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Abstract

In meiosis, programmed DNA breaks repaired by homologous recombination (HR) can be processed into inter-homolog
crossovers that promote the accurate segregation of chromosomes. In general, more programmed DNA double-strand
breaks (DSBs) are formed than the number of inter-homolog crossovers, and the excess DSBs must be repaired to maintain
genomic stability. Sister-chromatid (inter-sister) recombination is postulated to be important for the completion of meiotic
DSB repair. However, this hypothesis is difficult to test because of limited experimental means to disrupt inter-sister and not
inter-homolog HR in meiosis. We find that the conserved Structural Maintenance of Chromosomes (SMC) 5 and 6 proteins in
Caenorhabditis elegans are required for the successful completion of meiotic homologous recombination repair, yet they
appeared to be dispensable for accurate chromosome segregation in meiosis. Mutations in the smc-5 and smc-6 genes
induced chromosome fragments and dismorphology. Chromosome fragments associated with HR defects have only been
reported in mutants, which have disrupted inter-homolog crossover. Surprisingly, the smc-5 and smc-6 mutations did not
disrupt the formation of chiasmata, the cytologically visible linkages between homologous chromosomes formed from
meiotic inter-homolog crossovers. The mutant fragmentation defect appeared to be preferentially enhanced by the
disruptions of inter-homolog recombination but not by the disruptions of inter-sister recombination. Based on these
findings, we propose that the C. elegans SMC-5/6 proteins are required in meiosis for the processing of homolog-
independent, presumably sister-chromatid-mediated, recombination repair. Together, these results demonstrate that the
successful completion of homolog-independent recombination is crucial for germ cell genomic stability.
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Introduction

Homologous recombination (HR) utilizes an undamaged

homologous DNA template to repair DNA double-strand breaks

(DSBs). The use of template-mediated repair minimizes the

likelihood of DNA sequence alterations arising during the repair

process. For mitotic cells following DNA replication, the sister

chromatid is the predominant repair template because of the close

proximity of sister chromatids maintained by sister-chromatid

cohesion [1,2], and inter-sister recombination provides an

important high fidelity pathway for DSB repair.

Meiosis is a specialized cell cycle in which diploid progenitor

cells divide to produce haploid gametes [3,4]. The chromosome

copy number is reduced in meiosis during the reductional division,

in which homologous chromosomes are bioriented at metaphase

to ensure that each daughter cell receives a haploid complement of

chromosomes. The correct biorientation of homologous chromo-

somes generally requires the formation of physical linkages

between homologous chromosomes called chiasmata, which are

formed by reciprocal chromatid exchanges between homologous

chromosomes that can occur through inter-homolog recombina-

tion. To promote chiasmata formation in meiosis I, a germ cell will

purposely create up to hundreds of programmed DSBs which are

repaired by HR [5]. While a small subset of DSB is repaired to

form chiasmata, it is generally thought that the remaining DSBs

must be efficiently repaired to preserve the genomic stability of the

germ cell.

Even though homologous recombination between sister chro-

matids will not contribute to chiasmata formation, sister-

chromatid recombination is responsible for a portion of meiotic

DSB repair in a variety of species [6–11], and is thought to

promote genomic stability in germ cells especially when inter-

homolog recombination is compromised or unavailable [7,10,12–

14]. However, whether meiotic sister-chromatid recombination is

crucial for germ cell genomic stability, when inter-homolog repair

is functional, has not been determined.

The C. elegans homolog of the mammalian breast and ovarian

cancer susceptibility gene brc-1 was implicated specifically for

meiotic sister-chromatid recombination [7]. The brc-1(tm1145)

mutant showed a delayed progression in HR repair, but there

were no significant changes in chiasmata formation [7]. The brc-1

mutation appeared to impede homolog-independent repair,
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because it caused the appearance of chromosome fragments when

combined with mutations that disrupted inter-homolog repair [7].

However, the brc-1 mutant by itself only exhibited a mild

chromosome fragmentation defect [7]. These results suggest that

brc-1 and by extension sister-chromatid recombination are not

required to complete meiotic DSB repair. The degree to which

sister-chromatid recombination was disrupted by the brc-1

mutation is unclear.

