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Abstract

The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the
awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad
landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB
receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of
cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1
(β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-
factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay
between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation
and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors
Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have
discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which
share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and
mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional
response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with
ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions,
hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings
linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of
such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical
implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins
and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/
β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic
approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells
and concurrently sensitizes to high-efficacy combined therapeutics.
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Background
G protein-coupled receptors (GPCR) play key roles in
different cellular processes. As such, aberrant activation
of GPCR can alter the signaling landscape and cellular
fate in multiple pathophysiologic contexts including can-
cer. Consequently, they represent among the membrane
receptors the major class of druggable targets [1–3]. The
research into GPCR signaling and cancer has been fo-
cused to define GPCR protein dynamics through the elu-
cidation of the conformational rearrangements of the
GPCR upon receptor stimulation including the status of
the intracellular domain and its interacting G-proteins,
G-protein coupled receptors kinases (GRKs) and the two
β-arrestin isoforms, β-arrestin1 (β-arr1) and β-arrestin2
(β-arr2). Defining the mechanistic dynamics related to
GPCR signaling in tumor and microenvironmental con-
texts is an endeavor for the rational design of high-
efficacy cancer therapeutics [4]. Among the GPCR, the
endothelin-1 (ET-1) receptors (ET-1R), ETA receptor
(ETAR) and ETB receptor (ETBR), are pervasively
expressed in many human malignances and their activa-
tion confers to tumor cells peculiar malignant traits, or-
chestrating the signaling network involved in cell
proliferation, cell invasion and migration, drug resist-
ance, angiogenesis and lymphangiogenesis, and metasta-
tization [5, 6]. The binding of 21-amino acid small
vasoactive peptides known as endothelins (ETs) activates
ET-1R. The ETs group comprises three peptide isoforms
endothelin-1 (ET-1), endothelin-2 (ET-2) and
endothelin-3 (ET-3) [7–9]. ETAR displays more affinity
for ET-1 and ET-2, compared to ET-3, while ETBR has
an equal affinity for the three ETs [7–12]. ET-1 is the
predominantly expressed isoform and represents also
the most common circulating form of ETs [10]. ET-1
signaling initiation due to the engagement of ET-1R by
ET-1 induces ET-1R conformational changes guaranty-
ing the ET-1R coupling to their effectors, as G proteins,
GRKs, and β-arr1 or β-arr2. In particular, GPCR signal-
ing activation requires several steps that include G-
protein activation and GRKs-determined GPCR phos-
phorylation of serine residues, which leads to β-arr1 or
β-arr2 recruitment; thereby preventing G-protein coup-
ling and obstructing G-protein signaling [13–18]. Beside
the β-arr1 and 2 canonical roles in directing GPCR
desensitization, internalization and G-protein signaling
termination, increasing evidence highlights an alternative
signaling machinery in which β-arr isoforms act as signal
transducers that convert their established protein-
protein interaction into signaling pattern independent
from G-protein activities. Both β-arr isoforms guide a
complex signaling exchange that leads to unique cellular
responses providing a selective advantage to tumor cells
[15, 17, 19–35]. In spite of the close β-arr structural
similarity and the capability to bind a GPCR in a similar

way, the two β-arr isoforms do not exhibit entirely over-
lapping functions in regulating GPCR signaling, due to
their different subcellular localization [19, 36–42]. While
β-arr1 is localized in both nuclear and cytoplasmic com-
partment, β-arr2 is excluded from the nucleus, carrying
a nuclear export signal (NES) [43]. The diverse β-arr
localization profiles affect their interaction pattern, that
for β-arr1 includes many transcription factors, co-factors
and epigenetic regulators [26–35]. In this landscape,
growing evidence discloses how β-arr1 connects the
ETAR signaling with other pathways fostering ETAR-
intertwined signalings critically involved in the meta-
static progression and drug response in many tumor
types, including ovarian cancer [20–38]. β-arr1, acting as
an adaptor for different signaling molecules distributed
in the cytoplasm and in the nucleus, may delineate the
fine-tuned duration and localization of the ET-1-guided
pathways, driving the formation of multi-protein com-
plex, that prolongs the ET-1 signaling pattern [5, 35, 44].
Understanding the spatio-temporal control of tumor cell
behavior requires information on how signaling com-
plexity is transduced, including the knowledge of the
cross-talk with other oncogenic signaling pathways. In-
deed, herein we provide an emerging picture in which
the paralogous transcriptional cofactor Yes-associated
protein (YAP) and transcriptional coactivator with PDZ-
binding motif (TAZ), the main downstream effectors of
the Hippo pathway, serve as a hub of GPCR signaling
orchestrating different oncogenic functions. In particu-
lar, we focus on the YAP/TAZ nexus through which ET-
1/β-arr1 fosters chemotherapy escape and metastatiza-
tion. Finally, we outline the potential anti-cancer therap-
ies targeting the ET-1R/YAP/TAZ network and how this
therapeutic approach deserves clinical consideration,
emphasizing the urgent need to efficaciously targeting
ET-1R/β-arr1-engaged signaling pathways related to sev-
eral hallmarks of cancer. Such analysis may hold the ex-
citing potential to unveil new vulnerabilities facilitating
the design of next generation therapies able to dismantle
the ET-1R/YAP-generated oncogenic network.

