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Analogue encoding of physicochemical properties
of proteins in their cognate messenger RNAs
Anton A. Polyansky1, Mario Hlevnjak1 & Bojan Zagrovic1

Being related by the genetic code, mRNAs and their cognate proteins exhibit mutually

interdependent compositions, which implies the possibility of a direct connection between

their general physicochemical properties. Here we probe the general potential of the cell to

encode information about proteins in the average characteristics of their cognate mRNAs and

decode it in a ribosome-independent manner. We show that average protein hydrophobicity,

calculated from either sequences or 3D structures, can be encoded in an analogue fashion by

many different average mRNA sequence properties with the only constraint being that

pyrimidine and purine bases be clearly distinguishable on average. Moreover, average

characteristics of mRNA sequences enable discrimination between cytosolic and membrane

proteins even in the absence of topogenic signal-based mechanisms. Our results suggest that

protein and mRNA localization may be partly determined by basic physicochemical rationales

and interdependencies between the two biomolecules.
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A
ccurate localization of proteins to a particular subcellular
site, compartment or organelle represents one of the most
important aspects of functioning of the living cell.

Mechanisms ranging from those mediated by the specific action
of cellular transport machinery1,2 to those based on random or
biased diffusion3–7 have all been utilized to rationalize how
proper cellular localization of proteins is achieved on different
time- and length-scales. Moreover, a number of recent studies
have revealed a major contribution of messenger RNA (mRNA)
transport to the proper localization of their cognate proteins8–16.
In general, most known cellular schemes for encoding the target
locale of either proteins or mRNAs typically involve short,
specific cis-acting motifs such as signal peptides for protein
targeting or mRNA-embedded zipcodes for mRNA trafficking,
which are in turn recognized by various trans-acting factors. The
latter include signal-recognition particle, chaperones and RNA-
binding proteins, but also different cytoskeletal elements and
molecular motors of the cellular transport machinery16,17.

The signal-recognition particle-based mechanism, in particu-
lar, is responsible for directing secretory and membrane proteins
to the prokaryotic plasma membrane or eukaryotic endoplasmic
reticulum (ER) and it directly depends on ribosomal translation
of N-terminal signal sequences. However, translation-indepen-
dent localization of a number of mRNAs to ER has recently been
discovered, including those transcripts that code for endomem-
brane proteins12,13,18. What is more, ribosome-independent
membrane localization of bacterial mRNAs coding for
membrane proteins has also recently been described19. In
particular, it was demonstrated that segments of a membrane
protein’s mRNA, which exclusively code for its soluble domains,
remarkably resided in the cytoplasm, while those coding for its
transmembrane domains associated with the membrane. Finally,
although zipcode-based mechanisms have been shown to be
important for accurate mRNA targeting, computational search
for clear localization signals in mRNA sequences has been
surprisingly difficult20,21. One still largely unexplored possibility
is that the information actually resides in the more diffuse,
general physicochemical properties of mRNA subsequences
themselves.

Considering that mRNAs and cognate proteins are polymers
with mutually interdependent composition as determined by the
genetic code, here we examine the possibility that an mRNA
transcript could encode and present to the cell information about
the physicochemical characteristics of its product without being
read and deciphered on the ribosome. For example, is it possible
for the hydrophobicity of a protein, which is directly related to its
final cellular destination, to be in an analogue fashion encoded in
the hydrophobicity of its cognate mRNA sequence, which would
then be exploited for its localization? How about other protein
and mRNA properties? Such analogue signals, which could
explain the above observations, would represent a primitive,
general mechanism for mRNAs to encode the localization of their
cognate proteins beyond more specific mechanisms21.

Here we test this hypothesis by examining the general
capability of mRNA-coding sequences to encode in their average
properties the features of their cognate protein sequences or
three-dimensional (3D) structures. In particular, we analyse
4500 available amino-acid property scales to characterize
different protein sequence properties together with several
different physics-based approaches to specifically characterize
the hydrophobicity of protein structures. Overall, we focus on a
subset of physicochemical properties of mRNA sequences, which
depend linearly on their fractional nucleotide composition and
the individual quantifiable characteristics (‘weights’) of the
four nucleotides. In addition to a number of known mRNA
properties such as molecular weight normalized by length,

average propensity to be single-stranded or different properties
related to mRNA hydrophobicity, we systematically explore a
large space of hypothetical scales, thus defining the boundaries of
the types of encoding that are at all possible.

Results
Encoding protein sequence properties in cognate mRNA.
Different physicochemical characteristics of proteins can be
estimated computationally from their primary and/or tertiary
structures. In the former case, we consider different physico-
chemical property scales for the 20 canonical amino acids (for
example, hydrophobicity, net charge, molecular weight, and so
on) and for every protein sequence in the human proteome
evaluate the linear average of the property in question.

