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High frequency oscillations (HFOs) are very brief events that are a well-established biomarker of the epileptogenic zone (EZ) but

are rare and comprise only a tiny fraction of the total recorded EEG. We hypothesize that the interictal high frequency ‘back-

ground’ data, which has received little attention but represents the majority of the EEG record, also may contain additional, novel

information for identifying the EZ. We analysed intracranial EEG (30–500 Hz frequency range) acquired from 24 patients who

underwent resective surgery. We computed 38 quantitative features based on all usable, interictal data (63–307 h per subject),

excluding all detected HFOs. We assessed association between each feature and the seizure onset zone (SOZ) and resected volume

(RV) using logistic regression. A pathology score per channel was also created via principle component analysis and logistic regres-

sion, using hold-out-one-patient cross-validation to avoid in-sample training. Association of the pathology score with the SOZ and

RV was quantified using an asymmetry measure. Many features were associated with the SOZ: 23/38 features had odds ratios

>1.3 or <0.7 and 17/38 had odds ratios different than zero with high significance (P< 0.001/39, logistic regression with

Bonferroni Correction). The pathology score, the rate of HFOs, and their channel-wise product were each strongly associated with

the SOZ [median asymmetry �0.44, good surgery outcome patients; median asymmetry �0.40, patients with other outcomes;

95% confidence interval (CI) > 0.27 in both cases]. The pathology score and the channel-wise product also had higher asymmetry

with respect to the SOZ than the HFO rate alone (median difference in asymmetry �0.18, 95% CI >0.05). These results support

that the high frequency background data contains useful information for determining the EZ, distinct and complementary to infor-

mation from detected HFOs. The concordance between the high frequency activity pathology score and the rate of HFOs appears

to be a better biomarker of epileptic tissue than either measure alone.
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Introduction
Epilepsy is a common neurological disorder, and about

one-third of patients with epilepsy do not obtain control

of their seizures with medication.1 One option for these

patients is resective surgery. This process usually involves

placement of intracranial electrodes followed by one or

several weeks of inpatient monitoring to record clinical

seizures. The goal is to identify whether there exists a

single, focal region that can be resected to stop the

patient’s seizures—the hypothesized epileptogenic zone

(EZ). Clinicians consider all available information in

order to determine the location of the EZ. However, the

success rate of these surgeries is less than 60%.2–4 While

many factors influence surgery outcomes, there has been

great interest in identifying additional information from

EEG recordings to better inform clinicians.

Interictal high frequency oscillations (HFOs) are one of

the most promising biomarkers of the EZ. Multiple deca-

des of research have firmly established the association of

HFOs with the EZ, e.g.5–13. The desire to record HFOs

has driven EEG equipment to offer higher sampling rates

in modern equipment (e.g. several clinical systems now

can sample �8 kHz, including the Cadwell Zenith, the

Natus Quantum, the Nihon Kohden JE-120, and the

Compumedics Neuvo). However, typical ‘high HFO rate’

channels have less than 2–10 events per minute, each last-

ing 20–100 ms. Thus, HFOs usually comprise from 0.04

to 1 s of data per minute (0.07–1.7%), even in the highest

rate channels. Our objective in this article was to explore

the remaining 99% of the high resolution data set.

Prior to this study, this non-HFO interictal high fre-

quency data has generally been considered as background

noise to be distinguished from the HFO signal and has

not been directly evaluated as a biomarker of epileptic

tissue or networks. This is generally true even for studies

analysing complete time windows of EEG data rather

than just specific, discrete events.14–17 Those past studies

have introduced their analyses as computational shortcuts

to assess the same information carried by paroxysmal,

discrete events (namely, HFOs and spikes) without having

to detect the events, but did not consider whether the

background additionally carries other distinct informa-

tion. Only one study to our knowledge considered that

non-paroxysmal high frequency activity (HFA) itself may

including clinically useful information,18 but in that case

it was only in connection to phase amplitude coupling

with a lower frequency signal (3–4 Hz). Here, for the first

time, we assess the role of interictal high frequency

(>30 Hz) activity as a potential biomarker of the EZ,

separate and distinct from HFOs and agnostic to infor-

mation that may be contained in lower frequencies. The

objective of this article is to demonstrate that HFA is not

merely noise or an epiphenomenon of detected HFOs,

but that it contains novel information that is clinically

relevant and deserving of future study and translation.

Our analysis of this interictal, long duration high fre-

quency (>30 Hz) activity (which we denote HFA)

involved three steps. First, we quantified the signal

morphology, resulting in multiple quantitative features for

each channel. Next, we conducted two independent anal-

yses to assess the relationship between these features and

best estimates of the EZ: one based on inference (quanti-

fying the associations between each quantitative feature

and clinical markings of the EZ within our dataset) and

one based on prediction (leading a pseudo-prospective
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score of how associated each channel is with the EZ

using a combination of multiple quantitative features).

These two analyses thus demonstrate the association of

the high frequency background activity with the EZ and

yields a prototype algorithm that could be directly trans-

lated to clinical practice.