The ET-1-driven signaling network in tumor cells
and tumor‐microenvironment
The ET-1/ET-1R axis hyper-activation endows cells with
malignant potential conferring upon them a landscape
of features associated with changes in cell fate and ac-
quisition of aggressive traits. ET-1, and other compo-
nents of the ET-1 axis, is highly expressed in many
human malignancies and their expression is associated
with tumoral advanced stages [5, 6]. Clinically relevant,
in many tumor contexts [5, 33] high levels of ET-1R are
associated with a worst prognosis, proving the unfavor-
able prognostic role of ET-1R. In this framework, it is
known that ET-1 axis acts as a survival and pro-
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proliferative pathway. In particular, in different tumors
ET-1, alone or in combination with other tumor-
associated growth factors, delivers signals from the cell
surface to the nucleus inducing pro-survival transcrip-
tional programs, protecting tumor cells from anti-cancer
therapy-induced apoptosis [5, 33, 34, 45–50]. Here, we
aim to define how the signaling transduced by ET-1/ET-
1R axis stands at the centerpiece of a signaling hub
shared by tumor and stromal cells, expanding aspects
that are critical for tumor growth and metastatic pro-
gression. Such feature may be attributable to the ET-1
axis ability to intercept other signaling pathways, realiz-
ing an intricate network that modulates multiple steps
related to cancer metastatization [5, 51–53]. Down-
stream of ET-1R, β-arr1 has now become a reference
node able to engage multiple signal transducers from
different cell compartments and with various functions,
in turn, directing the integration of ET-1R signaling with
other pathways. Among the ET-1R/β-arr1-directed func-
tions rank the cell attitude to switch from an epithelial
to a mesenchymal phenotype (EMT), that fuels tumor
cell migration, invasion and therapy resistance [33, 34,
45, 51–53]. In the array of the ET-1R/β-arr1-integrated
signaling, the RTK-activated signaling pathways have
been well characterized. Indeed, it has been reported
that ET-1/ET1R axis, through the intermediation of β-
arr1 that recruits SRC, leads to the transactivation of
RTK family members, as the EGFR [20, 21, 41] and the
vascular endothelial growth factor-3 (VEGFR-3) [54]. In
addition, β-arr1 guides the interplay with different medi-
ators of cytoskeleton dynamic, directing the convergence
of ET-1R axis with cytoskeleton remodeling signalings.
These integrated pathways produce morphological
changes ascribable to the formation and activation of
Rho-GTPase-mediated actin-rich invasive protrusions
named invadopodia, able to confer an invasive behavior
to tumor cells [22–25, 55].
As scaffolding hub, β-arr1 may propagate ET-1/ET-1R

signaling in the nucleus, controlling the activity of many
transcription factors, as β-catenin [26, 33, 34], or nuclear
factor κB (NF-κB) [27]. Similarly, it has been demon-
strated that β-arr1, anchoring the hypoxia-inducible
factor-1α (HIF-1α), sustains its pro-angiogenic transcrip-
tional schedule [28], portraying the multilayered β-arr1
ability to regulate ET-1-determined transcriptional net-
work, involved in malignant cell behavior.
In addition, mounting evidence suggests that tumor

cell behavior is regulated by the dialogue among tumor
cells and tumor microenvironmental (TME) elements,
and is fueled by the constant interplay between signaling
pathways concurrently operating within the tumor. Such
signaling networking is becoming a fundamental con-
tributory factor in empowering tumor cells with several
hallmarks of cancer. In this perspective, increasing