If sister-chromatid recombination in meiosis were necessary for

the proper repair of meiotic DSB, then mutations that disrupted

meiotic sister-chromatid recombination could result in chromo-

some anomalies (e.g. dicentric chromosomes), which could lead to

mis-segregation and aneuploidy [15,16]. Because mis-segregation

and aneuploidy in meiosis also are the expected outcomes from the

loss of inter-homolog recombination, it would be difficult to

distinguish an inter-sister recombination defect from an inter-

homolog recombination defect. The study of sister-chromatid

recombination in meiosis would be simpler in an experimental

organism, in which the presence of chromosome fragments and

rearrangements would not necessarily lead to mis-segregation.

One such model organism is the nematode Caenorhabditis elegans

that can segregate partial chromosome duplications and fusion

chromosomes with surprisingly high fidelity [17,18]. We hypoth-

esized that severe DSB repair defects in sister-chromatid

recombination could be decoupled from chromosome mis-

segregation when studied in C. elegans.

For a candidate meiotic sister-chromatid recombination factor,

we chose the Structural Maintenance of Chromosomes (SMC) 5

and 6 protein complex, because the human and yeast Smc5/6

complexes have previously been implicated in sister-chromatid

recombination in mitosis [19–21]. The mouse and fission yeast

Smc5/6 protein complexes also are expressed during meiosis and

the loss of the fission yeast complex leads to aneuploid spore

formation [22,23]. However, the requirement for the Smc5/6

complex specifically for meiotic sister-chromatid recombination

has not been addressed.

The main objective of this research is to address the

requirement and the function of the C. elegans SMC-5 and SMC-

6 proteins for DSB repair in meiotic germ cells. The C. elegans smc-

5 and smc-6 mutants exhibited defects in the processing of RAD-51

HR intermediates in meiosis. Similar to the brc-1 mutant,

chiasmata formation and meiotic chromosome segregation were

apparently unaffected in the smc-5 and smc-6 mutants. In this

study, we demonstrate that the RAD-51 defect is due to homolog-

independent repair. More importantly, we find that the severe

loss-of-function mutation in smc-5 or smc-6 is sufficient to elicit a

chromosome fragmentation defect in meiotic germ cells. The

fragments appeared to be associated with homolog-independent

repair of programmed meiotic DSBs. Consistent with a loss in

sister-chromatid recombination, the smc-5 and smc-6 mutant

fragmentation defect was enhanced by inter-homolog recombina-

tion mutations, but not by mutations that reduced sister-chromatid

recombination or cohesion. While the smc-5 and smc-6 mutants

were initially viable, the mutant strains would gradually lose

fecundity and exhibit other germ cell defects. These results reveal

that the SMC-5/6 proteins function in homolog-independent,

likely sister-chromatid-mediated, recombination in meiosis, and

that homolog-independent recombination is required for germ cell

genomic stability.

Results

The identification of the C. elegans smc-5 and smc-6
deletion mutants and the production of specific
antibodies to the SMC-5 and SMC-6 proteins

The C. elegans SMC-5 homolog C27A2.1 and the SMC-6

homolog F54D5.14 were identified previously based on protein

sequence homology [24]. We generated antibodies to the SMC-5

and SMC-6 homologs that detected proteins of the predicted size

from wild-type worm lysates (Figure 1B, lanes 1, 3 and 6). Western

blot analyses of the mutant worm lysates confirmed the specificities

of the antibodies, because the detected bands were absent in the

smc-5(ok2421) and smc-6(ok3294) mutants (Figure 1B, lanes 4

and 9) that were predicted to have severe disruptions in protein

function (Figure 1A). The SMC-5 antibodies also detected a

smaller protein band in the smc-5(tm2868) mutant (Figure 1B, lane

2), in agreement with the predicted in-frame deletion in the smc-

5(tm2868) encoded protein (Figure 1A). Immunoprecipitation

analysis revealed that the C. elegans SMC-5 and SMC-6 proteins

specifically co-precipitated from whole worm lysates (Figure 1C),

as expected from the known association between the Smc5 and

Smc6 proteins in yeast and in human [23,25–27].