Materials and methods

Patient selection

Subjects were selected from patients with medically re-

fractory epilepsy at the University of Michigan who

underwent intracranial EEG monitoring in preparation

for epilepsy surgery. All subjects meeting the following

criteria as of April 2021 were selected: clinical data ac-

quisition at >4 kHz sampling rate, tissue resection fol-

lowing intracranial monitoring, and a scored ILAE

surgery outcome after at least 1 year post-resection. This

resulted in a total of N¼ 24 patients, with N¼ 14

patients having Class I (ideal) surgery outcome. Subjects

that were Class I when compliant with medications were

considered Class I for all analyses in this article. All

selected subjects had data acquired on a Natus Quantum

(Natus Medical Inc.) acquisition device with a sampling

rate of 4096 Hz and a 1200 Hz anti-aliasing filter.

Table 1 includes further demographic and subject

characteristics.

Approval of local IRB was obtained before data collec-

tion, and all subjects/guardians consented/assented to

have deidentified data be stored and analysed for future

research use according to the Declaration of Helsinki.

The clinically determined seizure onset zone (SOZ) was

extracted from the final clinical report, written by the

treating clinicians. Surgery outcome was determined by a

board certified epileptologist (W.C.S.). The electrodes cor-

responding to resected tissue [denoted the resected vol-

ume (RV)] were determined by discussion with the

neurosurgeon performing the resection and by review of

the clinical data. One patient required imaging to clarify

the RV due to a complicated surgery (UM-37). We used

CURRY 8 (Compumedics, Charlotte, NC, USA) to cor-

egister the CT, post-implant MRI and post-resection

MRI; we then localized the electrodes, represented them

as spherical volumes with radius 5 mm around the geo-

metric centre, and computed a segmentation boundary

for the RV. For this one patient, contacts were classified

as within the RV if the majority of the spherical volume

was on the resected side of the segmentation boundary.

Further details regarding the recordings are provided in

Table 2.

Computation of features

Preprocessing

The preprocessing steps included restricting to interictal

data, excluding obvious data with poor quality, and re-

Table 1 Patient information

Patient Age Sex ILAE Class Resection Pathology

UM-18 41 M I L Frontal Cingulate CD

UM-19 59 F II R ATL Mild gliosis

UM-20 45 F II R ATL MTS within RV, PVNH outside RV

UM-21 30 M II R ATL Gliosis, polymicrogyria, PVNH

UM-22 40 M I L ATL Mild CD and MTS

UM-25 17 F II L Temporal Gliosis

UM-28 14 F I R ATL Low grade glioma

UM-30 5 M III L ATL MTS

UM-31 13 M I L ATL (Spencer) Gliosis within RV, NF1 outside of RV

UM-32 41 F I R Frontal CD

UM-33 5 F II R Insula CD, gliosis

UM-34 33 F III R Frontal Gliosis

UM-35 50 F I L AH Gliosis

UM-37 14 M I L Frontal DNET

UM-38 28 M II L ATL (Spencer) MTS, gliosis

UM-40 14 F I L Parietal CD and gliosis

UM-41 32 F I R Frontal CD

UM-42 17 M II L Insula Not available

UM-43 28 M II R ATL Gliosis

UM-46 23 F I L SMA CD

UM-47 48 F II R ATL Gliosis

UM-50 31 F I L AH Gliosis

UM-52 27 M I L AH MTS, gliosis

UM-53 55 F I R ATL Gliosis

UM-54 35 F I L AH Gliosis

UM-55 42 M I L ATL (Spencer) HS, gliosis

AH, amygdalohippocampectomy; ATL, anterior temporal lobectomy; CD, cortical dysplasia; DNET, dysembryplastic neuroepithelial tumour; F, female; FN1, neurofibromatosis type

1; HS, hippocampal sclerosis; L, left; M, male; MTS, mesial temporal sclerosis; PVNH, periventricular nodular heterotopia; R, right; SMA, supplementary motor area.
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referencing. Only interictal data (at least 30 min before or

after the start of a clinical seizure) were included in the

analysis and results. Seizure times were obtained from the

clinical reports. Data with ambiguities in seizure times,

and channels with obvious extremely poor quality or

known to be extraparenchymal were excluded from the

analysis. Data were also excluded during and near times

coinciding with EEG technical care and testing proce-

dures. All interictal data not excluded by the above steps

were analysed. We used a common average reference as

in previous work,9 and again separate references were

used for depth and grid/strip channels.

Frequency ranges

While there is no clear standard regarding what consti-

tutes ‘high’ frequency, we decided to use two frequency

bands. We selected one frequency band to correspond

with the typical frequency band used for detecting HFOs,

80–500 Hz. We note the exact frequency band for HFOs

varies across the literature and that there are inconsistent

findings regarding the utility of separating ripples

(80–250 Hz) from fast ripples (250–500 Hz). We thus

selected 80–500 Hz for our upper band, the same range

used in our previous HFO work, e.g. Gliske et al.9,19 and

Ren et al.20 We then selected a second frequency band to

span the range between the frequencies typically viewed

by clinicians and this range, resulting in a selection of

30–80 Hz. This selected band has been denoted the low-

gamma band and included within the broad range of

HFO frequencies, e.g. Jrad et al.21 Ongoing research sup-

ports the involvement of this frequency in epileptic brain

activity, e.g. Zweiphenning et al.22 These bands were pre-

viously shown to have distinct mechanisms in computa-

tional modelling work: postsynaptic potentials due to

normal gamma in the 30–80 Hz range, and strongly

driven postsynaptic potentials and/or pyramidal cell ac-

tion potentials in the 80–500 Hz range.23–26 We also ran

the analysis on a subset of patients (the first 10 ILAE

Class I subjects) using three bands, 30–80 Hz, 80–250 Hz

and 250–500 Hz (data included in online repository, see

section ‘Data availability’), and found qualitatively similar

results and no particular advantage. When filtering data,

we used a 10th order, bidirectional elliptical passband fil-

ter, with a 0.5 dB passband ripple and 65 dB stopband

ripple, all parameters except the pass band range being

the same as in previous work.9

Feature quantification

We next sought to quantify the morphology of the high

frequency EEG waveform. We note two approaches are

common in the literature for developing mathematical

features to describe electrophysiological signals. One is to

Table 2 Recording information

Patient Total

duration (h)