studies shed light on the ability of the ET-1 axis to cap-
ture other signaling routes dynamically transducing
short communication between tumor cells and neigh-
boring stromal cells [5]. In this regard, recent evidence
highlights that the cooperation between ET-1/ETBR and
VEGF/VEGFR-3 axes affects not only the tumor cells
but also the TME. Tumor cells, such as ovarian cancer
cells and melanoma cells, release pro-angiogenic factors
including ET-1 and VEGF that induce a pro-angiogenic
phenotype in endothelial cells (EC) [56–59]. In an auto-
crine/paracrine fashion, ET-1 via ETBR may mediate
both early and late angiogenic events. These include
blood and lymphatic EC proliferation, invasion and mi-
gration and morphogenic changes resembling capillary
like-structure tube formation which are necessary for
the sprouting of new vessels [56–59]. Additionally, ET-1
signaling may affect both blood and lymphatic EC activ-
ities by cooperating with hypoxia stimulus [57, 58]. In-
deed, ET-1, similarly to hypoxia and to a greater extent
in hypoxic conditions, acts as an angiogenic mediator in-
ducing the hypoxia-inducible factor-1α (HIF-1α)
stabilization. The consequent upregulation of the VEGF-
C, VEGF-A and VEGFR-3 favors EC growth and differ-
entiation thereby contributing to angiogenesis and lym-
phangiogenesis [57–59]. More relevant, it has been
demonstrated that ET-1R blockade by using macitentan,
a dual ETAR/ETBR receptor antagonist, beside to inter-
fere with ETAR-driven tumor growth and progression, is
able to impair ETBR-mediated vascularization of ovarian
cancer xenografts. In particular, macitentan, by inducing
the apoptosis of tumor-associated EC, significantly re-
duces vascular formation in vivo [33]. On the other side,
it is increasingly clear that ET-1 released from blood and
lymphatic EC modulates tumor cell behavior. Indeed,
tumor cells exposed to EC conditioned media exhibited
an enhanced cell motility and plasticity [59]. Altogether
these findings witness the existence of a bilateral inter-
play between tumor cells and EC in which ET-1 repre-
sents one of the soluble components that mediates such
communication, favoring the establishment of a permis-
sive environment for tumor cell growth and metastatic
progression.
An increasing body of evidences witnesses that the ET-1

system takes part in the reprogramming of the microenvi-
ronmental cell behavior affecting cancer-associated fibro-
blasts (CAF) [60–62] and different subtypes of immune
effectors, including competent dendritic cells (DC) [63],
tumor-associated macrophages (TAM) [63–65], and
tumor-infiltrating lymphocytes (TIL) [66], regulating their
maturation and activity [60–65] or interfering with their
recruitment to the tumor [66].
For instance, it has been demonstrated that ET-1 re-

leased by tumor cells can affect the behavior of CAF that
have been isolated from tissues adjacent to different
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human tumors, such as colon cancer [60], ovarian can-
cer [61] and breast cancer [62, 63]. In particular, in colo-
rectal cancer it has been shown that ET-1 produced by
tumor cells can act on CAF expressing both ETAR and
ETBR, inducing their growth, migration, contraction and
production of proteins that modify the architecture of
the extracellular matrix (ECM) [60]. In addition, it has
been observed that the co-culture of fibroblasts with
tumor cells derived from the ascitic fluid of ovarian can-
cer patients affects fibroblast behavior sustaining their
proliferation. Pre-treatment with ETAR and ETBR recep-
tors antagonists interferes with fibroblast growth, sug-
gesting that such effect is the direct consequence of the
inhibition of the paracrine release of ET-1 by tumor cells
[61]. Similarly, ET-1 secreted by CAF may influence
tumor cell phenotype, as observed in oral cancer, in
which CAF-released ET-1 affects the invasive behavior
of tumor cells via a paracrine signaling [67].
Interestingly, it has been reported that ET-1 released

by ovarian cancer cells may affect the recruitment of
TIL to the tumor via ETBR, reducing the expression of
the endothelial intercellular adhesion molecule 1
(ICAM1), therefore interfering with the TIL homing to
the tumor [68]. These observations reveal that ET-1R,
mediating the double regulation of the tumor and its
surrounding TME, favor tumor development in an ac-
commodating tumor milieu, emphasizing how ET-1
serves as a common communication route between
tumor cells and surrounding stromal cells.

