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Abstract: Traumatic brain injury (TBI) is a major source of worldwide morbidity and mortality.
Patients suffering from TBI exhibit a higher susceptibility to bone loss and an increased rate of
bone fractures; however, the underlying mechanisms remain poorly defined. Herein, we observed
significantly lower bone quality and elevated levels of inflammation in bone and bone marrow niche
after controlled cortical impact-induced TBI in in vivo CD-1 mice. Further, we identified dysregulated
NF-κB signaling, an established mediator of osteoclast differentiation and bone loss, within the
bone marrow niche of TBI mice. Ex vivo studies revealed increased osteoclast differentiation in
bone marrow-derived cells from TBI mice, as compared to sham injured mice. We also found bone
marrow derived extracellular vesicles (EVs) from TBI mice enhanced the colony forming ability and
osteoclast differentiation efficacy and activated NF-κB signaling genes in bone marrow-derived cells.
Additionally, we showed that miRNA-1224 up-regulated in bone marrow-derived EVs cargo of TBI.
Taken together, we provide evidence that TBI-induced inflammatory stress on bone and the bone
marrow niche may activate NF-κB leading to accelerated bone loss. Targeted inhibition of these
signaling pathways may reverse TBI-induced bone loss and reduce fracture rates.

Keywords: traumatic brain injury; bone loss; traumatic brain injury; extracellular vesicles;
extracellular vesicles
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1. Introduction

Traumatic brain injury (TBI) is a major cause of morbidity and mortality. TBI, which is defined
as a blow or jolt to the head that produces permanent or temporary impairments in neurological
function, affects individuals regardless of gender, ethnicity, age, and socio-economic status. Despite
increased public awareness and improvements in safety measures, TBI contributes to nearly one-third
of injury-related deaths [1–3], and millions of TBI survivors live with the long-term consequences of
a prior TBI [4]. In contrast to other common neurological diseases, such as stroke and Alzheimer’s
disease, TBI is more prevalent in younger populations, resulting in substantial loss of productive years
and the need for lifelong assisted care. This burdens families and health care systems that provide
cognitive, emotional, physical, and psychological support for TBI survivors. Altogether, TBI places an
annual $76.5 billion burden on society [5,6].

In addition to the neurological consequences, TBI induces systemic immune changes that affect
peripheral organs and worsen long-term quality of life [7–12]. Along these lines, TBI increases the
risk of falls, fractures, osteopenia, and osteoporosis [13–20]. The increased risk for osteopenia and
osteoporosis directly correlates with an elevated incidence of fractures and associated morbidity and
mortality [21–24]. The mechanisms linking TBI with low bone mineral density and increased rates
of fractures remain poorly defined and are likely multifactorial, with immobilization, epilepsy risk,
anti-epileptic drugs, alcohol, and smoking as probable risk factors [13].

In this study, we investigated the effect of an isolated TBI on both macro and molecular bone
changes. We hypothesized that inflammatory signaling in bone may represent a molecular link
between TBI and increased bone resorption. In doing this, we isolated extracellular vesicles (EVs)
from TBI bone marrow and showed their role in osteoclast differentiation. We also showed that bone
marrow derived EVs following a TBI plays a vital role in bone marrow niche molecular signaling.
Delineating the root cause of low bone mineral density and bone loss in patients suffering from TBI
can further guide treatment and possibly reduce one of the major causes of morbidity and mortality in
the patient population.

2. Materials and Methods

2.1. Controlled Cortical Impact

The Institutional Animal Care and Use Committee (IACUC) at Augusta University approved
all animal studies, in compliance with NIH guidelines (number: 2017-0838). Adult CD-1 male mice
(n = 12–20) (Charles River, Wilmington, MA, USA) were subjected to a sham injury or moderate
controlled cortical impact (CCI), as detailed by our laboratory [25]. Briefly, mice were anesthetized
using 3% isoflurane, placed in a stereotaxic frame, and a craniotomy was made in the right parietal
bone midway between bregma and lambda with the medial edge 1 mm lateral to the midline, leaving
the dura intact. Mice were impacted at 3 m/s with a 100 ms dwell time and 3 mm depression using
a 3 mm diameter convex tip (PinPoint PCI3000 Precision Cortical Impactor, Hatteras Instruments,
Cary, NC, USA). Bone wax was used to seal the craniotomy, the incision was surgically stapled,
and mice were placed in a clean warm cage until recovered. Sham-operated mice underwent the
identical surgical procedures but were not impacted. The skin incision was closed and mice were
allowed to recover in a clean, warm cage. Body temperature was maintained at 37 ◦C using a small
animal temperature controller throughout all procedures (Kopf Instruments, Tujunga, CA, USA). Food
and water were provided ad libitum. Histo-pathological analysis was performed on brain section
after 48hrs using cresyl violet staining (Figure 1). Bones were collected for microCT analysis from
sham-operated and TBI animals after 8 weeks.
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Figure 1. Representative cresyl violet-stained coronal brain sections from sham and TBI mice at 48 h.