Analysed

duration (h)

# Analysed channels

(depth, ECoG)

# Channels in SOZ

(depth, ECoG)

# Channels in RV

(depth, ECoG)

UM-18 65.3 63.3 (32, 0) (4, 0) (5, 0)

UM-19 173.9 173.3 (0,106) (0, 2) (0, 40)

UM-20 174.1 169.3 (25, 0) (9, 0) (9, 0)

UM-21 185.3 178.8 (46, 0) (13, 0) (16, 0)

UM-22 165.3 164.8 (38, 0) (7, 0) (23, 0)

UM-25 211.3 206.5 (20, 0) (5, 0) (4, 0)

UM-28 87.5 84.1 (6, 47) (1, 4) (6, 12)

UM-30 151.7 123.6 (0, 100) (0, 2) (0, 36)

UM-31 190.7 185.7 (0, 99) (0, 6) (0, 54)

UM-32 187.1 158.8 (32, 0) (3, 0) (16, 0)

UM-33 128.0 106.3 (74, 0) (4, 0) (4, 0)

UM-34 144.8 129.1 (29, 0) (11, 0) (4, 0)

UM-35 185.0 178.2 (0, 57) (0, 2) (0, 11)

UM-37 232.8 212.2 (50, 0) (7, 0) (14, 0)

UM-38 181.9 179.8 (0, 61) (0, 3) (0, 30)

UM-40 203.2 199.2 (8, 55) (0, 8) (0, 26)

UM-41 157.3 148.3 (71, 0) (9, 0) (27, 0)

UM-42 73.1 73.6 (60, 0) (8, 0) (7, 0)

UM-43 166.6 144.6 (86,0) (9,0) (30,0)

UM-46 141.5 128.7 (30, 0) (9, 0) (12, 0)

UM-47 306.9 306.5 (70, 0) (3, 0) (30, 0)

UM-50 179.8 174.4 (22, 71) (0, 3) (0, 16)

UM-52 137.2 144.2 (0, 61) (0, 3) (0, 10)

UM-53 188.6 187.8 (68, 0) (3, 0) (28, 0)

UM-54 185.3 174.7 (0, 61) (0, 9) (0, 14)

UM-55 236.5 234.4 (62, 0) (7, 0) (27, 0)

TOTAL 4,440.9 4,229.7 (827, 718) (115, 39) (262, 249)

Recordings were obtained from all times of day. We provide the number of channels separately for depth electrodes and those on the cortical surface, i.e. electrocorticography

(ECoG) electrodes.
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develop a small set of strongly motivated features specific-

ally designed to assess known aspects of the signal. A

second approach is to develop a large set of features that

describe many aspects of the signal and then to use

dimensionality reduction and machine learning to identify

the most useful combinations of features. Both approaches

have their merit. Since the goal of this article is to identify

aspects of the HFA signal associated with epilepsy—the

very information needed to take the first approach—the

second approach is optimal for this article.

Features were computed per channel in epochs of

5-min duration. HFOs and artefacts were detected using

a previously validated algorithm,9 and all data corre-

sponding to HFO detections and artefacts were removed

from each 5-min epoch. Thus, some epochs use less than

5-min of data to compute the features, due to redaction

of HFOs and artefacts. A total of 38 features were then

computed, 19 per frequency band. Each feature was com-

puted by applying a transformation to the data, followed

by computing a statistical measure, and lastly a scaling

function. The specific choices for transformation and stat-

istical measures were selected to be very general. We

used statistical measures related to the first four statistical

moments of a random variable, which assess the position,

spread, asymmetry and bluntness of the distributions, and

we used four transformations that are common in time-

series analysis: absolute value, transformations related to

the first and second derivatives, and the Teager-Kaiser

Energy operator. The full set of features are listed in

Table 3. Features are computed per each channel and

each epoch, and we enumerate the set of all channel/

epoch combinations with the index i. We represent the

vector of values of the filtered waveform for the i-th

channel/epoch combination aS

xðiÞ ¼ x
ðiÞ
j

n on

j¼1
; (1)

where n is the total number of samples and each x
ðiÞ
j rep-

resents a specific sample value. With the exception of one

feature, all features (see Table 3) were computed by nor-

malizing the data via subtracting the mean and dividing

by the standard deviation. The normalized vector was

thus

yðiÞ ¼
x
ðiÞ
j � lðxðiÞÞ

rðxðiÞÞ

( )n

j¼1

; (2)

where lð�Þ and rð�Þ represent computing the mean and

standard deviation. The following transformation include

factors of the sampling rate in kHz, which we denote fS.