The GPCR/YAP signaling in cancer
GPCR and their related ligands are emerging as critical
drivers of the activity of YAP and TAZ, the two main
determinants of aggressive traits in tumor cells [69–71],
through the downstream G-proteins [71]. The first evi-
dence of GPCR-dependent YAP/TAZ modulation re-
ports that lysophosphatidic acid (LPA) and sphingosine-
1-phosphate (SP1) receptors through the associated
Gα12/13 and Gαq/11 may positively regulate YAP/TAZ ac-
tivity in different human malignancies [69, 72, 73]
promoting ovarian cancer cell migration [69] or hepato-
cellular carcinoma cell proliferation [73]. Starting from
these breakthroughs, several GPCR-associated pathways
have been shown to regulate YAP/TAZ functions, in-
cluding G protein-coupled estrogen receptor (GPER)
[74] and the protease-activated receptors (PARs) [75,
76]. In the landscape of GPCR bound by secretory pro-
teins, also the angiotensin II receptor AT1 is involved in
YAP activation. Indeed, AT1 blockade attenuates tumor
cell growth by inhibiting YAP oncogenic activity [77,
78]. The prostaglandin E2 receptor (EP2), induces YAP
expression and transcriptional activity via the associated
Gαq/11 promoting cell proliferation in different tumor
models [79, 80]. Among the chemokine receptors, the

CXCR4/Gα12/13 signaling pathway is involved in YAP-
mediated EMT [81]. Moreover, in prostate cancer it has
been discovered the free fatty acid receptor 1 (FFAR-1)-
dependent activation of YAP pathway [82]. Of relevance,
the Frizzled receptor upon Wnt binding, activates a
Gα12/13-driven alternative signaling pathway that leads
to LATS1/2 kinases repression and YAP/TAZ activation
[83] (Table 1). Despite the emerging importance of the
cross-talk between the GPCR and YAP/TAZ signaling
pathways in the progression of many human malignan-
cies, the exact mechanisms driving its activation in dif-
ferent contexts remain to be fully resolved.

Notably, growing evidence for YAP and TAZ different
functions that are associated with diverging transcrip-
tional programs is emerging [90]. For example, in lung
cancer cells YAP is mainly responsible of the transcrip-
tion of genes involved in tumor cell proliferation,
whereas TAZ preferentially modulates genes implicated
in ECM organization and cell migration [90], suggesting
that YAP and TAZ may direct complementary onco-
genic activities.

The ET-1/YAP network in cancer progression and
drug resistance
ET-1/ET-1R axis ranks in the large array of GPCR-
generated pathways shown to modulate YAP/TAZ activ-
ity. In this regard, it has been reported that ET-1 may in-
duce the expression of well-recognized direct YAP/TAZ
common target genes, the connective tissue growth fac-
tor (CTGF) and cysteine-rich protein 61 (CYR61) [91–
94]. In particular, it has been demonstrated that ET-1 in
primary osteoblasts may induce CTGF and CYR61 tran-
scription promoting osteoblast proliferation and new
bone formation [91]. Interestingly, in mouse cardiomyo-
cytes, used as study models for cardiovascular diseases,
it has been described that CTGF represents an effector
of the ET-1-induced fibrosis [92, 93], and in human lung
fibroblasts CTGF is required for ET-1-induced alpha-
smooth muscle actin (α-SMA) expression [94]. These
findings suggest that ET-1R may represent an upstream
regulatory component of the YAP/TAZ-mediated tran-
scription activation. Consistent with these observations,
in colon cancer cells highly expressing ETAR, ET-1/
ETAR-driven YAP/TAZ nuclear accumulation and gene
transcription are evidenced. Mechanistically, activated
ETAR couples the Gαq/11 and inhibits LATS1/2 kinases
activity, resulting in YAP/TAZ dephosphorylation and
activation that favors the tumor growth. These outcomes
are impaired by ETAR and YAP/TAZ depletions [87].
Interestingly, in uveal melanoma cells ETBR activation
by ET-3, via a G-protein-transduced signaling, promotes
YAP-associated gene transcription [95]. These findings
prove the existence of a regulatory network connecting

Tocci et al. Journal of Experimental & Clinical Cancer Research           (2021) 40:27 Page 4 of 12