2.2. Micro-Computed Tomography Analyses (µCT)

Micro-computed Tomography Analysis was performed (n = 12–20) as per our published
method [26] post 8 weeks of sham-operated and TBI. For bone mineral density measurement and 3D
morphometric analysis, 4% paraformaldehyde fixed femurs were scanned in a µCT system (Skyscan
1172; Skyscan, Aartlesaar, Belgium). Scanning was performed at an image pixel size of 14.59 µm.
Reconstruction of the scanned images was done using a Skyscan Nrecon program. The reconstructed
datasets were loaded into Skyscan CT-analyzer software for measurement of bone mineral density
and 3D morphometric parameters. Distal femur was selected as region of interest; the bone mineral
density was measured in the region of interest after calibration with hydroxyl apatite phantoms of
known density.

2.3. Isolation of Bone Marrow Cells for Colony Forming and Osteoclast Differentiation Assay

The soft tissues were removed from the limbs with a sterile scalpel and the clean bones (n = 6)
were transferred into a petri dish on ice. Both ends of the long bone (epiphysis) of the femur were cut
to expose the bone marrow. The PBS was used to flush out the bone marrow and collected in a 15 mL
tube. The bone marrow cell suspension was centrifuged at 300 g for 5 min, the supernatant was used
for EVs isolation and the pellet was resuspended in culture medium. Bone marrow cells were cultured
overnight in 100 mm tissue culture dishes in alpha-MEM media (5% heat inactivated FBS, 25 units/mL
penicillin/streptomycin, and 400 mM L-Glutamine). After 24 h, non-adherent cells were collected,
counted, and re-plated in 24-well plates at 2 × 103 cells/cm2. Colony forming assay was performed
by treating cells with alpha-MEM media (5% heat inactivated fetal bovine serum, 25 units/mL
penicillin/streptomycin, and 400 mM L-Glutamine) containing 50 ng/mL M-CSF. For osteoclast
differentiation cells were cultured in presence of 30 ng/mL macrophage colony-stimulating factor
(M-CSF) and 50 ng/mL of RANKL for 4–6 days. The colony forming assay were stained with crystal
violet and osteoclastogenesis cultures were stained for TRAP activity assay (Sigma; 387-A, Saint-Louis,
MO, USA).

2.4. Tartrate-Resistant Acid Phosphatase Staining

Media was discarded from 24 cell culture plates and cells were washed twice with PBS and
fixed as per manufactures protocol (tartrate of the Leukocyte Acid Phosphatase Assay kit, Sigma)
for 30 min. After fixing, cells were washed twice with PBS, and then incubated with TRAP staining
solution containing a mixture of Fast Garnet GBC, sodium nitrite, naphtol AS-BI phosphoric acid,
acetate, and tartrate of the Leukocyte Acid Phosphatase Assay kit (Sigma) following the manufacturer’s
instruction. TRAP-positive multinucleated cells were counted under a light microscope.

2.5. Isolation of RNA, Synthesis of cDNA, and Real-Time PCR

Total RNA was isolated from the tibia of mice (n = 6). For RNA isolation, the bone marrow
cellular material was directly dissolved in Trizol whereas tibia bone particles were ground in liquid
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N2 with a pestle and mortar, and the powdered tissue was dissolved in Trizol. RNA was isolated
using the Trizol method following the manufacturer’s instructions, and the quality of the RNA
preparations was monitored by absorbance at 260 and 280 nm (Helios-Gamma, Thermo Spectronic,
Rochester, NY, USA). The RNA was reverse-transcribed into complementary deoxyribonucleic
acid (cDNA) using iScript reagents from Bio-Rad on a programmable thermal cycler (PCR-Sprint,
Thermo Electron, Milford, MA, USA). 50 ng of cDNA was amplified in each real-time PCR using a
Bio-Rad iCycler, ABgene reagents (Fisher scientific, Pittsburgh, PA, USA) using appropriate primers
(Table 1). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the internal control
for normalization.