We used four transformation operators in computing fea-

tures, the rectification operator R, the Line-Length oper-

ator L, the curvature operator C, and the Teager-Kaiser

Energy operator T:

RðyðiÞÞ ¼ y
ðiÞ
j

n on

j¼1
; (3)

L yðiÞ
� �

¼ R D yðiÞ
� �� �

¼ jyðiÞjþ1 � y
ðiÞ
j jfS

n on�1

j¼1
; (4)

C yðiÞ
� �

¼ R D D yðiÞ
� �� �� �

¼ jyðiÞjþ2 þ y
ðiÞ
j � 2y

ðiÞ
jþ1j fSð Þ2

n on�2

j¼1
;

(5)

Table 3 Feature definitions

10 log 10

�
lð�Þ

�
10 log 10

�
rð�Þ

�
xðiÞ f

ðiÞ
5 ¼ 10 log 10

�
r
�

xðiÞ
��

R
�

yðiÞ
�

f
ðiÞ
1 ¼ 10 log 10

�
l
�

R
�

yðiÞ
���

f
ðiÞ
6 ¼ 10 log 10

�
r
�

D
�

yðiÞ
���

L
�

yðiÞ
�

f
ðiÞ
2 ¼ 10 log 10

�
l
�

L
�

yðiÞ
���

f
ðiÞ
7 ¼ 10 log 10

�
r
�

L
�

yðiÞ
���

C
�

yðiÞ
�

f
ðiÞ
3 ¼ 10 log 10

�
l
�

C
�

yðiÞ
���

f
ðiÞ
8 ¼ 10 log 10

�
r
�

C
�

yðiÞ
���

T
�

yðiÞ
�

f
ðiÞ
4 ¼ 10 log 10

�
l
�

T
�

yðiÞ
���

f
ðiÞ
9 ¼ 10 log 10

�
r
�

T
�

yðiÞ
���

tan�1
�

skewð�Þ
�

10 log 10

�
kurtð�Þ

�

yðiÞ f
ðiÞ
10 ¼ tan �1

�
skew

�
yðiÞ
��

f
ðiÞ
15 ¼ 10 log 10

�
kurt

�
yðiÞ
��

R
�

yðiÞ
�

f
ðiÞ
11 ¼ tan �1

�
skew

�
R
�

yðiÞ
���

f
ðiÞ
16 ¼ 10 log 10

�
kurt

�
D
�

yðiÞ
���

L
�

yðiÞ
�

f
ðiÞ
12 ¼ tan�1

�
skew

�
L
�

yðiÞ
���

f
ðiÞ
17 ¼ 10 log 10

�
kurt

�
L
�

yðiÞ
���

C
�

yðiÞ
�

f
ðiÞ
13 ¼ tan �1

�
skew

�
C
�

yðiÞ
���

f
ðiÞ
18 ¼ 10 log 10

�
kurt

�
C
�

yðiÞ
���

T
�

yðiÞ
�

f
ðiÞ
14 ¼ tan �1

�
skew

�
T
�

yðiÞ
���

f
ðiÞ
19 ¼ log �1

�
kurt

�
T
�

yðiÞ
���

Features are computed by starting with either the normalized (yðiÞ) or non-normalized (xðiÞ) data per for each epoch/channel combination i; c.f. Equations 1 and 2. Next, a

transformation is applied (none, rectification R, line-length L, curvature C, or Teager-Kaiser Energy T; c.f. Equations 3–6), followed by a statistical measure (mean, variance,

skewness or kurtosis). Lastly, a scaling transformation (arctangent or conversion to decibels) is applied. Rows in the table represent specific transforms to the data, and columns

represent specific combinations of statistical measure and scaling transformation.
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T yðiÞ
� �

¼ y
ðiÞ
j

� �2

� y
ðiÞ
jþ1y

ðiÞ
j�1

� �
fSð Þ2

� 	n�1

j¼2
(6)

The factors of sampling rate in kHz result in the fea-

tures having units which are powers of voltage per msec

rather than voltage per 244.14 ms inter-sample duration

(244.14 ms is the inverse of 4096 Hz). While not directly

pertinent to this analysis, this normalization removes the

inter-sample duration from the units, which is a necessary

step for the features to generalize across different sam-

pling rates. In order to reduce the heavy tails of the fea-

ture distributions, units for all features not involving

skewness were converted to units of decibels (10 times

the logarithm base 10). As skewness involves negative

values, converting to decibels would lead to complex

numbers. We thus instead used the arctangent, which

accomplishes the same goal of log-scaling the heavy tails

but is applicable for both negative and positive data. The

means in Table 3 were computed using Kahan sums for

numerical stability, with the Boost Cþþ library being

used to compute the sums, standard deviations, kurtoses,

and skewnesses. Example filtered data and some corre-

sponding quantitative features are shown in Fig. 1. Note

that many changes in quantitative features were not read-

ily apparent by visual review.

Reduction to time-integrated features

Thus far, we have computed quantitative features per

each 5-min epoch of each channel. Using these individual

epochs, we then calculated a single value of each feature

for each channel per subject. This is analogous to taking

the individual HFO detections over time and converting

to a single HFO rate per channel. In order to reduce the

effect of temporal variability, our first step was to sub-

tract off the median value within each 5-min epoch; see

Fig. 2A and B. Then, for each channel, we considered

the distribution of each adjusted feature over all epochs

and selected the location of the 75th percentile. We de-

note these values as the time-integrated features since

they incorporate information across the full recording

duration; see Fig. 2C. These time-integrated features are

then used for both the internal association and prediction

analyses.