ET-1 system to the YAP/TAZ-driven gene transcription
through its association with the DNA-binding TEAD1-4
family members [96]. Recent evidence expands the ET-
1R signal transduction repertoire disclosing a sophisti-
cated signaling mediated by β-arr1, in a G-protein inde-
pendent manner. Indeed, the physical and functional
interaction between β-arr1 and YAP downstream of
ETAR signaling, leads to YAP nuclear accumulation
through an alternative route that is not mediated by G-
protein. In particular, it has been described how β-arr1
bridges ET-1/ETAR axis to YAP signaling in high-grade
serous ovarian cancer (HG-SOC) cells and in breast can-
cer cell lines harboring TP53 mutations, fostering the
YAP/TAZ-dependent transcriptional program that

confers upon tumor cells an invasive behavior [88, 97].
In the nuclear compartment β-arr1 enrolls another
oncogenic player, mutp53 protein, building up a tran-
scriptional competent complex consisting of β-arr1/
YAP/mutp53/TEAD that induces the aberrant expres-
sion of target genes, such as CTGF and CYR61. Notably,
in breast cancer cells β-arr1 downstream of ET-1 may
also coordinate the interaction of YAP/mutp53 with
other active transcriptional factors, such as NFY,
regulating its transcriptional repertoire, thus promoting
cell proliferation [88, 97]. These evidence indicate that
β-arr1-dependent signaling can engender highly charac-
teristic transcriptomic phenotypes and generate long-
lasting effects through the formation of multiprotein

Table 1 The regulation of YAP/TAZ activity by GPCR-associated signaling in human malignancies

GPCRs Coupling
Protein

Cancer Type Drugs References

LPA receptors Gα12/13
Gαq/11

Ovarian cancer Phosphatase-resistant LPA analogues
Monoclonal antibodies for LPA

[68, 84–86]

S1P receptors Gα12/13 Ovarian cancer, Hepatocellular
carcinoma

Monoclonal antibodies for S1P [69, 72, 85,
86]

G protein-coupled estrogen re-
ceptor (GPER)

Gαq/11 Breast cancer GPER inhibitors (agonist analogous, G15) [74]

Protease-activated receptors
(PARs)

Gα12/13
Gαq/11

Breast cancer RhoA GTPase inhibitors (C3 transferase) [75, 76]

Melanoma

Colon cancer

Lung cancer

Pancreatic cancer

Prostate cancer

Squamous cell carcinoma of the
head and neck

Angiotensin II Receptor (AT1) Gαq/11 Prostate cancer Angiotensin receptor blockers (losartan) [77, 78]

Cholangiocarcinoma

Prostaglandin E2 receptor (EP2) Gαq/11 Colon cancer Prostaglandin synthetase blockers
(indomethacin)

[79, 80]

Hepatocellular carcinoma

Head and neck cancer

Non-small cell lung cancer

Chemochine (C-X-C motif)
receptor 4 (CXCR4)

Gα12/13
Gαq/11

Non-small cell lung cancer CXCR4 antagonists (WZ811) [81]

Breast cancer

Oral squamous carcinoma

Chronic Myelogenous leukemia

Free Fatty Acid receptor 1
(FFAR1)

Gαq/11 Prostate cancer Docosahexaenoic acid (DHA) [82]

Wnt receptor (Frizzled, FRD) Gα12/13 Colorectal cancer RhoA GTPase inhibitors (C3 transferase) [83]

Prostate cancer

Hepatocellular carcinoma

Endothelin A receptor (ETAR) Gαq/11 Colon cancer Selective ETAR antagonists (BQ123) [87]

Endothelin A receptor (ETAR) β-arr1 Ovarian cancer Dual ET-1R antagonists (macitentan) [88, 89]

Breast cancer
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transcription complexes, composed by β-arr1/YAP/NFY/
mutp53 in breast cancer cells, and by β-arr1/YAP/
TEAD/mutp53 in HG-SOC cells. It is increasingly clear
that β-arr1/YAP/mutp53 complex represents the initial
scaffold that integrates and deciphers different stimuli
into multiple transcriptional programs, on which tran-
scriptional regulatory networks could be built to dictate
different cell fate and behaviors. Thus, the interaction
with different transcription factors, tethering mutp53 to
the DNA, can expand mutp53 agenda to orchestrate
specific gene expression regulating tumor growth and
progression. Of relevance, the β-arr1/YAP/mutp53/
TEAD target gene pool includes EDN1, indeed, the de-
pletion of all the players of such active transcriptional
complex, including mutp53, strongly reduces the EDN1
gene expression, as well as ET-1 promoter activity [88].
The enhanced expression of EDN1 can promote a self-
amplifying vicious cycle potentiating ET-1 axis-
dependent adverse outcomes. This observation is
supported by previous studies reporting that primary
ovarian cancer cells release ET-1 in their conditioned
media to a concentration that is within the biologically
effective range for this peptide, to ensure the ET-1
binding to the ET-1R. These findings imply that ET-1
sustains tumor growth and progression through an auto-
crine feed-forward loop that may represent a magnifying
persistent mechanism in ovarian cancer cells [98, 99].
Moreover, these findings are in line with recent evi-