Table 1. Nucleotide sequences of mouse primers used for RT-PCR.

Gene Primer Reference/Accession Number

GAPDH CAT GGC CTC CAA GGA GTA AGA
GAG GGA GAT GCT CAG TGT TGG M32599

BMP-2 TGT TTG GCC TGA AGC AGA GA
TGA GTG CCT GCG GTA CAG AT NM_007553.2

RUNX-2 GGA AAG GCA CTG ACT GAC CTA
ACA AAT TCT AAG CTT GGG AGG A NM_009820

Osteocalcin ATT TAG GAC CTG TGC TGC CCT A
GGA GCT GCT GTG ACA TCC ATA C U11542.1

IL-6 TAG TCC TTC CTA CCC CAA TTT CC
TTG GTC CTT AGC CAC TCC TTC NM_031168.1|

IL-1 GCA CCT TAC ACC TAC CAG AGT
AAA CTT CTG CCT GAC GAG CTT NM_031168.1|

TNF CCC TCA CAC TCA GAT CAT CTT CT
GTC ACG ACG TGG GCT ACA G NM_013693.2|

RELA GGA GGA TGC CTC CTG CAA AC
TGT AGT GGA AGC CCT GTC CT AF199371

Birc3 ACG CAG CAA TCG TGC ATT TTG
CCT ATA ACG AGG TCA CTG ACG G AJ401388

2.6. Extracellular Vesicles Isolation from Bone Marrow

EVs were isolated using our published method [27–29]. Briefly, complete bone marrow (n = 6)
content was dissolved into 500 uL PBS followed by centrifugation at 3000 RPM for 20 min to remove
cell debris. The supernatant was collected and again centrifuged at 3000 RPM for 30 min to remove
the remaining cell debris. Supernatant was collected and then Total Exosome Isolation Reagent
(Life Technologies, Carlsbad, CA, USA) was used to isolate EVs as per manufacturer protocol. This
protocol involved initial precipitation followed by centrifugation. After centrifugation, pellets were
dissolved in 200 uL of phosphate-buffered saline (PBS) as EVs enriched fractions. The particle size and
concentration of bone marrow derived EVs were measured using nanoparticle tracking analysis (NTA)
with ZetaView (Particle Metrix, Meerbusch, Germany). Transmission electron microscopy and western
blot was performed to validate our isolation approach. EM imaging of EVs preparations and western
blot analysis was performed as described previously [27–30]. Isolated EVs were used for miRNA
isolation and to perform functional studies. We have submitted all relevant data of our experiments to
the EV-track knowledgebase (EV-TRACK ID: EV180076) [30].

2.7. Extracellular Vesicles Treatment

Bone marrow cells were cultured in 24-well plates and treated with sham and TBI bone marrow
derived EVs (20 µg/mL) separately with 1% FBS (exosome free) media for 36 h. We pulled down BM
derived-EVs from 8–10 sham and TBI separately to perform this experiment. IL-1, IL-6, TNFα, RELA,
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and Birc3 gene expressions were performed using real time PCR (Table 1)]. Colony forming assay
and osteoclast differentiation assay was performed as mentioned above in the presence (20 µg/mL)
or absence of EVs. The colony forming assay was stained with crystal violet and osteoclastogenesis
cultures were stained for TRAP activity assay (Sigma; 387-A).

2.8. miRNA Isolation and Real Time PCR on Extracellular Vesicles

MiRNA isolation and real time PCR was performed as per our published method [27,30].
In brief, miRNAs were isolated from EVs using miRNeasy Kit (Qiagen, Valencia, CA, USA) according
to manufacturer’s protocol. The concentration of miRNA was determined using a NanoDrop
spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Real-time PCR was performed on
miRNA-1224. We selected this miRNAs based on its role in NF-kb signaling [31] and osteoclast
differentiation [32,33]. Two hundred nanograms of enriched miRNAs were converted into cDNA
using miScript II RT Kit (from Qiagen). Fifty pictograms of cDNA were amplified in each qRT-PCR
using SYBR Green I and miR specific primers (Qiagen). The real-time qRT-PCR was performed on a
MyIQ machine (Bio-Rad, Hercules, CA, USA) with following cycling parameters: 95 ◦C for 10 min,
then 40 cycles of 95 ◦C for 15 s, 60 ◦C for 30 s and 72 ◦C for 30 s. The average of RNU6 (RNA, U6 small
nuclear 2) and SNORD (small nucleolar RNA, C/D box) was used as normalization reference genes
for miRs. Relative expression of miRNA was evaluated by using the comparative CT method (∆∆Ct).