The SMC-5 and SMC-6 proteins are enriched in the adult
germline

The SMC-6 protein was detected by indirect immunofluores-

cence microscopy in the nuclei of germ cells throughout the adult

hermaphrodite gonad (Figure 2). Beginning at the distal tip region

of the gonad (Figure 2A), SMC-6 staining is detected in the

nucleus of germ cells in mitotic proliferation, pre-meiotic S phase

and in the early stages of meiosis (the transition zone), which are

equivalent to leptotene and zygotene (Figure 2B). Interestingly,

SMC-6 staining became more enriched on chromosomes at

pachytene (Figure 2C), which coincided with the timing of meiotic

DSB repair [14]. The SMC-6 immunofluorescence became more

intense as the germ cells exited pachytene and progressed through

the diplotene and diakinesis stages of prophase (Figures 2D and

2E). The pachytene and diakinesis staining of SMC-6 was

specifically disrupted by the smc-6(ok3294) mutation (Figures

S1C and S1E). Even though we could not detect SMC-5

immunostaining on pachytene chromosomes, we found that the

smc-5(tm2868) and smc-5(ok2421) mutations reduced SMC-6

staining on pachytene chromosomes (Figures S1A and S1B),

Author Summary

Sperm and oocytes are essential for the faithful transmis-
sion of genetic information during sexual reproduction. As
germ cells mature into sperm and oocytes, DNA double-
strand breaks (DSBs) are deliberately created on each
chromosome and a subset of DSBs is repaired to form
meiotic crossovers between homologous chromosomes.
Because germ cells must undergo this programmed
process of deliberate DNA damage and repair, identifying
repair factors active in germ cells and determining the
requirement of their functions in meiotic DSB repair are
important first steps in understanding infertility and
developmental disorders caused by defective sperm and
oocytes. In this manuscript, we find that the evolutionarily
conserved SMC-5 and SMC-6 proteins fulfill a critical role in
preserving genomic stability in germ cells in C. elegans.
Our findings further describe the genetic mechanisms by
which the C. elegans SMC-5/6 proteins function in meiotic
DSB repair. These data reveal that inter-sister homologous
recombination, a repair mechanism thought to function as
a back-up repair method in meiosis, serves a more
significant role in normal meiosis than was previously
appreciated.

Homolog-Independent Meiotic Recombination Repair
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indicating a possible dependency on SMC-5 for the localization of

SMC-6 at pachytene. The immunostaining for SMC-5 was

detected on diplotene and diakinesis chromosomes specifically in

wild-type (Figures 2D and 2E), but not in the smc-5(tm2868) and

smc-5(ok2421) mutant oocytes (Figures S1D and S1H). The SMC-5

and SMC-6 chromosomal staining in diplotene (data not shown)

and diakinesis oocytes (Figures S1F, S1G and S1I) also appeared

to be interdependent. In addition to germ cell staining, SMC-5

and SMC-6 immunostaining were detected in somatic cells during

early embryogenesis (data not shown). The three smc-5 and smc-6

mutations caused frequent chromatin-bridges to appear in the

intestine, even though immunostaining was significantly weaker in

the intestine than the germline (Bickel and Chan, unpublished

observations). These results suggest that the SMC-5/6 proteins

accumulate in the soma and the germline, with greater enrichment

seen in the germ cells.

Mutants of smc-5 and smc-6 exhibited reduced fecundity
The homozygous smc-5 and smc-6 mutants (F1) produced by

heterozygous mutant parents and the F2 offspring produced by the

homozygous smc-5 and smc-6 F1 mutants exhibited near wild-type

embryonic viability (98% to 99% viable with n.2,000 per

genotype). Since the F2 mutants lacked maternal and zygotic

expression of the SMC-5 or the SMC-6 protein, we conclude that

the C. elegans SMC-5 and SMC-6 proteins are dispensable for

viability. However, the smc-5 and smc-6 mutants were difficult to

maintain as homozygous mutant strains and were prone to

becoming sterile (Figure S2A). The transgenerational sterility

phenotype is typically associated with genomic instability in the

germ cells [28–30]. By contrast, the homozygous brc-1(tm1145)

mutant strains remained fecund (Figure S2A), which suggests the

smc-5 and smc-6 mutations may be more disruptive to normal germ

cell functions.