dences reporting the existence of the cross-talk between
gain of function mutp53 proteins and the Hippo signal-
ing pathway [100]. In particular, it has been described
that YAP and mutp53 share a common transcriptional
program relevant for sustaining cell proliferation in dif-
ferent human malignancies [93, 101–104]. Therefore,
downstream of ETAR, β-arr1/YAP/mutp53 complex may
be employed to turn on a variety of transcriptional pat-
terns. Clinically relevant, HG-SOC patients carrying
TP53 mutations and simultaneously expressing high
levels of ETAR, β-arr1 and YAP, face a poor prognosis
compared to those patients lacking this molecular signa-
ture. These results suggest that such adverse clinical out-
comes may be the direct consequence of the integration
between ETAR/β-arr1 and YAP/mutp53 signaling path-
ways. Interestingly, downstream of the ET-1 signaling
YAP/TAZ has just begun to be recognized as a modula-
tor of the response to anti-cancer therapies. In this re-
gard, it has been described that cisplatinum-resistant
ovarian cancer cells acquire platinum resistance through
the activation of an adaptive ETAR/β-arr1/YAP/TAZ sig-
naling cascade that sustains cell survival, cell plasticity,
and lowers cisplatinum sensitivity. Mechanistically,
downstream of ETAR, β-arr1, instructing the cooperation
between the ET-1 axis and RhoA/actin cytoskeleton sig-
naling, guides YAP/TAZ nuclear compartmentalization,

favoring a YAP/TAZ/TEAD-committed transcriptional
reprogramming that consolidates the treatment evasion
[89]. Of clinical interest, the analysis of the integrated
ETAR (EDNRA) and YAP (YAP1) gene expression in
platinum responder and non-responder ovarian cancer
patients, showed that these genes are more expressed in
the non-responder than responder patients, suggesting
the potential predictive value of this signature [104]. Re-
markably, in uveal melanoma cells it has been demon-
strated that also the ETBR acts as an upstream activator
of YAP signaling, representing a therapeutic escape
pathway from MEK inhibitors, one of the most explored
targeted therapies for uveal melanoma [94].
The control of tumor cell behavior is regulated by a

complex network of autonomous and non-cell autono-
mous signals that converge to establish specific tran-
scriptional programs. Among these signals, YAP and
TAZ are able to orchestrate tumor-stroma interactions,
instructing specific transcriptional responses. Thus,
YAP/TAZ act within tumor cells promoting responses
in neighboring stroma, composed of ECM with mechan-
ical features and other cell types, including CAF, endo-
thelial and immune cells [105, 106]. In turn, the
activation of YAP/TAZ in different stromal cells creates
a corrupted TME that mutually dialogues with tumor
cells regulating tumor proliferation, progression and
drug response [71]. In particular, it has been recently re-
ported that YAP/TAZ act as immune regulators between
immune cells and tumor cells, weakening the tumor im-
mune response, and opening new avenues to regulate
tumor immunosuppression [71]. Among the multifa-
ceted roles in the TME, YAP/TAZ not only recruit
TAM to the tumor and its surrounding tissue, but regu-
late its polarization [107]. Tumor cells employ many
strategies to evade immune surveillance [108–112]. In
particular, it has been demonstrated that YAP/TAZ nu-
clear translocation in human melanoma [109], breast
[110, 111] and lung cancer [111] cells is associated to
the transcription of PDL-1 gene that, in turn, suppresses
the T-cell-mediated killing of tumor cells.
In this complex scenario, mutual adaptations between