2.9. Statistics Analysis

GraphPad Prism 5 (La Jolla, CA, USA) was utilized to perform Unpaired Student’s t-test for
microCT, real time PCR, and staining quantification. Differences between more than 2 groups were
tested using one-way ANOVA. A p value of <0.05 was considered significant.

3. Results

3.1. Micro-Computed Tomography Analysis of Femur Bone

Micro-computed tomography (microCT) was used to measure bone mineral density (BMD),
bone volume/total volume (BV/TV), trabecular thickness (TbTh), and trabecular separation (Tb.Sp)
in femurs from sham or TBI injured mice. Our data showed significant decreases in bone mineral
density (p = 0.0365), bone volume (p = 0.0340), trabecular thickness (p = 0.0521), and trabecular number
(p = 0.0630) in TBI mice compared to the controls (Figure 2). Furthermore, we found a trend toward
increased (p = 0.058) trabecular separation in TBI mice.

3.2. TBI Decreased Bone Formation Markers and Increased Cytokines Expression in Bone

Real-time PCR of bone-related markers and inflammatory genes was performed in bone chips
derived from sham or TBI-injured mice at 8 weeks post-injury (Figure 3). All bone related genes
showed down-regulation in TBI mice, as compared to sham injured mice. BMP2 (p = 0.05) and RUNX2
(p = 0.001) showed significant down-regulations in 8 weeks TBI bone whereas osteocalcin showed a
trend of down-regulation (p = 0.064), as compared to sham (Figure 2c). In parallel to these changes, we
observed chronic bone inflammation, as evidenced by increased expression of IL-1 (p = 0.001), IL-6
(p = 0.01), and TNF-α (p = 0.001) in 8 weeks TBI bones, as compared to sham (Figure 3d–f).
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Figure 2. Effects of TBI on bone structural quality of femur measured by micro-computed tomography
(µCT). (a) BMD, (b) bone volume, (c) tubercular thickness, (d) tubercular number were significantly
decreased, and (e) tubercular separation was increased in the femurs of 8-week TBI mice compared to
Sham. Results are means ± SD (n = 12–20). * Significant p-value 0.05.
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Figure 3. Dysregulation of bone markers and inflammatory genes in TBI bones. TBI animals showed
decreased mRNA expression of (a) BMP2, (b) RUNX-2, and (c) osteocalcin and increased expression of
(d) IL-1, (e) IL-6, and (f) TNF-α in 8-week TBI bones. After reverse transcription of total RNA, cDNA
was amplified by quantitative real-time PCR. Data for each sample were normalized with GAPDH
mRNA represented as the fold change in expression compared to sham mouse. Results are means ±
SD (n = 6), Significant * p < 0.05, and # p < 0.01 determined by using student’s t-test.
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3.3. Elevated Chronic Inflammation and NF-κB Signaling Genes in Bone Marrow after TBI

As bone marrow produces hematopoietic and mesenchymal stem cells, we next performed
real-time PCR on selected inflammatory and NF-κB signaling genes in bone marrow. We found that
both inflammatory and NF-κB signaling genes were dysregulated following TBI (Figure 4). Specifically,
IL-1 was increased 3-fold (p = 0.001) whereas TNF-α was up-regulated six-fold (p = 0.04) after TBI,
as compared to sham-operated mice. IL-6 showed the most profound up-regulation with a ten-fold
increase, as compared to sham group. We also observed an increase NF-κB signaling genes (Birc3 and
RelA/p65 genes). Birc3 gene increased four-fold (p = 0.001), whereas RelA/p65 exhibited a ten-fold
increase after TBI (p = 0.001).
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Figure 4. Elevated level of inflammatory and NF-kB signaling genes in TBI bone marrow. TBI mice
showed increased mRNA expression of inflammatory genes (a) IL-1, (b) IL-6, (c) TNF-α and NF-kB
signaling genes (d) Birc3 (e) RelA/p65 in 8-week TBI bone marrow. After reverse transcription of total
RNA, cDNA was amplified by quantitative real-time PCR. Data for each sample were normalized with
GAPDH mRNA represented as the fold change in expression compared to sham mouse. Results are
means ± SD (n = 6), Significant * p < 0.05, and # p < 0.01 determined by using student’s t-test.

