomas expressing latency I

exhibit cellular oncogenic alterations such as translocations
involving the MYC oncogene, which are characteristic of
Burkitt lymphoma.44 Therefore, it is likely that EBNA1 protects
against apoptosis by dysregulating the expression of MYC,
which would be further enhanced by expression of the Bcl-2
homologue BHRF1.45 Other types of LPDs with type I EBV
latency exhibit additional transforming alterations.12 In the
nasal type, genetic alterations include an absence of T-cell
antigens, expression of the NK cell marker CD56 and absence
of TCR gene rearrangement.46

Tumor-suppressor gene mutation, including TP53 mutation,
has been observed in numerous cases.6 In PTLD, different
types of molecular gene alterations have been recognized,
including microsatellite instability, altered proto-oncogene
(MYC) or suppressor gene (Bcl-6 and TP53) functionality,
DNA hypermethylation and aberrant somatic hypermutation.47

Similar to nasopharyngeal carcinoma, EBV-associated gastric
carcinoma tumors display a type II latency EBV latent gene
expression program. Compared with EBV-negative GC, EBV-
associated gastric carcinomas have distinct phenotypic and
clinical characteristics, including absent p16 expression, p73
promoter methylation, wild-type TP53 expression, different
allelic loss patterns and improved patient survival.36

Additionally, gene insertion was observed in EBV isolates
from malignant tumors.48 Rb gene mutation has been
suggested as a pathogenic mechanism in some T-cell
lymphomas.49 Inactivation of the CDKN2 genes, which encode
the p16INK4a and p14 (ARF) proteins, occurs in the majority
of human T-cell acute lymphoblastic leukemias.50,51 Hyper-
methylation of the cyclin-dependent kinase inhibitor (CDKI)
gene, p15INK4B, may also be involved in the pathogenesis of
T-cell acute lymphoblastic leukemias.52 The EBV nuclear
antigens 3C and 3A maintain lymphoblastoid cell growth by
repressing p16INK4A and p14ARF expression.53 Induction of
p16INK4a is the major barrier to proliferation upon the
EBV-mediated transformation of primary B cells into
lymphoblastoid cells.54

DIAGNOSIS OF EBV-POSITIVE T/NK-CELL LPD

T-cell lymphoma
Peripheral T-cell lymphoma, unspecified. Peripheral T-cell
lymphoma, unspecified (PTCL-U) typically occurs in adults
(median age, 60 years) with a higher prevalence in men.55 The
majority of cases are nodal in origin. However, extranodal
involvement is also common and most often involves the skin
and gastrointestinal tract. Bone marrow involvement can occur
in 20–30% of cases. Eosinophilia, thrombocytopenia and
elevated LDH are common, as well as pruritus and hemo-
phagocytic syndromes.56 Systemic constitutional symptoms
(B symptoms: fever, weight loss, night sweats) are common.
Approximately 65% of patients have stage IV disease and
50–70% of patients are in the high or high-intermediate group
according to International Prognostic Index scoring.57,58 The
morphology of PTCL-U is highly variable. PTCL-U, which is
characterized by an inflammatory background, typically
exhibits paracortical or diffuse infiltrates with a mixture of
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small and large cells effacing the lymph node architecture.
The cytological spectrum is very broad, ranging from highly
polymorphous to monomorphous. Clear cells, follicular
dendritic cells, eosinophils and Reed–Sternberg-like cells might
also be observed. High endothelial venules are often
increased.59,60 Immunohistochemistry is important for a diag-
nosis of PTCL-U. PTCL-U is usually characterized by CD3
expression. CD7 expression is most commonly absent, whereas
CD5 and/or CD2 positivity are frequent.59 Most nodal cases
express CD4 and lack CD8. However, CD4/CD8 double-
positivity or double-negativity may be observed. CD8, CD56
and cytotoxic granule expression are occasionally positive.
PTCL-U exhibits CD52 positivity but usually lacks CD10,
Bcl-6, PD1 and CXCL13.61–64 In more than 50% of cases, the
integration of EBV, which is present in bystander B cells and/or
a variable fraction of the tumor cells, has been reported and is
considered to be a risk factor for survival.65,66