We first consider five mutually independent amino-acid
property scales, which were obtained by the multivariate
statistical analysis of B500 different amino-acid scales22. These
five scales can be thought of as the principal components in the
space of all amino-acid property scales, each one being
representative of a different class of major amino-acid
properties: polarity (Factor I scale), secondary structure
propensity (Factor II scale), molecular volume (Factor III scale),
codon diversity (Factor IV scale) and electrostatic charge (Factor
V scale)22. Factor I scale in particular reflects amino-acid
hydrophobicity and displays a strong correlation with other
well-known amino-acid hydrophobicity scales (for example, the
Pearson correlation coefficient (R) with the widely used
Engelman hydrophobicity scale23 is 0.93, Supplementary
Fig. S1a). The distribution of average sequence hydrophobicities
of human proteins according to the Factor I scale (Fig. 1a) is
centered at B0 and shifted slightly in the direction of hydrophilic
proteins (positive average Factor I values). Moreover, there is a
relatively good separation between the distributions of Factor I
average values for all annotated human cytosolic and membrane
proteins with a Jensen–Shannon divergence (JSD)24 between the
two of 0.38 (Fig. 1a).

How well can average physicochemical characteristics of
protein sequences, as captured by the five Factor scales, be
mirrored in the average sequence properties of cognate mRNA
coding regions? To address this question, we exhaustively
enumerate all possible generalized property scales for four RNA
nucleotides in the range between � 1 and 1 using a step of 0.1
(B2� 105 quadruplets in total). We then compare the average
properties of mRNA coding sequences, derived for a given
nucleotide scale, against the average properties of their cognate
proteins across the entire human proteome. The dynamic range
of generalized nucleotide property scales allows for a one-order-
of-magnitude difference in values, which we expect to be
sufficient for such chemically similar compounds as natural
nucleotides. As a measure of matching between protein and
mRNA properties, we calculate Pearson correlation coefficients R
between the average sequence values obtained for a given amino-
acid scale and every nucleotide scale from the set of quadruplets.
In Fig. 1b we show a projection of R (wG, wA, wC, wU) onto a cube
with the fixed wU value of 0 as obtained for the Factor I scale.
Remarkably, a large volume of the cube is occupied by high
absolute values of R with a total of 13.6% of all screened
nucleotide scales providing an absolute correlation |R| of Z0.75
over the complete human proteome with the maximum value of
max |R|¼ 0.91 (Fig. 1b,c). In other words, many different
nucleotide property scales allow for a quantitatively accurate,
analogue encoding of the average hydrophobicity of protein
sequences in the properties of cognate mRNAs, and the very
best scales exhibit remarkable encoding potential even among
exclusively cytosolic or membrane proteins alone (Fig. 1c).
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Note that here we only consider the absolute value of the obtained
Pearson coefficients given that the sign of nucleotide weights is
only a matter of convention.

It is well known that purine-rich codons tend to code for polar
amino acids, whereas pyrimidine-rich codons tend to code for
hydrophobic amino acids25,26. Are the above findings just a
reflection of this fundamental, well-known feature of the
universal genetic code? While qualitatively indeed true, this

general property of the genetic code is nonetheless not overly
quantitative, with a Pearson R between codon PUR content and
their cognate amino acids’ Factor I weights of only 0.47
(Supplementary Fig. S2a,b, 22% of variance explained). If one
weights the codon PUR content with codon usage bias, the
correlation gradually increases to R¼ 0.60 (Supplementary
Fig. S2a,b, 36% of variance explained). However, only if one
considers complete mRNA coding sequences and protein
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Figure 1 | Encoding of average sequence hydrophobicity of proteins in average properties of their cognate mRNA coding sequences. (a) Distribution of

average protein sequence hydrophobicity as calculated according to the Factor I scale for the entire human proteome (dashed curve), annotated membrane

proteins (red filled curve) and annotated cytosolic proteins (green filled curve). (b) Distribution of Pearson correlation coefficients R (wG, wA, wC, wU)

obtained for the human proteome using the Factor I scale (see Methods) and shown as a 3D projection with a fixed value of wU¼0 (left) or as a 1D

histogram (right). The cube is coloured according to the R values as given in the colour legend. The nucleotide scale used for the scatter plot in panel c is

indicated with ‘c’. (c) Scatter plot of average sequence hydrophobicity of human proteins and generalized average mRNA sequence properties

calculated using a nucleotide scale that provides the highest value of |R|. Annotated membrane and cytosolic proteins are depicted in red and green,

respectively, while all other proteins are in black.
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sequences, thus including in a realistic fashion both codon usage
bias and realistic amino-acid composition, does the correlation
improve to a near-quantitative R¼ 0.83 (Supplementary Fig.
S2a,b, 69% of variance explained). Finally, weighting the mRNA
sequences by the optimized nucleotide scale leads to the ultimate
quantitative relationship between protein hydrophobicity and
mRNA sequence properties (R¼ 0.91, 83% of variance explained;
Fig. 1c, Supplementary Fig. S2a,b). Most importantly, such
weighting allows one to also consider scales that discriminate
between the weights for individual purines (G versus A) and
pyrimidines (U versus C). Overall, signal amplification discussed
above clearly demonstrates that the connection between protein
hydrophobicity and mRNA properties is not just a simple
consequence of the genetic code, but rather includes in a
complex way also codon usage bias, amino-acid sequence
composition and, importantly, nucleotide weights.