3.4. TBI Affects Colony Forming Unit (CFU) Efficiency and Osteoclast Differentiation of Bone Marrow Cells

Colony forming cells are one of the important pre-osteoclast cells which differentiate into
osteoclasts. Thus, we next hypothesized that the elevated level of bone loss observed by microCT
after TBI was due to increased colony forming activity and osteoclast differentiation efficiency by bone
marrow cells after TBI. To test this hypothesis, isolated bone marrow cells from sham or TBI mice were
cultured in the presence of macrophage colony-stimulating factor (M-CSF) for CFU and osteoclast
media for osteoclast differentiation. TBI-derived bone marrow cells exhibited significantly higher
(p = 0.01) CFU and cell proliferation efficiency (Figure 5b). The osteoclast differentiation assay also
showed similar findings. We found that TBI derived bone marrow cells have significantly (p = 0.01)
higher TRAP positive multinucleated cells compared to sham group (Figure 5a).
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Figure 5. Effect of TBI on osteoclast differentiation and colony forming unit (CFU) on bone marrow
cells. (a) Mouse primary bone marrow cells were cultured with RANKL (100 ng/mL) and M-CSF
(30 ng/mL) for 4 days followed by TRAP staining. After TRAP staining, TRAP + multinuclear cells
(TRAP + MNCs) with more than three nuclei were scored as osteoclasts. (b) Colony forming assay was
performed, stained with crystal violet, and colonies were counted * p < 0.05 and ** p < 0.01 compared
with vehicle-treated control.

3.5. Extracellular Vesicle Isolation and Characterization

We isolated EVs from sham and TBI mice bone marrow using precipitation and centrifugation
method as per our published method [27–29]. Electron micrographs showed that the isolated EV
particles are round shaped vesicles (Figure 6a) and western blot (Figure 6b) analysis showed band
of exosome markers Tsg101, and CD63. Previously, we showed immuno-gold staining for CD-9,
and CD-63 on EVs isolated from mouse bone marrow [29]. Nanoparticle tracking analysis showed that
vesicles isolated from bone marrow are in the ~100 nm diameter size range, consistent with the known
size of EVs [27–29]. We did not find any significant changes in size or concentration of bone marrow
derived EVs of TBI (Figure 6d).
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Figure 6. Characterization of TBI bone marrow derived EVs. (a) Transmission electron microscope
images of EVs. (b) Western blot demonstrating the expression of CD63, and TSG101 in BM derived EVs.
(c) Particle size distribution is consistent with size range of EVs (average size 100 nm), measured by
ZetaView® Particle Tracking Analyzer. No significant change in (d) particle size and (e) concentration
in TBI and sham bone marrow derived EVs (n = 6).

3.6. EVs Derived from TBI Bone Marrow Enhance Osteoclast Differentiation of Bone Marrow Cells

Our data suggests the increase in TRAP positive multinucleated cells formation in the TBI bone
marrow cells is due to changes in bone marrow microenvironment. We hypothesized that increased
osteoclast differentiation of TBI bone marrow cells are partially due to extracellular vesicles. To test
this hypothesis, bone marrow cells from sham and TBI mice were cultured in the presence of EVs
derived from sham or TBI bone marrow. We found that TBI derived EVs significantly affected colony
forming units as well as osteoclast differentiation efficiency of normal bone marrow cells (Figure 7).
Furthermore, EVs derived from sham bone marrow partially prevented colony forming units and
osteoclast differentiation efficiency of TBI bone marrow cells (Figure 7b).
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Figure 7. Effect of bone marrow derived EVs from TBI on colony forming unit (CFU) and osteoclast
differentiation of bone marrow cells. (a) Colony forming assay were performed with M-CSF (30 ng/mL)
in the presence or absence of sham/TBI derived EVs for 4 days, stained with crystal violet staining, and
colonies were counted. (b) Mouse primary bone marrow cells were cultured with RANKL (100 ng/mL)
and M-CSF (30 ng/mL) in the presence or absence of sham/TBI derived EVs for 6 days followed by
TRAP staining. After TRAP staining, TRAP + multinuclear cells (TRAP + MNCs) with more than three
nuclei were scored as osteoclasts (Significant * p < 0.01, # p < 0.001).