tumor cells and their stroma are regulated by the prop-
erties of the ECM that affects the cell fate through YAP/
TAZ [112]. Hence, YAP/TAZ respond to the physical
cues of the ECM as a mechanotransducer decoding a
range of inputs not only in tumor cells but also in the
TME elements [71], including CAF that promote the in-
duction of ECM stiffening [113–116]. These studies il-
lustrate that tumor cells may employ ECM to deliver
mechanosignals that influence YAP/TAZ status in stro-
mal elements and viceversa through a persistent circuit,
emphasizing how intertwined and sophisticated are the
routes that promote YAP/TAZ activation. The ability of
soluble factors, as ET-1, to activate YAP could be a
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direct effect or the indirect result of ECM remodeling. It
is renowned that YAP/TAZ can act as sensors of a cell’s
physical environment that translates mechanical inputs
into gene expression. In this regard, ET-1R is implicated
in YAP/TAZ regulation through RhoA GTPases, crucial
regulators of the assembly dynamics and functions of
the actin cytoskeleton [22–25, 89]. Moreover, recent evi-
dence suggests that GPCR can sense mechanical cues, as
the pressure, and participate in mechanical force regula-
tion of YAP/TAZ activation [117]. These findings allow
us to hypothesize that ET-1R may also initiate a
mechanosignals flow that via ECM guides YAP/TAZ ac-
tivation in both tumoral and stromal compartments.
Better defining of the GPCR regulation in both tumor
and stromal cells, through the cross-talk with YAP and
TAZ that orchestrate the bi-directional tumor-stromal
cell interactions, might improve the characterization of
targetable vulnerabilities. Although, currently only few
data are available to document the adverse consequences
generated by the integration between the ET-1R axis
and the YAP and TAZ signaling in the tumor ecosystem

(Fig. 1), the preclinical findings [87–89, 95, 97] raise the
possibility that ET-1R blockade could be effective against
ET-1R/YAP/TAZ-driven tumors, ameliorating the out-
comes of the patients.

Targeting GPCR/YAP signaling axis for anti‐cancer
therapy
Given that GPCR and YAP/TAZ signaling are frequently
dysregulated in cancers and considering the discovered
partnership between these pathways in cancer progres-
sion and therapy resistance, the repurposing of currently
available GPCR-based drugs may embody a promising
anti-cancer therapeutic strategy blunting YAP/TAZ-
driven activity, a goal still far from being achieved. In
this scenario, many therapeutic approaches have been
developed to interfere with the GPCR/YAP/TAZ signal-
ing network. A potential therapeutic route is represented
by the use of drugs able to target proteins involved in
the transduction of the GPCR signaling. For instance, it
has been observed that the antagonization or depletion

Fig. 1 Schematic model illustrating the cross-talk between the ET-1R axis and the YAP pathway. The ET-1R/β-arr1-generated signaling network
instructs highly specific transcriptional programs through the binding of specific transcription factors (TF) as TEAD, NFY, and HIF-1α, that impact
on the behaviour of cancer cells, promoting the amplification of an ET-1 autocrine vicious circuit, critically involved in tumor cell proliferation,
survival, cell invasion and migration, epithelial-to-mesenchymal transition (EMT) and chemoresistance. The autocrine/paracrine release of ET-1 may
in parallel impact on tumor microenvironment (TME) elements embedded in the extracellular matrix (ECM), affecting their features. ET-1 activating
the ETBR expressed by endothelial cells (EC) and lymphatic endothelial cells (LEC) promotes angiogenesis and lymphangiogenesis. Moreover, ET-
1R/YAP may sustain the growth, migration and contraction of cancer-associated fibroblasts (CAF), and may favour the maturation and activity of
tumor-associated macrophages (TAM), sustaining the production of inflammatory cytokines crucial for tumor metastatization. In addition, ET-1 via
ETBR may interfere with the recruitment of the tumor-infiltrating lymphocytes (TIL) to the tumor. Moreover, ET-1 sustains the production of
proteins that modify the architecture of the ECM. These knowledge render the ET-1R receptors suitable targets for therapeutic interventions
based on the use of dual ET-1R antagonists, as macitentan, able to simultaneously interfere with the ET-1R/β-arr1-induced signaling network and
YAP in tumor cells and TME elements. Part of the figure is drawn using pictures from Servier Medical Art (https://smart.servier.com), licensed
under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0)
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of Gα12/13- or Gαq/11-mediated signaling by using
phosphatase-resistant LPA analogues or antibodies spe-
cific for LPA or SP1 receptors may interfere with YAP/
TAZ activation [85, 86]. Recently, it has been reported
that a cyclic depsipeptide, FR900359, targeting Gαq/11,
interferes with YAP nuclear functions stimulating its in-
hibitory phosphorylation [118, 119]. An alternative thera-
peutic solution to hinder YAP/TAZ may be represented by
the activation of another effector of GPCR signaling, the
protein kinase A. Mechanistically, the enhancement of cyc-
lic AMP (cAMP) levels, by using the cAMP activator for-
skolin, induces PKA activation and LATS kinases functions,
inhibiting YAP/TAZ activity [86]. Rho GTPases are now
recognized as critical players of GPCR signaling-dependent
YAP/TAZ pathway regulation, and statins, known inhibi-
tors of HMG-CoA reductase, inactivating Rho GTPases,
may indirectly interfere with YAP/TAZ nuclear accumula-
tion [86, 120, 121]. In this review, we have highlighted the
emerging roles of YAP/TAZ as critical effectors of ET-1/
ET-1R signaling shared by tumor and stromal cells. In par-
ticular, the signaling cross-talk between ETAR/β-arr1 axis
and the YAP/TAZ pathway generates a YAP/TAZ-
dependent highly specific transcriptional program that sus-
tains the invasive behavior and the drug tolerant state of
OC cells [88, 89]. The identification of such YAP/TAZ-acti-
vating signaling suggests that the targeting of ET-1R/β-
arr1-associated signaling may represent an attractive thera-
peutic option able to inhibit YAP/TAZ activation. Promis-
ing studies in different preclinical tumor models featured
the benefit of the dual ETAR/ETBR antagonists. Among
these, macitentan, FDA approved for the pulmonary arterial
hypertension (PAH), is able to engender chemosensitivity
and responsiveness to target agents in different preclinical
settings [5, 122–129]. In patient-derived (PD) HG-SOC
cells, harboring hot spot TP53 missense mutations and in
PD xenografts, macitentan, preventing the β-arr1-
orchestrated signaling network, hampers YAP/TAZ
cytoplasmic-nuclear shuttling, disrupts YAP/mutp53 tran-
scriptional activity, inhibits metastatic spread and re-
sensitizes chemoresistant HG-SOC cells to platinum-based
therapy [88, 89]. Of note such effects are due to macitentan
ability to dismantle YAP and mutp53 oncogenic network
[88, 89] (Table 1). Considering that TP53 is frequently mu-
tated in many human malignancies, the use of dual ET-1R
antagonists holds the potential for the treatment of TP53
mutant cancer patients.
Taking into account that YAP and TAZ can orches-