Interestingly, this strong correlation is not seen for protein
properties represented by other four Factor scales (Fig. 2). Only
for Factor IV, reflecting codon and amino-acid diversity, does one
observe moderate correlations (max |R|¼ 0.57) between protein
and mRNA properties (Fig. 2c). On the other hand, protein
electrostatic properties appear to be least encodable in mRNA
properties in this sense (Fig. 2d). Finally, none of the examined
protein properties except hydrophobicity (Factor I, Fig. 1a) allow
for a reasonable discrimination between annotated membrane
and cytosolic protein (Supplementary Fig. S3). In other words,
average hydrophobicity of protein sequences is not only largely
distinct for human proteins with different subcellular localization
(membrane or cytosol), but can also be well reflected (that is,
encoded) in different sequence-average characteristics of their
cognate mRNAs. Very similar results are also observed for

representative proteomes from other domains of life (Archea and
Bacteria, Supplementary Fig. S4). For Factor I hydrophobicity
scale, the values of max |R| obtained for M. jannaschii (0.88) and
E. coli (0.85) proteomes are very similar to that of the human
proteome, while for most of other Factors the correlations are
markedly smaller (especially for E. coli, Supplementary Fig. S4).

In order to further validate the observed correlation between
hydrophobicity and mRNA properties, we perform the same type
of calculation of R (wG, wA, wC, wU) for the human proteome
using 540 different amino-acid property scales (see
Supplementary Data 1 for details). As can be seen from the
distributions of max |R| values obtained independently for 152
hydrophobicity-related and 388 other scales (Fig. 3a), the
hydrophobicity-related scales, in contrast to other scales, display
very strong matching with generalized average mRNA sequence
properties (omax |R|4¼ 0.80±0.09, given as mean±s.d.).
Overall, optimized nucleotide scales improve correlations for
different hydrophobicity scales on average by 0.42 and 0.34
relative to just codon PUR content or codon-usage-bias-weighted
codon PUR content, respectively (Supplementary Fig. S2c).

Is there any noticeable pattern among the nucleotide scales that
capture protein hydrophobicity well? By rescaling between 0 and
1 all nucleotide scales that provide |R|40.75 for any of the 152
tested hydrophobicity scales (we use ‘B’ to denote rescaled
nucleotide scales), we find that they all share a remarkably similar
organization. More specifically, all these scales are such that their
weights for PUR nucleotides are on average as different as
possible from the respective weights for PYR ones. For example,
the scale [wG, wA, wC, wU]¼ [1, 1, 0, 0], corresponding effectively
to mRNA PUR content, is one such scale. In Figure 3b, we depict
a two-dimensional (2D) density of such scales as a function of the
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sum of the weights for G and A against the equivalent sum for C
and U, which is the same as analysing their respective averages,
and show that it is appreciably occupied only in those regions
where the two sums are as different as possible (Fig. 3b). An
interesting trend is also observed for the ewG þ ewC and ewA þ ewU
combination for the scales chosen with the same criterion: while
the former sum can be relatively flexible, the latter is almost
constant, and the maximum is observed for values of ewG þ ewC
and ewA þ ewU both equal to 1 (Fig. 3b). Finally, in the case ofewA þ ewC and ewG þ ewU combinations, the most frequent
situation is the one where the summed weights are both equal
to 1, but this constraint is significantly more flexible than in
previous cases (Supplementary Fig. S5).

Encoding protein structure hydrophobicity in cognate mRNA.
Many proteins require a well-defined spatial structure to properly
function in the cell, a common exception being intrinsically
disordered proteins27. However, in the case of structured
proteins, the hydrophobic properties of their folded structures
may significantly deviate from those estimated from their
sequences only. To address this issue, we also analyse the
matching between the average properties of mRNA sequences
and the hydrophobicity-related characteristics of 3D structures of