3.7. TBI-Derived EVs Isolated from Bone Marrow Regulate Inflammatory and NF-κB Signaling

To gain further insight into the role of EVs in osteoclast differentiation, normal bone marrow
cells were treated with EVs isolated from sham and TBI bone marrow. We found that EVs regulate
inflammatory and NF-κB signaling of bone marrow cells. Our results showed a significant increase
in IL-1 (p = 0.026) and TNF-α (p = 0.042) in bone marrow cells. IL-6 (p = 0.018) had the highest
up-regulation compared to IL-1 and TNF-α. Furthermore, NF-κB signaling genes Birc3 (p = 0.0054)
and RelA/p65 (p = 0.0028) were significantly up-regulated compared to control (Figure 8).
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3.8. The miRNA-1224 Cargo Changed in TBI-Derived EVs

MiRNA-1224 is known for its role in NF-kb activation [31] and osteoclast differentiation of
RAW264.7 cells [32,33]. Our functional assayed showed that TBI bone marrow-derived EVs activate
NF-kb signaling and osteoclast differentiation of bone marrow cells (Figures 5 and 7). We hypothesized
that miRNA-1224 might be dysregulated in TBI bone marrow-derived EVs. To investigate this,
we isolated miRNA and perform real time PCR on miRNA-1224. Real time data showed significant
(p-value = 0.001) up-regulation (~4 fold) of miRNA-1224 in 48h TBI bone marrow-derived EVs compare
to sham (Figure 9).
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4. Discussion

TBIs induce chronic, broad sequelae that reduce long-term quality of life. Clinical data suggest a
strong correlation between TBI and dysfunctions in autonomic regulation, neuroendocrine function,
and psychiatric stability [1,5–8]. Moreover, recent studies suggest that increased fracture rates are
another long-term consequence of TBI [13–20]. The combination of an increased fall risk and low
bone mineral density post-TBI has been associated with increased fracture rates [13–20]. In this
study, we used an established pre-clinical model of focal TBI in mice. We found that a single,
isolated head injury decreased bone mineral density and increased bone loss. Furthermore, our
data also demonstrated decline in bone markers such as BMP2, RUNX2, and osteocalcin in bone and
elevated levels of pro-inflammatory cytokines in bone marrow niche/environment after TBI. It is well
established that traumatic injury to the brain produces inflammatory responses in the bloodstream
and peripheral organs [34]. Ours is the first study to demonstrate elevated levels of pro-inflammatory
cytokines in the bone marrow niche/environment. The systemic production of pro-inflammatory
cytokines in the bone marrow, bloodstream, and peripheral organs may play a vital role in secondary
complications of TBI. Recent TBI studies in mice have shown similar damaging inflammatory cascades
outside the central nervous system such as in the bloodstream [35], liver [34], kidney [36], and other
organs. Hayakata et al. (2004) reported elevated levels of pro-inflammatory cytokines in serum in the
acute setting of a TBI within the first six hours, post injury [37].

In normal physiological conditions, there is a balance between the activity of bone resorbing cells
(osteoclasts) and bone forming cells (osteoblasts); however, this homeostasis may be disrupted under
pathological conditions, leading to bone loss. Consistent with our findings showing a reduction in bone
mineral density and increased bone loss, our in vitro data suggest bone marrow hematopoietic cells
derived from TBI mice enhanced osteoclast activity, as compared to bone marrow from sham-injured
mice. Beyond the demonstration of elevated levels of osteoclast differentiation after TBI, bone marrow
from TBI mice increased colony formation, suggesting TBI creates an ideal microenvironment for
osteoclast differentiation. Although the precise mechanisms underlying these effects remain undefined,
oxidative stress and inflammation contribute toward post-menopausal and age-dependent bone
loss [38,39]. In particular, bone resorption and differentiation of osteoclast precursors to mature cells
is regulated by the pro-inflammatory transcription factors, NF-κB, and RANKL [40,41]. Of note,
we reported increased chronic inflammatory activation, involving the mobilization of bone marrow
derived immune cells, within both blood and brain following a TBI [25,42–45]. Consistent with these
findings, the key NFκB genes, RelA/p65, and Birc3, were dysregulated in the bone marrow niche
after TBI. Moreover, Vaira et al. (2008) reported that RelA/p65 promotes osteoclast differentiation by
blocking RANKL induced apoptosis whereas knockdown of RelA in the hematopoietic compartment
blocked osteoclastogenic response to RANKL and protected against arthritis-induced osteolysis [40].
Thus, TBI may create a chronic, pro-inflammatory environment within the bone marrow that
contributes to progressive bone loss.