Internal association analysis

The internal association (inference) analysis sought to de-

termine whether features of the high frequency back-

ground are associated with clinical markers of

epileptogenic tissue (the SOZ and RV). A standard ap-

proach is to use logistic regression, which we accom-

plished by using the MATLAB fitglm function. Since the

features are correlated, it is necessary to compute a logis-

tic regression model for each feature to assess its individ-

ual utility. We also computed separate models for each

outcome variable, the SOZ and RV, as well as for the

temporal lobe. Temporal lobe asymmetries were included

to check for a possible anatomical confounding factor.

The anatomical locations of electrodes (Destrieux Atlas)

for 21/24 subjects had been computed for other projects

using Freesurfer. This information was then used to iden-

tify which contacts were in temporal lobes. Weights were

introduced so that each patient contributed equally to the

model, rather than each channel contributing equally.

This approach better accounts for possible interpatient

variability in the features as well as the variety in the

number of channels per patient. For example, among

these 24 patients, the number of intracranial channels

ranged from 20 to 106 (see Table 2). In order to com-

pare results across features that are in different units, we

divide each feature by its scaled median absolute deviance

(sMAD) before computing the model. The sMAD was

computed using the MATLAB mad function with

flag¼ 1, with the result divided by the inverse cumulative

normal distribution function evaluated at 0.75. The

sMAD was selected instead of standard deviation, as the

distributions are not normal and channels with feature

values in the heavy tails are exactly those we are trying

to identify. The result is an odds ratio and confidence

interval (CI) for each feature, describing the relative

change in the odds of the channel being in the SOZ (or

RV) for each increase of the feature by one sMAD. For

example, the difference between a channel with a feature

at the first quartile and a channel with a feature at the

third quartile would be one sMAD. We also computed a

similar model for the HFO rate, for comparison. The

odds ratio and CI can be interpreted as an effect size.

The logistic regression also provides a P-value for testing

the hypothesis that the effects are not random (i.e. that

the odds ratio is not one).

Predictive analysis

While the internal association analysis can demonstrate

utility of the features, to actually translate this utility into

practice requires a predictive analytic approach. To avoid

in-sample training, we used hold-out-one-patient cross-

validation. We repeated the following procedure 24 times

(as N¼ 24 patients), using each patient’s data alone one

time for testing, where each time the training data were

taken from all patients except the one being tested. The

data were whitened by subtracting the mean value and

dividing by the standard deviation, with mean and stand-

ard deviation computed using just the training data. We

then reduced the dimensionality using principle compo-

nent analysis (PCA, Matlab pca function), selecting

enough features to capture 95% of the variance. Again,

the PCA subspace was computed using just the training

data and then applied to the testing data. Lastly, logistic

regression was used to compute a predictive model of the

likelihood an individual channel is within the SOZ based

on the training data, using the PCA components as the

independent (input) variables and inclusion in the SOZ as

the dependent (output) variable. SOZ was selected as the
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Figure 1 Example raw data and associated quantitative features. Example intracranial EEG data recorded concurrently from four

channels in patient UM-18 (A–D, H–K). Additionally, scatter plots of three of the quantitative features for the associated 5-min epoch for each

of three pairwise comparisons (E–G, L–N). Note, all data in the upper panels (A–G) correspond to Band 1 (30–80 Hz), while all data in the

lower panels (H–N) correspond to band 2 (80–500 Hz). The scalebars shown in (A) are applicable for all EEG traces (A–D, H–K). The channels

for each trace are (A and H) channel 2, (B and I) channel 11, (C and J) channel 22, (D and K) channel 30. Note, the widely varying feature

values are not readily apparent by visual inspection of the filtered data. Furthermore, the full time-integrated features used in the analysis (see

section ‘Reduction to time-integrated features’) include comparisons of the relative feature values across channels for a 5-min epoch of high

temporal resolution data (more data than can be viewed on a single screen), as well as comparisons across all 5-min epochs. Thus, the

information assessed in the high frequency background in this manuscript is beyond that which is extractable by human review.

Figure 2 Correction for temporal variability. (A) Mean of the line length transformation applied to 80–500 Hz filtered data as originally

computed for each 5-min epoch on four example channels from subject UM-18. An abrupt change in the value of this feature occurs around epoch

180. (B) The same feature, but adjusted by subtracting the median value per epoch (computed over all channels). The abrupt shift near epoch 180

is greatly reduced. Note, the epoch from which data in Fig. 1 was drawn is indicated by a grey vertical line in panels A and B. (C) Box plot of the

feature data in panel (B). The upper and lower box edges are drawn at the first to third quartiles, with whiskers extending out to the last data

point within one interquartile distance from the nearest box edge. Outliers are shown as small black diamonds. Note, the time-integrated value for

this feature (the value corresponding to that which is used for the remaining analysis) is the third quartile (upper edges of the boxes).
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dependent variable rather than RV as it is generally more

specific to the epileptogenic tissue and networks.

Applying the logistic regression model to the testing data

in this PCA space then results in a score per channel,

which we denote the pathological high frequency activity

score (pHFA). This score ranges from a value of 0 (least

likely to be pathological) to 1 (most likely to be patho-

logical), though the relative score across channels is likely

more informative than the absolute magnitude.