their cognate proteins, such as hydration free energy (HFE)28 or
surface distribution of molecular hydrophobicity potential
(MHP)29. For these calculations, we use a set of experimentally
obtained complete protein structures of various sizes (the most
frequent size being 120 residues, Supplementary Fig. S6) in
combination with the coding regions of their mRNAs (3D set
with 1,109 proteins/mRNAs, see Methods and Supplementary
Data 2 for details). The MHP approach utilizes atomic
hydrophobic constants derived from water/octanol partitioning
experiments on a large number of compounds and allows for
hydrophobicity estimation from both the sequence of a protein
(based on an MHP-derived amino-acid scale, which is well
correlated with the Engelman hydrophobicity scale23 with a
Pearson R of � 0.83, Supplementary Fig. S1b) and its spatial
structure (according to a formalism, which is analogous to that
for calculating the spatial distribution for the electrostatic
potential) (Fig. 4a). For every protein in the 3D set, we
calculate its HFE, average MHP over its solvent accessible
surface (SAS) and sequence MHP (MHPseq), and compare these
values with the generalized average characteristics of their cognate
mRNAs (as based on different nucleotide scales, see above).
Significantly, the distribution of the hydrophobic properties of
protein sequences from the 3D set is prominently different from
that obtained for the whole human proteome (Fig. 4b), which is a
consequence of the bias in the Protein Data Bank (PDB) favoring
soluble proteins. An important consequence of this is that the
dynamic range of structure-based hydrophobicities for the 3D set
is narrower than that for the whole proteome. To account for this,
we randomly pick B10% of proteins from the original 3D set
whose distribution of MHP-based sequence hydrophobicities
closely resembles that for the whole human proteome (root-
mean-square deviation of 0.038, Fig. 4b), and perform the
respective calculations of HFE and MHP3D. Furthermore, we
repeat such sub-sampling 100 times and report average values
and standard deviations over all of them. As can be seen in
Fig. 4c, size-normalized HFE and MHP3D values (HFE/N and
MHP3D/N where N is the number of protein residues) obtained
for such a sub-sample of the 3D set display reasonable
correlations with generalized mRNA characteristics with an
average max |R| of 0.50±0.06 and 0.67±0.04 (both given as
mean±s.d.), respectively. Size-normalized hydrophobicities of
protein spatial structures match relative mRNA sequence
properties better than their absolute values and also exhibit
higher correlations for the selected sub-samples than for the
entire 3D set. In contrast, no equivalent matching is found for
absolute or size-normalized SAS area (SASA or SASA/N,
respectively, with max |R|o0.35 in all cases). Finally, sequence-
derived hydrophobicities (according to Factor I or MHP amino-
acid scales) for the analysed proteins display correlations
with mRNA sequence properties, which are almost as high as
those obtained for the human proteome (Fig. 4c; Supplementary
Data 1). Matching is again stronger for the 3D set sub-samples
whose distribution mimics the hydrophobic properties of the
entire human proteome than for the whole 3D set.

Interestingly, we find that nucleotide weights need to satisfy
the same aforementioned constraints (Fig. 3b) to make mRNA
able to be representative of protein spatial hydrophobic properties
(HFE/N and MHP3D/N). Indeed, according to 2D histograms
calculated for the rescaled quadruplets providing max |R| for
each of the 100 analysed sub-samples of the 3D set, the average
values for PUR and PYR weights have to be as different as
possible (Fig. 4d).

Discriminating between membrane and cytosolic proteins.
Which protein sequence properties allow one to discriminate
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between proteins with different cellular localizations? In the case
of cytosolic and membrane proteins, hydrophobicity is arguably
the most important such property. Indeed, comparison of gen-
eralized property distributions for annotated human cytosolic and
membrane proteins calculated for 540 different amino-acid scales
clearly shows that hydrophobicity-related scales provide a much
more accurate discrimination than other scales, with average JSD
values (mem || cyt) of 0.30±0.08 and 0.12±0.11 (both given as
mean±s.d.), respectively (Fig. 5a; Supplementary Data 1). If one
takes into the account our finding that many generalized average
mRNA sequence properties are capable of encoding protein
hydrophobicity (see above), we also expect them to be able to
discriminate between proteins with different cellular localization.
Using a similar framework as above, we calculate four-dimen-
sional (4D) distributions of JSD (wG, wA, wC, wU) values, in each
case reporting on the distance between the distributions of
average sequence properties of known membrane and cytosolic
mRNAs as a function of nucleotide scales (Fig. 5b). This dis-
tribution has a different shape as compared with similar dis-
tributions of R in the case of the Factor I scale (Fig. 1c), and
shows that for 2.3% of nucleotide scales, the average sequence
characteristics of mRNAs can provide an even more accurate
discrimination between membrane and cytosolic proteins
(JSD40.30) than an average hydrophobicity scale. In fact, the
best nucleotide scales in this regard exhibit a maximum JSD value
of 0.33 (Fig. 5c). For mRNAs to be able to differentiate membrane
and cytosolic proteins on average more efficiently than hydro-
phobicity scales on the side of protein sequences, nucleotide
scales have to satisfy similar, but even more rigid constraints
compared with those needed to just match protein hydro-
phobicity, whereby PUR and PYR properties are very distant and
the sum of A and U weights exhibits a constant rescaled value of 1

(Fig. 5d). Using the nucleotide scale that optimally discriminates
membrane and cytosolic proteins, we show that indeed top and
bottom 10% of human mRNAs, as sorted according to their
scores, correspond to proteins whose functions clearly link their
residence with cytoplasm/nucleus or membrane cellular com-
partments, respectively (Supplementary Fig. S7).