Angioimmunoblastic T-cell lymphoma. Angioimmunoblastic
T-cell lymphoma (AITL) is a rare neoplasm but one of the
most common peripheral T-cell lymphoma subtypes.57,67 AITL
mostly occurs in older adults (median age, 59–65 years), with a
slightly higher prevalence in men.57,67 Patients often have B
symptoms, generalized lymphadenopathy and hepatospleno-
megaly. Bone marrow involvement is also frequently
observed.68,69

AITL lesions exhibit a polymorphous infiltrate containing
atypical medium-sized neoplastic cells with clear cytoplasm and
prominent arborizing blood vessels that are admixed with small
lymphocytes, histiocytes, immunoblasts, eosinophils, plasma
cells, increased follicular dendritic cells and scattered EBV
B-cell blasts.62,70–72 EBV can be detected only in B cells. In
some AITL patients, EBV likely plays a role in the development
of EBV-associated B-cell lymphoma. In addition to EBV,
HHV6B, another human herpesvirus, has also been reported
in approximately half of AITL cases.73

Mature CD4+/CD8– T cells are present among the neoplastic
cells of AITL.70–73 The reduced or absent expression of
pan-T-cell antigen(s) (most commonly sCD3, CD4 and CD7)
on neoplastic cells is frequently observed.74 Co-expression of
CD10 is observed in a variable proportion of neoplastic cells.
Partial CD30 expression is common.75,76 AITL has been
reported to derive from the unique follicular helper T cells
subset located in the germinal center. Viruses have been
identified as playing a role in the follicular helper T cell
transformation. Accordingly, AITL neoplastic cells may express
several follicular helper T cell markers, including CXCL13
(a cytoplasmic chemokine), PD1 (a member of the CD28
costimulatory receptor family, resulting in negative regulation
of T-cell activity), ICOS (a CD28 homologue with
costimulatory function in T-cell activation and expansion)
and Bcl-6.77–82 However, follicular helper T cell markers
are not exclusive to AITL. Primary cutaneous CD4+ small/
medium-sized pleomorphic T-cell lymphoma cells may also
express the Bcl-6+ PD1+ CXCL13+ immunophenotype.83

Extranodal NK/T-cell lymphoma, nasal type
Extranodal NK/T-cell lymphoma, nasal type (ENKTL) is rare
in Western countries but relatively common in East Asia
(especially China) and Latin America.84 These tumors pre-
dominantly occur in extranodal sites, including the nasal or
paranasal areas (nasal ENKTL), and less frequently in extra-
nasal sites such as the skin, soft tissue, gastrointestinal tract,
testis and brain (extranasal ENKTL).85–87 Progressive necrotic
ulceration and granulation are common in the nasal cavity and
midline facial tissues, and nasal obstruction or nasal bleeding
due to a mass lesion is the most common symptom at
diagnosis.88 Moreover, systemic symptoms such as prolonged
fever and weight loss are commonly observed. However, once
the tumor develops beyond the original site, the disease rapidly
progresses; lymphoma-associated hemophagocytic syndrome is
normally noted in such cases and leads rapidly to a fatal
outcome.89

A diagnosis of this lymphoma should be considered,
particularly if patients present with likely symptoms in a
high-prevalence area.90 ENKTL is morphologically heteroge-
neous, with a cytological spectrum ranging from monomorphic
small/medium-sized to large-cell lymphomas, angioinvasive or
angiodestructive lymphoid infiltrate, and frequent evidence of
necrosis and apoptosis with a heavy admixture of inflammatory
cells.91