To assess the predictive value of this score, we computed

the asymmetry with respect to SOZ and RV, as was done

for HFO rates in previous analyses.9,19,27 We also computed

the asymmetry with respect to the temporal lobe to assess

the magnitude of this potential confounding factor. The clin-

ically-determined SOZ and RV in patients with ILAE Class

I surgical outcomes are the best available estimates of the

EZ. The asymmetry was computed by first averaging the

pHFA score over all channels within (denoted xin) and with-

out (denoted xout) the SOZ (alternately the RV or temporal

lobe), and then computing the asymmetry as A ¼ (xin-xout)/

(xin þ xout). We also computed the asymmetry of the HFO

rate using the qHFO detector.9 Noting that HFOs and the

pHFA score tended to agree most on channels within the

SOZ and RV and agree less on channels without, we also

created a hybrid HFO/HFA score by multiplying the HFO

rate and the pHFA score for each channel. Using multiplica-

tion to combine the two scores has the advantage of not

being sensitive to the different scale of the units of the two

measures and of dampening the signal in all channels except

those where both signals are high, analogous to a logical

‘and’. The asymmetry for this product was also computed

for the SOZ, RV and temporal lobe. The main results are

based on the effects sizes, computed as the median asymme-

tries for each case and the median change in asymmetries,

along with the 95% CI for each of those quantities.

Data availability

Raw data were recorded at the University of Michigan. Full

source data cannot be posted due to its massive size: over

250,000 channel hours of data at 4096 samples per second

were analysed (3.7 trillion samples). Derived data and

Matlab scripts supporting the findings of this study are

available at https://doi.org/10.7302/hnvs-f543 Accessed 27

August 2021. Specifically, we include the data and metadata

starting just one step after the source data: the 38 quantita-

tive features for every channel for every 5-min epoch of

data (383 3,026,493 total feature values). All figures and

results of the paper can be reproduced from the posted in-

formation. Note, we used Matlab revision 2020b.

Results

Internal association analysis

The internal association analysis assessed the relationship

between each feature and the SOZ, RV and temporal

lobe within the available data. Results are shown in

Fig. 3A. The effect sizes relative to the SOZ were large

for many features: 23/38 features had odds ratios >1.3

or <0.7. Additionally, 28/38 features had odds ratios

statistically different than zero (P< 0.05/38, logistic re-

gression with Bonferroni correction for multiple compari-

sons), and 17/38 had P< 0.001/38. The relationship with

RV was generally slightly weaker, as expected: 6/38 had

odds rations >1.3, 13/38 features had odds ratios statis-

tically different than zero at the level of P< 0.05/38, and

12/38 with P< 0.001/38. The lower association with RV

than SOZ is not surprising, as the RV typically includes

all or most of the SOZ, plus several other channels that

were resected for anatomical considerations that may not

be in the EZ. A number of features were also associated

with the temporal lobe, though the pattern of which fea-

tures were informative appear qualitatively distinct from

the pattern for SOZ and RV (Fig. 3A). Note, many fea-

tures have an odds ratio similar or better than that for

the HFO rate (last row in Fig. 3A). The correlation be-

tween features is shown in Fig. 3B for reference. HFO

rate is also correlated with some features, especially those

involving kurtosis or skew in the higher frequency band,

even though the HFO data was not used. Overall, the

results show that the high frequency background activity

carries significant information about the location of the

EZ, with the odds ratios having comparable or superior

values to the HFO rate.

Predictive analysis

The predictive analysis included computing a pseudo-pro-

spective score per channel of how pathological the HFA

was, i.e. the time-integrated pHFA score. Note, the score

is based on the distribution of background features rela-

tive to other channels within the same patient (see section

‘Reduction to time-integrated features’)—aspects not read-

ily apparent in visual review. An example patient (UM-

35) is shown in Fig. 4. This patient had a parietotempo-

ral grid (channels 1–35), a basotemporal grid (channels

36–55) and an anterior temporal strip (channels 56–61).

The channel with the highest HFO rate (channel 36, the

most anteromesial contact of the basotemporal grid) was

one of the two SOZ channels (the other SOZ channel

being channel 41, immediately posterior to channel 36).

However, the HFO rate in this subject was difficult to as-

sess: the rate in channel 36 was not much higher than

several other electrodes which were not resected (e.g. 57

and 61). The pHFA score was high in both of the SOZ

channels. However, it was also relatively high in other

channels, specifically some in the anteromedial corner of

the basotemporal strip, near the SOZ channels, and some

in the middle of the anterior temporal strip. The product

of HFO rate and pHFA score, in contrast, was very spe-

cific: highlighting just one channel of the SOZ. Thus, tak-

ing the product of pHFA score and HFO rate resulted in

dampening the background HFO rate and pHFA score
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and focusing the prediction on the channel in which both

were high.

To assess the association of this score with the SOZ,

RV and the temporal lobe across all patients, we

computed asymmetry scores per patient; see Fig. 5. The

median asymmetry was greater than zero in all cases

(central bars in Fig. 5A–F), with the 95% CI being quite

positive for all comparisons relative to the SOZ. The

comparison with RV was not quite as strong, with

the lower 95% confidence bound being less positive (and

in one case slightly negative). In contrast, 95% CI for

comparison with the temporal lobe (Fig. 5C and F) al-

ways included zero, indicating no statistically significant

association. For each patient, we additionally computed

the difference in asymmetry scores (Fig. 5G–L) to assess

relative utility of one biomarker versus another. We

observed that in both cohorts, the product of pHFA

score and HFO rate was better than either marker alone.