Relationship to real nucleotide scales. Which real physico-
chemical properties of nucleotides or nucleobases could be used
to encode analogue mRNA signals related to protein hydro-
phobicity and/or localization to a given cellular environment? To
address this question, we have analysed a number of known
nucleotide/nucleobase scales (25 in total) rescaled between 0 and
1 and compared them with the previously obtained constraints
for generalized nucleotide scales (Fig. 6). These real scales capture
different nucleotide or nucleobase properties such as size/SASA
(scales 1–3), knowledge-based contact statistics (scales 4–7),
knowledge-based preference of being single-stranded (scales 8–9)
or various hydrophobicity-related measures (scales 10–25). Size-
dependent properties of nucleotides (that is, nucleobases),
obviously, match well the requirement that PUR and PYR bases
should be clearly distinguishable. For example, molecular weight
scores (scale 1), SASA of isolated bases (scale 2), and average
contact surface with amino acids (scale 3) occupy the mostly
populated regions of 2D histograms for the encodability of pro-
tein hydrophobicity (Fig. 6). Interestingly, several scales related to
hydrophobicity of nucleotides or nucleobases (for example, scales
10, 11 or 15) also allow for a high degree of encodability as judged
by this analysis (Fig. 6), raising an intriguing possibility that
hydrophobicity of proteins may actually be encoded in the
hydrophobicity of their cognate mRNAs.
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(b) Distributions of average sequence hydrophobicities (calculated using an MHP-derived amino-acid scale) for the entire human proteome (black curve),
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are coloured according to the colour legends given below.
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Discussion
We have shown that generalized average characteristics of
mRNA-coding regions are able to efficiently reflect the hydro-
phobicity of cognate proteins at the level of the human proteome,
whereas other physicochemical properties of proteins display a
much weaker tendency to be predefined by the transcript
(Figs 1b,2 and 3a). Although amino-acid hydrophobicity is
known to be related to the composition of its cognate codons by
the structure of the genetic code25,26,30–32, here we analyse
genome-wide encoding of hydrophobicity of complete proteins in
the generalized properties of their cognate mRNA-coding
sequences going significantly beyond the simple codon-to-
amino acid relationship (Supplementary Fig. S2). However, we
should emphasize that the above analysis was performed on
mRNA-coding regions only, ignoring the 50 and 30-UTRs, which
significantly contribute to average sequence properties of
mRNAs. Overall, the observed correlations remain very
prominent (max |R|40.8) for human mRNAs with UTRs of
short-to-moderate length (r40% of the full transcript length),
which accounts for approximately one-third of the analysed set of
human full-length transcripts (Supplementary Fig. S8a), whereas
they largely vanish for those sequences where UTRs represent
480% of full transcript length (Supplementary Fig. S8a, o10% of
all sequences). Although including UTRs for the complete set of
human full-length transcripts leads to a drop in the level of
correlation for all five Factor scales as compared with the case if
one includes coding mRNA regions only, Factor I hydrophobicity

still displays a max |R| of a sizable 0.67 (Supplementary Fig. S8b).
In contrast, none of the Factor scales provide significant
correlations for the unspliced versions of transcripts (for
example, max |R|¼ 0.39 for Factor I scale, Supplementary
Fig. S8b). The fact that looking exclusively at coding sequences
or sequences with shorter UTRs leads to better correlations may
be important in the context of prokaryotic cells whose mRNAs
lack long UTRs but still exhibit equally pronounced ability to
encode the hydrophobicity of their cognate proteins
(Supplementary Fig. S4) as in the case of eukaryotic mRNAs.
Finally, we also should mention that our analysis focused only on
those net mRNA properties that are linearly dependent on
mRNA composition and fixed nucleotide weights. Of course,
inclusion of mRNA secondary and tertiary structure information
would represent a significant advancement in the present context,
but this is currently technically not possible at the complete
proteome level.

Importantly, our results suggest that generalized properties of
mRNAs coding for proteins with different cellular localization
(as an extreme example, here we use cytosolic and membrane
proteins, but a similar analysis can be done for more finely
defined subgroups) allow for an efficient discrimination between
them. In fact, our approach may be used to help rationalize
some confounding experimental data on protein localization in
the cell. For example, using the nucleotide scale providing the
best discrimination between cytosolic and membrane proteins,
we estimate the properties of transcripts that code for cyto-
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solic and membrane proteins, but are surprisingly localized
in ER and cytoplasm, respectively33,12; (Supplementary Fig. S9).
Interestingly, the mRNA properties of these two subsets of
cytosolic and membrane ‘outliers’ are prominently closer to each
other than are membrane and cytosolic transcripts on average
(Dmeans¼ 0.016 versus 0.04) (Supplementary Fig. S9). We
speculate that in this case anomalous localization of transcripts
may be partly driven by their general physicochemical properties
as given by our optimized nucleotide scale or its related variants.
Furthermore, we observe that optimized nucleotide scales can
efficiently separate coding sequences of transcripts with
prominent ER or cytosolic localization (top and bottom 10% of
the human full-length mRNAs with experimentally verified
localization), where particular nucleotide weights providing
the best discrimination (with JSD values of 0.35) are very
similar to those obtained for all annotated human mRNA-coding
sequences of known cytosolic or membrane proteins (Fig. 5c;
Supplementary Fig. S10). Such discriminatory ability also
corresponds to a reasonable correlation between experimental
log2(mem/cyt) values and generalized sequence properties
of full-length transcripts and their coding sequences with max
|R| of 0.49 and 0.58, respectively (Supplementary Fig. S10 inset).
However, these correlations decrease if one includes
transcripts with less prominent localization preferences (that is,
smaller absolute values of log2(mem/cyt), Supplementary Fig. S10
inset).