The detection of CD56 and EBER-1 in tumor cells is
important for a diagnosis of ENKTL because these molecules
are rarely observed in inflammatory cells within the lesions.87

An invariable association has been demonstrated between
ENKTL and EBV.88 ENKTL nasal type was reported to
associate strongly with EBV in Asian populations, but the
strength of this association in Caucasian populations is less
clear.88 However, more than 90% of reported cases were
positive for EBNA-1 and EBER-1 (Figure 4). The majority of
tumor cells also expressed LMP2. High levels of serum EBV-
DNA copy numbers were reported to associate with disease
progression and prognosis. In addition to EBV latency proteins,
lymphoma cells express other NK-cell markers, including CD2,
cytoplasmic CD3 and CD7.92,93 ENKL is also positive for
cytotoxic molecules such as TIA-1, granzyme B and perforin.94

The differentiation of NK cells from T-cell lymphoma can be
evaluated by the surface expression of CD3, CD5 and TCR on
lymphoma cells, as ENKL is negative for these markers.95

Aggressive NK-cell leukemia
Aggressive NK-cell leukemia (ANKL) is a rare malignant
disorder of mature NK cells characterized by an aggressive
clinical course and poor outcome. Commonly involved sites
are the peripheral blood, bone marrow, liver and spleen, but
involvement can also occur in other organs.96,97

The majority of ANKL cases are EBV-positive, and only 10%
of reported cases were EBV-negative. The immunophenotypic
findings are almost identical to those of ENKL, nasal type,
which has a leukemic phase.98 However, CD16 expression is
characteristic for ANKL, compared with ENKL.99 Furthermore,
surface CD3 negativity, as determined by flow cytometric or
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immunophenotypic analysis, and germline TCR gene config-
urations, as determined in TCR rearrangement studies, can
differentiate T-cell-type large granular lymphocytic leukemia or
leukemic infiltrations of other T-cell lymphomas from
ANKL.96 Recurrent chromosomal abnormalities such as a gain
of 1q and losses of 7p15.1–p22.3 and 17p13.1 are characteristic
in ANKL.100

T-cell LPDs in children
The current World Health Organization (WHO) classification
includes two major types of EBV-positive T-cell LPDs in
children: systemic EBV-positive T-cell LPD of childhood, and
hydroa vacciniforme-like lymphoma with a variable clinical
course. Systemic EBV-positive T-cell LPD of childhood is
extremely rare and has an aggressive clinical course. The
majority of these cases occur with an acute EBV infection.
The typical phenotype is CD2+, CD3+, CD8+ and TIA-1+.
CD56 is usually not expressed. In this disease, cytological atypia
of neoplastic cells is minimal; double staining for EBER1 and
CD3 or CD8 is useful for diagnosis.101–103

Infantile fulminant EBV-positive T-LPD, which was desig-
nated as systemic T-cell LPD of childhood in the 2008 WHO
classification, is characterized by rapid deterioration in infants
within a few days or weeks after a primary acute EBV infection
and is accompanied by hemophagocytic syndrome. Such
patients may have a high fever, skin rash and jaundice. Patients
also present with pulmonary infiltrate, hepatosplenomegaly,
pancytopenia, coagulopathy and abnormal liver function.104,105

The clinical course is characterized by rapid deterioration, with
the main causes of death being coagulopathy, multiple organ
failure and opportunistic infection. Bone marrow studies have
revealed infiltration by atypical T lymphocytes and rare B
immunoblasts, as well as mature histiocytes with hemophago-
cytosis. Of special interest is that in this disease, the presence of
EBV has been detected exclusively in T lymphoid cells, which
were often genetically confirmed to have undergone clonal
proliferation.105–107

Hydroa vacciniforme-like lymphoma occurs mainly in
Central and South America and Asia.108 There is strong
evidence for a pathogenic relationship between hydroa