We also observed the pHFA score was not inferior to the

HFO rate, with some patients having the pHFA score

Figure 3 Internal association results. (A) The odds ratio for each feature (logistic regression) is presented for the association with seizure

onset zone (SOZ), resected volume (RV) and temporal lobe (TL). HFO rate is also included for comparison. Band 1 is 30–80 Hz and band 2 is

80–500 Hz. See Table 3 for definition of features: feat. 1 corresponds to f1, feat. 2 corresponds to f2, etc. *P< 0.05/39; **P< 0.01/39;

***P< 0.001/39; ****P< 0.0001/39 (logistic regression with Bonferroni correction for multiple comparisons). The number of channels (N) is

given for each comparison type, with the number of patients given in parenthesis. The displayed odds ratio of about 1.5 for the SOZ model for

feature 1 means that an increase of this feature of one scaled median absolute deviance (sMAD) implies the channel would be 1.5 times more

likely to be in the SOZ. (B) Correlation coefficients between features are presented in the same order as in (A), with HFO rate included for

reference. Specific test-statistics and P-values are included in the data repository (see section ‘Data availability’).

Figure 4 Example HFO rate and pHFA-score per channel. Data are shown for subject UM-35, with the procedure to compute the pHFA

score (principle component analysis and logistic regression) being trained on the other 23 subjects. The qHFO rate is also shown for reference.

Also indicated are channels redacted during preprocessing (channels which were extraparenchymal or had extremely low signal quality, see

section ‘Preprocessing’). The product of the HFO rate and pHFA score is shown in arbitrary units (a.u.) for visualization. Although the HFO

rates were not extremely specific in this case, the pHFA score is clearly higher in the two SOZ channels (channels 36 and 41), and the

channel-wise product of HFO rate and pHFA score is highly specific to one SOZ channel (channel 36).
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asymmetry being much higher than the HFO rate asym-

metry. Results thus support that the pHFA score, like

HFO rate, has prospective utility for identifying EZ.

Discussion
This article presents a method to analyse the high fre-

quency, interictal EEG background activity distinct from

HFOs and low frequency activity, and demonstrates that

this signal (the pHFA score) has strong association with

the SOZ and RV using both internal association and pre-

dictive analytic approaches. While this score was acquired

on the same high-sampling rate intracranial EEG data

that are used for HFO studies, the pHFA score assesses

the data very differently. For example, pHFA does not

necessarily require any specific detector—it is merely a

measurement on the interictal background. We nonethe-

less found two distinct advantages to including the HFO

detector in our analysis: (i) by redacting HFO detections,

we were able to clarify that the background itself has in-

trinsic utility; and (ii) we found that concurrence between

HFO detections and the background pHFA score was a

better biomarker than either alone. Similar to our qHFO

algorithm,9 the pHFA score is easily translatable, requir-

ing minimal human input on uncurated clinical data.

Since our results demonstrated that the pHFA score has

utility distinct from and complementary to HFO rate,

the results thus suggest that pHFA is a unique biomarker

of epileptic tissue worthy of more research and

development.

Since one of the goals of the article was to show the

relevance of HFA activity itself (distinct from that of

HFOs), we specifically redacted all detected HFOs before

computing HFA features. However, in some situations, it

might be preferable to compute HFA features without

having to identify and redact HFOs. We reran the ana-

lysis on a subset of patients (the first 10 ILEA Class I

subjects) two additional times: once with redacting arte-

facts but not HFOs and once with not redacting either

artefacts or HFOs (data included in the online reposi-

tory). We observed qualitatively that the results were

markedly worse when including artefacts, and subtly

improved when including HFOs. Thus, we strongly rec-

ommend using artefact detectors when working with

HFA.

To our knowledge, our work is the first to present

and support HFA as a unique biomarker, distinct from

Figure 5 Asymmetry values. (A–F) Asymmetry values per patient are shown along with the median value (colour bars) and 95% confidence

level (grey rectangles). Asymmetries were computed with respect to the seizure onset zone (SOZ), resected volume (RV) and temporal lobe

(TL) for three biomarkers: the HFO rate, the pathological high frequency activity (pHFA) score and the channel-wise product of the two

(denoted as ‘Product’ in the figure). Black lines connect the asymmetry value for each given patient. Results are shown separately for patients

with ideal surgery outcome (ILEA Class I, A–C) and less than ideal surgery outcome (ILEA Class II–V, D–F). (G–L) The difference in asymmetry

values between pairs of biomarkers shown along with the median value (black bars) and 95% confidence level (grey rectangles). Results are

shown separately for patients with ideal surgery outcome (ILEA Class I, G–I) and less than ideal surgery outcome (ILEA Class II–V, J–L).

Asymmetry scores are a measure of effect size, and results for which the 95% confidence bands do not include zero are statistically significant.

Presenting results using effect sizes is in contrast to using statistical tests and P-values. The number of subjects per subject varies across

categories and is indicated in the figure next to the panel letter.
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HFOs. Our work is different than using background data

to set thresholds for HFO detection (e.g. Staba et al.28),

to determine optimal times for HFO detection (e.g.

Zelmann et al.29), or as surrogate for HFO detection.14–17

While we specifically excluded detected HFOs, it is pos-

sible that some undetected HFOs still contaminated our

signal. However, even if we assume that the number of

undetected HFOs is as large as the number of detected

HFOs, they would span less than 2% of the analysed

data and would be relatively low amplitude. When com-

paring to the effect of adding in all HFOs to the analysis

(data included in the online repository), we conclude that

it is highly unlikely that the utility of the pHFA score is

only due to it including some non-detected HFOs.