Our analysis of real physicochemical property scales for
nucleotides or nucleobases suggests that protein hydrophobicity
may be successfully encoded in a number of different average

mRNA properties including various size-dependent properties,
but also hydrophobicity-related properties (Fig. 6). The latter in
particular merit further analysis given that one could use them to
formulate an exceptionally simple model of encoding (that is,
protein hydrophobicity encoded in mRNA hydrophobicity).
Moreover, it was previously proposed that anticodon hydro-
phobicity, especially for the first two anticodon positions,
correlates well with the hydrophobicity of cognate amino
acids34–36. In general, it is reasonable to assume that the
average sequence hydrophobicity of a stretch of mRNA is
partly related to its nucleotide composition. Chromatographic
experiments, in particular, seem to suggest that average
nucleotide composition, together with secondary structure
preferences, is a key determinant of RNA hydrophobicity37–39.
However, different hydrophobicity-related scales for nucleobases,
nucleosides or nucleotides are significantly less consistent
compared with similar scales for amino acids, and greatly
depend on the method used for their determination. This, in
turn, leads to significant difficulties when trying to assess the
possibility that mRNA and cognate protein hydrophobicities may
be related. For example, according to the experimental scale of
distribution coefficients between water and cyclohexane for
nucleobase analogues (scale 14), and most of calculated
hydration free energy scales (scales 16, 17 and 19) PUR and
PYR have very similar weights, violating the aforementioned
constraints (Fig. 6). On the other hand, most of computationally
determined partition coefficients in octanol/water or chloroform/
water systems (scales 10, 15, 23, 25), and particularly paper
chromatography retention times of di-nucleoside mono-
phosphates (scale 11), allow mRNA hydrophobicity estimated
in this way to successfully encode the hydrophobicity of a cognate
protein (Fig. 6). Importantly, however, depending on the
experimental scale used, this encoding may be proportional
(that is, hydrophobic mRNAs code for hydrophobic proteins and
vice versa), but also inversely proportional (that is, hydrophobic
mRNAs code for hydrophilic proteins and vice versa). For
example, the MHP scale (scale 15) belongs to the former group
and leads to an |R| of 0.60 when used at the whole-human
proteome level against the Factor I scale for amino acids, while
the scale based on paper chromatography retention times of di-
nucleoside monophosphates (scale 11) belongs to the latter group
with an equivalent |R| of 0.85. Although the former mechanism
does have the advantage that it immediately suggests an
explanation for translation-independent membrane targeting of
membrane proteins’ mRNAs19, pronounced inconsistencies in
experimental and computational nucleotide or nucleobase
hydrophobicity scales weaken any speculation in this direction
at present time.

In conclusion, our findings point to a possible existence of a
general mechanism of mRNA localization, which may have been
operational even in very primitive, ancient cells, but has been
tuned by protein machinery in the course of evolution. However,
the question remains as to which exact physicochemical proper-
ties of mRNAs are utilized, if at all, by the modern cell during
sorting and trafficking. We believe our study provides a general
framework for addressing this question quantitatively and
presents the first view of the key constraints that define the
answer to it.

Methods
Sequence data sets. The sequences of the complete Homo sapiens (human)
proteome (17,083 proteins) and coding sequences of their corresponding mRNAs
were extracted from UniProtKB database (January 2013 release) and European
Nucleotide Archive, respectively. This data set is available as Supplementary Data
elsewhere40. Data sets for Methanocaldococcus jannaschii (1,667 proteins) and
Escherichia coli (4,149 proteins) were extracted using UniProtKB April 2013
release. Protein as well as RNA sequences with only canonical amino acids or
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nucleotides were chosen for analysis. Sorting of human proteins into mutually
exclusive cytosolic or membrane groups was based on the controlled vocabulary
within the ‘Subcellular location’ subsection of each of the UniProtKB entries and
using the following criteria: membrane proteins (4,411 in total) are those labelled
with any of the ‘Membrane’, ‘Multi-pass membrane protein’, ‘Single-pass
membrane protein’, ‘Single-pass type I membrane protein’, ‘Single-pass type II
membrane protein’, ‘Single-pass type III membrane protein’ or ‘Single-pass type IV
membrane protein’ identifiers, but are not labelled with the ‘Cytoplasm’ identifier,
whereas the opposite was used for the cytosolic proteins (3,143 in total). Proteins
that did not fall into either category were designated as ‘other’.