Figure 4 Treatment strategies for inactivating EBV infection or EBV-associated oncogenic pathways. (1) Conventional chemotherapeutic
agents or radiation target DNA. (2) Different strategies to disrupt microRNAs can be offered. (3) EBV-specific cytotoxic T cells are used as
an immunoregulatory therapeutic approach. (4) Agents can target the lytic cycle of EBV. Agents targeting the (5) NF-kB pathway, (6),
PI3K/Akt pathway, (7) PKC pathway, (8) MAPK pathway, (9) Lyn or (10) Sky can be tried. The monoclonal antibody SGNE-35 targets
(11) CD30.
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vacciniforme-like lymphoma and ultraviolet light exposure.
Patients are often found to have necrotic vesiculopapules on
exposed areas, and the disease has a chronic clinical course
with worsening cutaneous symptoms and eventual systemic
dissemination.109 Histologically, this disease is usually charac-
terized by polymorphic lymphocyte infiltration of the dermis.
The cells are CD8+ and exhibit monoclonal TCR gene
rearrangement. There is also a strong association with EBV
infection.109,110

Chronic active EBV infection
Chronic active EBV infection (CAEBV) was originally related
to chronic or persistent EBV infection. On the basis of the
EBV-induced clonal expansion of different lymphocytes, the
origin of CAEBV is classified as B, T or NK cell. CAEBV, B-cell
type is very rare in comparison with the T-cell type.111

Patients with CAEBV present with fever, splenomegaly,
lymphadenopathy, hepatic dysfunction and pancytopenia,111

and have markedly elevated peripheral blood levels of EBV
DNA. This disease is rare with variable clinical severity and
often causes high morbidity and mortality. Histologically, the
lymph node pathology is variable and often similar to that of a
polymorphic PTLD with paracortical expansion and numerous
immunoblasts. Cells with plasmacytoid differentiation, plasma
cells and occasional Reed–Sternberg-like cells are often
observed. Variable numbers of the infiltrating cells are positive
for EBERs.111,112

Hypersensitivity to mosquito bites
Hypersensitivity to mosquito bites is a rare disease character-
ized by severe local skin reactions and general symptoms such
as high fever, liver dysfunction, high IgE levels and regional
lymphadenopathy after mosquito bites.113,114 NK-cell lympho-
cytosis is frequently observed in the peripheral blood. The
mean age of onset is 6.7 years, with no gender predominance.
hypersensitivity to mosquito bites is usually associated with
chronic EBV infection as well as NK-cell leukemia/
lymphoma.114 Mosquito bite-stimulated CD4+ T cells might
associate with the development of hypersensitivity to mosquito
bites and NK-cell oncogenesis by inducing EBV reactivation
and EBV-oncogene expression, respectively. Hypersensitivity to
mosquito bites patients without systemic symptoms may
eventually develop CAEBV.115 Spongiotic epidermis and a
polymorphous cellular infiltrate with angiocentricity through-
out the dermis may be observed with this disease.

EBV-positive HLH
EBV-positive HLH includes a broad spectrum of diseases
ranging from EBV-associated reactive, polyclonal LPD to
monoclonal diseases. The most typical clinical presentations
of HLH are fever, hepatosplenomegaly and cytopenia. Accord-
ing to the HLH-2004 guidelines, patients must fulfill five of
the following eight criteria: (i) fever; (ii) splenomegaly;
(iii) cytopenia affecting at least two of three lineages in the
peripheral blood; (iv) hypertriglyceridemia and/or hypofibri-
nogenemia; (v) hemophagocytosis in the bone marrow,

spleen or lymph nodes; (vi) low or absent NK-cell activity;
(vii) hyperferritinemia and (viii) high levels of sIL-2R.116 TCR
gamma and immunoglobulin heavy chain gene rearrangement
have no clinical significance in patients with HLH. However, a
high EBV-DNA load may be a risk factor for a poor
outcome.117

T-cell posttransplant lymphoproliferative disorder
(T-cell PTLD)
PTLDs are a heterogeneous group of LPDs that arise after solid
organ and other transplantations. According to the 2008 WHO
classification, PTLD can be subclassified as early lesions,
polymorphic PTLD, monomorphic B- or T-cell PTLD and
Hodgkin’s-type PTLD. T-PTLDs manifest as a variety of
aberrant T-cell proliferation disorders, and patients exhibit a
uniformly poor prognosis.