Different cell types within the bone marrow cavity communicate via the release of extracellular
vesicles (EVs), which are ~100 nm diameter packaged vesicles containing specific proteins, lipids,
factors, and/or genetic material. Recent studies suggested that bone marrow- and blood-derived
exosomes regulate osteoblastic and osteoclastic differentiation in various musculoskeletal disease
models [46–48]. As we similarly demonstrated that human synovial fluid-derived EVs play vital
role in the pathophysiology of osteoarthritis [27], we herein explored whether EVs contribute
to osteoclast differentiation efficiency after TBI. To answer this important question, we cultured
bone marrow hematopoietic cells derived from sham-injured mice in the presence of bone marrow
derived EVs from TBI mice. Interestingly, bone marrow derived EVs from TBI mice increased both
osteoclast differentiation and colony forming cells in sham-derived bone marrow cells. Furthermore,
we demonstrated that sham bone marrow derived EVs partially prevented osteoclast differentiation
efficiency of TBI bone marrow cells. Moreover, bone marrow derived EVs isolated from TBI mice
elevated pro-inflammatory cytokines and dysregulated NF-κB signaling genes in bone marrow cells.
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Our findings in the context of TBI are in line with a report showing EVs derived from various body
fluids, including amniotic fluid, liver cirrhosis ascites, and malignant ascites of ovarian cancer patients,
activate inflammatory cytokines in monocytic cells via NF-κB signaling [49].

EVs miRNAs cargo plays important role in normal cellular and pathological conditions [27,29].
Our published studies demonstrated that bone marrow-derived EVs miRNA cargo change with
age [29]. Previously it has been reported that miR-1224 regulate NF-kb activity in RAW264.7 cells [31]
and play important role in osteoclast differentiation [32,33]. Based on these studies [31–33] and
our findings that TBI derived EVs activate NF-kb and osteoclast differentiation (Figures 5 and 7),
we hypothesized that TBI bone marrow-derived EVs miRNA-1224 cargo might be affected. This
is indeed the case; we found that miR-1224 elevated in TBI bone marrow-derived EVs. Niu et al.
reported that miR-1224 mimic transfection to RAW264.7 cells increase the basal NF-kb activity and
Kagiya et al. group reported elevated level of miR-1224 expression during osteoclast differentiation
of RAW264.7 cells. We speculate that elevated level of miR-1224 in EVs might play important
role in TBI dependent NF-kb activation and osteoclast differentiation in bone marrow. Further
studies are needed to demonstrate direct relationship between EVs miR-1224 cargo and NF-kb
activation/osteoclast differentiation.

Our well-established, pre-clinical TBI model produces a highly reproducible focal TBI; however,
clinical TBI is a heterogeneous injury that may not be perfectly mimicked by any single rodent model.
Thus, confirmation of our findings using other TBI models, such as lateral fluid percussion, and higher
order species (e.g., porcine models) may be warranted prior to clinical translation. Our model used
herein also produces a moderate-severe injury; thus, it would be interesting to determine whether
similar effects are observed on bone density after a single and/or repetitive mild TBI. These later
studies may have direct relevance to athletes in contact sports and military personnel that are at risk of
TBI. A potential caveat is the use of young, otherwise healthy male mice. While necessary to limit the
scope of this proof of concept study, our studies do not consider the potential influence of common
comorbidities that may influence bone physiology, including age and sex. Furthermore, we only
assessed EVs effects in in vitro cultures of bone marrow cell differentiation to osteoclasts. Further
studies are needed to determine whether TBI derived exosomes affect the osteogenic differentiation
ability of mesenchymal stromal cells. In addition, we did not elucidate in detail which cargo (protein,
miRNA) of exosomes is directly responsible for the increased pro-inflammatory cytokine production
and osteoclast differentiation. Future studies are needed to investigate the EVs cargo and their role in
TBI-induced bone loss.