Full-length transcript data set. Full transcripts for the human proteome were
obtained from the Ensembl41 release 72 (June 2013) by mapping first the UniProt
accession numbers (ACs) to Ensembl transcripts, followed by the selection of
transcripts with perfectly matched coding sequences to those already present in the
starting set (17,083 proteins). In cases where several transcripts were available for a
given protein, only the longest transcript was used for the analysis. In this way, the
final set of 7,776 proteins and their corresponding full transcripts was generated. In
addition, unspliced transcripts for this same set (7,765 in total) were extracted from
the Ensembl release 73 (September 2013).

Data set of protein 3D structures. The set of protein structures was downloaded
from the PDB (January 2013 release) using the following criteria: first, X-ray or
NMR protein complexes were exclusively monomeric (number of protein entities
and the number of chains in the biological assembly fixed at one) with no modified
residues; second, total number of entities was fixed at one (that is, structures
contained proteins only); third, X-ray structure resolution was better than 2.5 Å.
All chains with gaps in the backbone were filtered out using PDB2PQR software42

(version 1.6). Only those chains that could be matched to the protein’s canonical
UniProtKB sequence were kept for subsequent selection. Furthermore, only the
most complete chains were selected, with completeness defined as the ratio of the
length of the polypeptide chain in the structure and the length of its canonical
UniProtKB sequence. The completeness cutoff for any individual chain was set to
495%. The set was further homology-filtered using the PDB advance search tool
for removing similar sequences with the cutoff set at 30% identity. This procedure
finally resulted in a set of 1,109 non-redundant monomeric protein structures (3D
set, Supplementary Data 2).

Correlation analysis. Average sequence properties of proteins were estimated
using 540 different amino-acid scales (152 hydrophobicity-related and 388 other,
hydrophobicity-unrelated scales)43 (see Supplementary Data 1 for the details) as
follows:

X¼
X20

i

wifi; ð1Þ

where X is sequence property as defined by a given amino acid scale [w1,y, w20]
and fi denotes the fraction of residue type i in the sequence. Average properties of
coding parts of mRNA (Y) were calculated similarly to equation 1 using
quadruplets of nucleotide weights (wG, wA, wC, wU). Nucleotide scales were
screened in a range between � 1 and 1 with the step of 0.1 (194,481 quadruplets in
total). Pearson correlation coefficients (R) between X properties of proteins and Y
(wG, wA, wC, wU) properties of cognate mRNA-coding sequences were calculated
for each amino-acid scale, which results in 4D distributions of R (wG, wA, wC, wU)
in each case. These distributions were visualized as 3D projections onto the (wG,
wA, wC) cube with a fixed wU weight of 0. All quadruplets providing |R|40.75 for
hydrophobicity-related scales were rescaled between 0 and 1 ([ewG ; ewA; ewC ; ewU ])
and represented as 2D histograms of summed weights for all possible nucleotide
pairs (for example, ewG þ ewA and ewC þ ewU for PUR and PYR, respectively). All
the calculations and visualizations were done using MATLAB (R2009a).

Hydrophobicity of protein 3D structures. Hydration free energy (HFE) of
energy-minimized structures from the 3D set was calculated using generalized
Born/surface area (GB/SA) methodology28 with OPLSaa force field parameters44.
Energy minimization and HFE calculation was performed using molecular
modelling package TINKER45 (version 5.1).

As a measure of hydrophobicity of proteins from the 3D set, a distribution of
MHP values29 mapped onto protein SAS was also used. The formalism of MHP is
based on empirical atomic hydrophobicity constants (that is, hydrophobicity
‘charges’) derived from partition coefficients, Log P, of various compounds between
polar and apolar media (for example, water/n-octanol). In analogy with the
electrostatic Coulomb potential, MHP is constructed to have exponential distance
dependence. Thus, contribution of N atoms to MHP at point i can be estimated as
follows:

MHPi¼
XN

j

fij�e� cRij ð2Þ

where fj is atomic hydrophobicity constant of atom j, Rij is the distance between
atom j and point i, and c is a decay constant (here we used c of 0.5 Å (ref. 46)). SAS

calculation and mapping of MHP onto protein surface in each of its points were
performed using PLATINUM software47. Further analysis of MHP data was
carried out using utilities written especially for this. The MHP values were
expressed in octanol/water Log P values (base-10 logarithm of octanol/water
partition coefficients). The sum of MHP values on protein surface (MHP3D) was
used as a measure of protein 3D-structure hydrophobicity.