PTLDs are classically of B-cell origin; T-cell PTLD following
hematopoietic stem cell transplantation is exceedingly rare.
However, a recent study reported that 7–15% of PTLD were of
T-cell and NK-cell origin.118 More than 90% of all PTLD cases
have been linked to EBV. However, the rate of EBV association
is much higher among B-cell PTLDs (80% in late onset lesions,
100% in early onset lesions) than among non B-cell
tumors (37%). Therefore, some experts have suggested that
T lymphocytes do not express the EBV receptor CD21.
However, one-third of T-PTLD cases have been reported to
comprise aberrant T cells that are positive for CD21 and
EBV.119 Other viruses such as CMV, HTLV and HHV-6 were
also detectable and occurred as co-infections with EBV in some
patients. EBV viral load monitoring is a routinely used and
powerful tool for EBV detection and estimates the risk for
PTLD development. However, virus seropositivity might be
associated with immunosuppression rather than the initiating
cause in all cases of T-PTLD.

The clinical presentation is variable and depends on the
underlying pathologic condition, type, interval since transplant
and time of duration since transplant. Among transplanted
organs, the kidney is most frequently affected by both mono-
morphic T-PTLD and B-PTLD.20,119,120

TREATMENT OF EBV-POSITIVE T/NK-CELL LPD

In cases of localized T/NK-cell LPD, cytotoxic chemotherapy
and/or local radiotherapy are frequently used therapeutic
options. However, EBV-associated T/NK-cell LPD frequently
expresses a P-glycoprotein, leading to chemotherapy resistance
in the majority of cases. L-asparaginase and high-dose
cytarabine (Ara-C) are reportedly effective in patients with
resistant or relapsed disease.121

Although some patients may transiently respond to immu-
nosuppressive and cytotoxic chemotherapies, others especially
patients with advanced disease, may be unresponsive.
Therefore, autologous or allogeneic hematopoietic stem cell
transplantation seems a feasible and promising method for
curing relapsed or advanced-stage EBV-associated T/NK-cell
LPD. As EBV-specific T-cell-based and monoclonal antibodies
are being used to treat posttransplantation B-cell LPD, in which
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target EBV antigens such as the EBNAs and LMPs and the
B-cell antigen (CD20) are expressed, a similar approach
appears possible for T/NK-cell LPD.121

For several decades, the reduction or cessation of immune
suppression has been used as a first-line treatment for EBV and
PTLD. However, adoptive cellular immunotherapy has recently
been very successful in some circumstances and offers the
potential of overcoming cellular resistance to chemotherapy.
Antiviral drugs such as acyclovir and ganciclovir can be used as
an adjunctive therapy.122,123 However, the current treatment
for most EBV-associated T/NK-cell LPD is unsatisfactory, and
therapies involving novel mechanisms that target important
signaling pathways are critically required.

CONCLUSIONS

EBV-associated T/NK-cell LPDs comprise a heterogeneous
group of diseases that occur consequent to defects in the
cellular immune system. The underlying pathogenesis is
complex and includes genetic abnormalities in T or NK cells.
The precise role played by EBV in lymphomagenesis remains
unclear. LPDs derived from T cells and NK cells often exhibit
overlapping clinical symptoms as well as histologic and
immunophenotypic features because both types of lymphoid
cells arise from a common developmental precursor. A better
understanding of the pathogenesis and its relationship with
clinical manifestations is necessary for developing strategies to
control the ectopic EBV infections that underlie these unique
syndromes.
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