trate non overlapping transcriptional programs regulat-
ing cellular outcomes [90], future investigations are
needed to uncover the different activities of YAP and
TAZ downstream of GPCR, as ET-1R, including the
oncogenic network with mutp53. Together these find-
ings suggest that breaking this oncogenic cross-talk
driven by ET-1/ET-1R axis might be exploited in

rational and tolerable combination treatment strategies
in the clinical setting.

Conclusions
An intriguing scenario depicts the cross-talk between
ET-1 signaling and YAP/TAZ that influences tumor cell
behavior and signaling interactions with microenviron-
mental neighboring cells controlling fine-tuned mutual
regulation of cell fate decisions. The ability of YAP/TAZ
to directly control the transcription of ET-1R ligand,
contributes to understand how the β-arr1-mediated sig-
nals control the complex spatio-temporal regulation of
tumor cell plasticity. Although how ET-1R/β-arr1 and
YAP/TAZ signaling are integrated within different con-
texts is still not well-defined, we can envision that this
interplay occurs between distinct cell types, as stromal
and epithelial cells embedded in the ECM, adding com-
plexity to the emerging model (Fig. 1). Taking into con-
sideration that most of the results obtained are not in
living tissues, new approaches as in situ single-cell RNA
sequencing will be critical to further dissect the interplay
of ET-1/YAP/TAZ in context-dependent tumor. Stromal
cells, immune cells and the ECM act in concert to estab-
lish a niche that facilitates tumor cell plasticity. There-
fore, to examine the influence of TME on tumor cell
fate, novel 3D models, as organoids co-cultured with
TME elements, may provide a unique platform to study
the contribution of non-epithelial components to tumor
cell behavior, with the potential to value therapy re-
sponse [130, 131]. Finally, the discovery of YAP/TAZ as
central hub of integrated signaling networks intercon-
nected within the TME suggests that the identification
of its drivers may lead to the discovery of new thera-
peutic targets [71]. To date there are few active clinical
trials that evaluate drug repurposing able to inhibit
YAP/TAZ activity. This prospectively supports that ET-
1R-directed therapeutic intervention can be an exciting
challenge to disable YAP/TAZ-driven oncogenic tran-
scription; thereby preventing metastasis formation and
acquisition of drug resistance. Consequently, ET-1R tar-
geting by the dual ET-1R antagonists might have imme-
diate therapeutic implications blunting YAP/mutp53
oncogenic activities in diverse human cancers.
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