The objective of this article was to demonstrate that

HFA contains novel information that is clinically relevant

and deserving of future study. Our results show that

HFA is highly associated with epileptic tissue and that it

provides additional information beyond what is provided

by HFO analysis. In contrast to HFOs, these data are

not dependent upon specific detectors, or other nuances

of detecting discrete events. Thus, we conclude that HFA

is a promising new biomarker of epileptic tissue, comple-

mentary to HFOs. Future work will be necessary to

assess how this information, both HFO and HFA, influ-

ences clinical decisions about the SOZ and surgical

planning.

We note that one limitation of our study was the in-

ability to fully optimize all decisions made in the analysis

given the relatively small number of subjects. For ex-

ample, a number of parameters were set a priori and we

then analysed and reported the results of the choices.

These included the epoch duration (5 min), the number

and range of the frequency bands (30–80 Hz and 80–

500 Hz), and the percent variance for PCA. This lack of

optimization is not necessarily a weakness but a strength:

despite not optimizing these values, we still observed

strong association of HFA features with SOZ and RV.

We also reran the analysis on a subset of patients (the

first 10 Class I patients) using shorter and longer epoch

durations (2 and 10 min), with a different number of

frequency bands (using 30–80 Hz, 80–250 Hz and 250–

500 Hz), and with percent variance thresholds of 90%

and 97% (data included in online repository discussed in

section ‘Data availability’). We found the results generally

quite robust to variation of these parameter values, with

insignificant changes in 9/10 patients and significant

changes in just one patient for two of the different

parameters. Further optimization of these parameters,

including the frequency bands, could potentially increase

the utility of HFA analysis.

The limited number of subjects prevents us from

addressing possible confounding factors, such as anatom-

ical location or specific pathology. Instead, we have

reported the available information in Tables 1 and 2 to

be clear regarding potential impact. We additionally com-

pared the biomarkers within and without of the temporal

lobe, the most likely anatomical confounding factor.

Some quantitative features of the high frequency back-

ground were found to be characteristic of the temporal

lobe (Fig. 3). However, these features were distinct from

those that were most informative for identifying the SOZ,

as the trained pHFA score was not overly specific to the

temporal lobe (Fig. 5C and F).

Some of the previous work using analysis of high-fre-

quency background EEG as a surrogate for HFO detec-

tions has focused on features related to the general

concept of ‘spikiness’. Features include the kurtosis,14

skewness16 or both.17 We found these features were still

associated with SOZ and RV even when redacting all

HFOs. Thus, results in these previous publications likely

benefitted from information contained in both the HFOs

and in the general, long-duration high frequency back-

ground activity, which we call HFA. Expanding on these

previous publications, in our results we found many new

features associated with SOZ and RV in addition to

skewness and kurtosis. Although correlations exist be-

tween evaluated features, these additional features add in-

formation and are not all redundant. We note that the

derivatives of the signal used in the transforms place an

increased focus on the higher frequency components of

the signal. Furthermore, our results suggest that the use-

fulness of HFA cannot just be reduced to one or two

properties: in all 24 cross-validation folds, the PCA pro-

cedure identified at least 9 linear combinations of features

as necessary to capture 95% of the variance. Future

work in larger data sets can further isolate whether a

specific subset of features is sufficient or whether the con-

glomerate feature approach is preferable.

We designed the features and analysis to identify ab-

normal channels. We also found it was necessary to re-

move channels that were extraparenchymal and or that

had extremely poor data quality (see section

‘Preprocessing’) before applying the analysis. Note that

these poor quality channels are those that are ignored by

clinicians. The difference between good and bad quality

data is large and confounds the ability to identify abnor-

mality due to epileptic tissue. The feasibility of using

HFA in clinical settings could be enhanced by automating

the selection of good quality channels, though we note

that clinicians often identify poor quality channels and

times with unreliable data as part of the standard of

care. The amount of data curation used for our methods

is quite small. We also note that HFOs were studied for

decades before automated methods to handle variable

data quality were developed.9

One of the essential aspects of our analysis was sub-

tracting the mean of the features within each time epoch

(see section ‘Reduction to time-integrated features’). Thus,

the analysed features and pHFA score per channel are

implicitly measures relative to other channels in the same

patient. Without this normalization across channels, tem-

poral variability causes the pHFA score to have much

lower association with the SOZ and RV (data not
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shown). This may be another factor explaining why

pHFA score is not readily visible: one must compare

across all channels at once. Instead, the computed pHFA

score by design mitigates the influence of temporal vari-

ability. While beyond the scope of this manuscript, we

anticipate that pHFA score will have less temporal vari-

ability than HFO rate but will still require several hours

to days of recordings, not just a few minutes. Recall that

the variability in HFO rate is not only due to apparent

randomness, but also that subsets of seizure networks

seem to turn on and off over the course of days.27

Similarly, HFA may also be sensitive to these changing

seizure networks, and thus short recordings will miss

such information.

In many patients, determining the EZ is challenging. In

these cases, clinicians often gather all available data to

look for concordance. Our analysis found that concord-

ance between HFO rate and pHFA score, specifically

their product, was an even better biomarker than HFO

rate alone. However, when comparing with the broader

set of heterogeneous information (seizure onset and

spread, imaging, semiology, etc.), the skill and experience

of the clinical team is essential. Thus, like HFOs, the

pHFA rate is not expected to replace current clinical

practice of determining SOZ, but our results show that it

can add adjunctive, relevant information to aid in under-

standing complex cases.
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