The thus-obtained absolute and relative HFE and MHP3D values (normalized
by the number of protein residues) were used in calculations of R (wG, wA, wC, wU)
as described in the previous section. Average sequence properties of proteins in the
3D set were calculated using MHP-derived (MHPseq) and Factor I (ref. 22) amino-
acid scales according to Equation 1. These calculations were also performed for
100 randomly selected subsets of the 3D set, whose distributions of MHPseq fit best
to the one of the entire human proteome. These representative subsets were
obtained by selecting proteins with frequencies that resemble frequencies of
MHPseq values obtained for the human proteome (bin size 0.07). As a result, the
size of every random subset was 104 proteins and the calculated MHPseq

distributions displayed a correlation of 0.99 to the human MHPseq distribution and
root-mean-square deviation of 0.038 from the reference. All quadruplets providing
maximum absolute R (wG, wA, wC, wU) for each of 100 random samples were
rescaled between 0 and 1 and represented as 2D histograms of summed weights for
all possible nucleotide pairs. All of the above calculations and visualizations were
done using MATLAB (R2009a).

Estimation of discriminatory power. Distances between distributions of protein
or mRNA sequence properties calculated separately for human membrane and
cytosolic proteins were estimated according to the JSD formalism24:

JSDðM Ck Þ¼ 1
2

XM

log M� log
MþC

2

� �
þ 1

2

XC

log C� log
MþC

2

� �
; ð3Þ

where M is a distribution of sequence properties for membrane proteins and C is a
distribution for cytosolic proteins, and the logarithm is base 2. For every
distribution, a standard binning scheme was used, where 50 bins between
minimum and maximum values of the property in question were applied. JSD
(mem || cyt) values for protein sequence properties were calculated for all 540
amino-acid scales. For mRNA sequences of human membrane and cytosolic
proteins, a 4D distribution of JSD (wG, wA, wC, wU) was calculated using a
screening procedure as described above. All quadruplets providing JSD (wG, wA,
wC, wU)40.30 were rescaled between 0 and 1 and represented as 2D histograms of
summed weights for all possible nucleotide pairs. All of the above calculations were
performed using utilities specially written for this purpose. Visualization was done
in MATLAB (R2009a).

Gene ontology (GO) analysis. DAVID Bioinformatics Resources tool48 (version
6.7) was used for the functional enrichment analysis of the top and bottom 10%
mRNA scores generated with the nucleotide scale that discriminates the best
between cytosolic and membrane proteins. UniProt ACs were used as input and
only the biological processes and molecular functions belonging to the GO FAT
collection of GO terms were considered. Final heat maps report the obtained EASE
scores for the 10 most significant and non-redundant GO terms.

Analysis of experimental mRNA partitioning data. The mRNA partitioning
data for the human myelogenous leukaemia K-562 cell line was originally reported
in the study by Diehn et al.33, while for the purposes of this analysis a filtered and
sorted version of this data as reported in the study by Chen et al.12 was used. We
extracted as described above a set of transcripts with annotated localization, known
membrane/cytosol partitioning values and available full-length mRNA sequences
(2,741 mRNAs). In addition, mRNAs encoding cytosolic/nuclear or endomembrane
proteins were sorted by their corresponding log2(mem/cyt) ratios, and the top 20
outliers for each cohort (that is, those with highest positive log2(mem/cyt) values
among cytosolic/nuclear, and those with highest negative log2(mem/cyt) values among
membrane proteins) were selected for further analysis.

Fitting of real nucleotide/nucleobase scales. Twenty five different real
nucleotide/nucleobase scales were rescaled between 0 and 1 and overlaid with
2D histograms of summed PUR and PYR scores obtained from calculations of
R (wG, wA, wC, wU) for hydrophobicity scales. Among them are: nucleotide weights
(scale 1), isolated base SASA (scale 2), average base contact surface with protein
residues and contact preferences of bases obtained from analysis of protein–RNA
interfaces in a large set of PDB structures40 (scales 3 and 4, respectively),
knowledge-based fraction of contacts on protein–RNA interfaces49,50 (scales 5 and
6, respectively), knowledge-based fraction of contacts between nucleobases and
amino-acid side chains at protein–RNA interfaces and log-odds preference of
unpaired conformations for protein–RNA interfaces versus protein-free RNA
regions51 (scales 7 and 8, respectively), knowledge-based fraction of unpaired
nucleotides52 (scale 9), extrapolated octanol–water partition coefficients53 (scale
10), paper chromatography retention times for di-nucleoside monophosphates34

(scale 11), water-affinities in chloroform and 2-butanol54 (scales 12 and 13,
respectively), partition-free energies in the cyclohexane–water system55 (scale 14),
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MHP-derived hydrophobicities (scale 15), calculated solvation-free energies in
water56–59 (scales 16–19, respectively), calculated solvation-free energies in
chloroform58–60 (scales 20–22, respectively), calculated partition coefficients in
chloroform–water system58–60 (scales 23–25, respectively). If not indicated
otherwise, all of the above scales were originally derived for nucleobases.
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