Taken together, our study raises the interesting possibility that TBI fosters a chronic
pro-inflammatory state within the bone marrow niche, culminating in increased bone resorption.
Future work by our group will elucidate the source of EVs in bone marrow to determine whether EVs
are locally released or transported from the injury site. We also will identify the cargo of TBI-derived
EVs to further advance therapeutic development and the clinical translation of targeted therapies to
prevent bone loss after TBI.
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Abbreviations

TBI Traumatic brain injury
EVs Extracellular vesicles
M-CSF Macrophage colony-stimulating factor
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
BMP2 Bone morphogenetic protein 2
RUNX2 Runt-related transcription factor 2
TRAP Tartrate-resistant acid phosphatase
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McInnes, I.B.; Buzás, E.I.; et al. Extracellular vesicles regulate the human osteoclastogenesis: Divergent roles
in discrete inflammatory arthropathies. Cell. Mol. Life Sci. 2017, 74, 3599–3611. [CrossRef] [PubMed]

49. Bretz, N.P.; Ridinger, J.; Rupp, A.-K.; Rimbach, K.; Keller, S.; Rupp, C.; Marme, F.; Umansky, L.; Umansky, V.;
Eigenbrod, T.; et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via
toll-like receptor signaling. J. Biol. Chem. 2013, 288, 36691–36702. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12028-014-0045-1
http://www.ncbi.nlm.nih.gov/pubmed/25273515
http://dx.doi.org/10.1097/01.shk.0000131193.80038.f1
http://www.ncbi.nlm.nih.gov/pubmed/15257081
http://dx.doi.org/10.1186/1742-4933-2-14
http://www.ncbi.nlm.nih.gov/pubmed/16271143
http://dx.doi.org/10.5468/ogs.2015.58.1.46
http://www.ncbi.nlm.nih.gov/pubmed/25629018
http://dx.doi.org/10.1172/JCI33392
http://www.ncbi.nlm.nih.gov/pubmed/18464930
http://dx.doi.org/10.1038/cr.2010.159
http://www.ncbi.nlm.nih.gov/pubmed/21079651
http://dx.doi.org/10.1016/j.freeradbiomed.2017.09.017
http://www.ncbi.nlm.nih.gov/pubmed/28942245
http://dx.doi.org/10.1016/j.bbi.2017.10.021
http://dx.doi.org/10.1155/2017/6057609
http://www.ncbi.nlm.nih.gov/pubmed/28785377
http://dx.doi.org/10.1002/glia.22581
http://www.ncbi.nlm.nih.gov/pubmed/24166800
http://dx.doi.org/10.1371/journal.pone.0075227
http://www.ncbi.nlm.nih.gov/pubmed/24058665
http://dx.doi.org/10.1371/journal.pone.0114627
http://www.ncbi.nlm.nih.gov/pubmed/25503309
http://dx.doi.org/10.1007/s00018-017-2535-8
http://www.ncbi.nlm.nih.gov/pubmed/28493076
http://dx.doi.org/10.1074/jbc.M113.512806
http://www.ncbi.nlm.nih.gov/pubmed/24225954
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Controlled Cortical Impact 
	Micro-Computed Tomography Analyses (CT) 
	Isolation of Bone Marrow Cells for Colony Forming and Osteoclast Differentiation Assay 
	Tartrate-Resistant Acid Phosphatase Staining 
	Isolation of RNA, Synthesis of cDNA, and Real-Time PCR 
	Extracellular Vesicles Isolation from Bone Marrow 
	Extracellular Vesicles Treatment 
	miRNA Isolation and Real Time PCR on Extracellular Vesicles 
	Statistics Analysis 

	Results 
	Micro-Computed Tomography Analysis of Femur Bone 
	TBI Decreased Bone Formation Markers and Increased Cytokines Expression in Bone 
	Elevated Chronic Inflammation and NF-B Signaling Genes in Bone Marrow after TBI 
	TBI Affects Colony Forming Unit (CFU) Efficiency and Osteoclast Differentiation of Bone Marrow Cells 
	Extracellular Vesicle Isolation and Characterization 
	EVs Derived from TBI Bone Marrow Enhance Osteoclast Differentiation of Bone Marrow Cells 
	TBI-Derived EVs Isolated from Bone Marrow Regulate Inflammatory and NF-B Signaling 
	The miRNA-1224 Cargo Changed in TBI-Derived EVs 

	Discussion 
	References