In agreement with the observed enrichment for the SMC-5 and

SMC-6 proteins in germ cells, the smc-5 and smc-6 mutants had

significantly smaller gonads containing fewer germ cells (Figure

S3). In comparison to wild-type, there was on average a 30% to

50% reduction in fertilized eggs produced by the smc-5 and smc-6

F1 mutants and in smc-5 RNAi-treated worms (Figure S2B). Figure

S2C shows that the smc-5(tm2868) mutant and the wild-type

Figure 1. Identification and detection of the SMC-5 and SMC-6 homologs in C. elegans. (A) Two diagrams illustrate the predicted exon-intron
structures of the smc-5 and smc-6 genes and the locations of the tm2868, ok2421 and ok3294 deletion mutations (blue bars). The exons are represented
by the grey boxes and the introns by the black lines. The tm2868 deletion removes 444 basepairs from exon 4 to exon 5, and it is predicted to generate
an in-frame deletion of 133 codons. The ok2421 deletion removes 2,420 basepairs from intron 6 to exon 11. The ok3294 lesion deletes the last 830
basepairs from exon 4, and should result in a frame-shift at codon 192 and the introduction of premature termination codons (asterisks). The
corresponding peptide regions used for antibody production are indicated. (B) Western blot analysis of whole worm lysates using antibodies raised to
SMC-5 (lanes 1–5), antibodies to SMC-6 (lanes 6–9), and antibodies to alpha-tubulin as a loading control (lanes 1–9). The genotypes of the worms used
are indicated above the western blot images. Two-fold more lysates were loaded in lanes 1–2 to detect the smaller SMC-5 product from the smc-
5(tm2868) mutant lysates. (C) Western blot analysis of immunoprecipitates from wild-type embryo lysates using pre-immune (lane 1), SMC-3 (lane 2) and
SMC-5 antibodies (lane 3). Antibodies for western blot detection are indicated to the left of the western blot images.
doi:10.1371/journal.pgen.1001028.g001

Homolog-Independent Meiotic Recombination Repair
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worms both began to lay eggs at approximately 1 day after L4

development. However, fertilized egg production declined in the

smc-5(tm2868) mutant at an earlier age than wild-type (Figure S2C)

and the mutant hermaphrodites began to lay unfertilized oocytes

(data not shown). Similar phenotypes were also observed for the

smc-5(ok2421) and the smc-6(ok3294) mutants (data not shown).

The C. elegans hermaphrodite produces and stores a supply of

sperm during late larval development, which will be used to

fertilize oocytes produced in adulthood. The appearance of

unfertilized oocytes could be caused by a premature depletion of

hermaphrodite-produced sperm. The smc-5(tm2868) mutant

hermaphrodites indeed showed an absence of sperm at an earlier

age in adulthood (Figure S2D). However, male sperm supplied by

mating failed to restore egg production (Figure S2E), which

indicates that the loss of fecundity is not simply due to an

insufficient amount of sperm.

Germ cells from the smc-5 and smc-6 mutants exhibited
phenotypic defects in DNA damage repair–
hypersensitivity to ionizing radiation and increased germ
cell apoptosis

In order to determine if the smc-5 and smc-6 mutants have defects

in the maintenance of germ cell genomic stability, we tested whether

germ cells lacking SMC-5/6 functions are hypersensitive to ionizing

radiation (IR). We followed a published protocol that examines the

viability of eggs produced from radiation-damaged germ cells [31].

For each dose of gamma radiation exposure examined, the smc-5

and smc-6 mutants exhibited drastically reduced viability in

comparison to wild type, consistent with the mutant germ cells

being hypersensitive to DNA damage (Figure 3A).

Because the smc-5 and smc-6 F1 mutants showed the

aforementioned gonadal defects (Figures S2 and S3) even before

IR treatment, we examined whether DNA damage may already be

present in the germline of unchallenged smc-5 and smc-6 mutants.

A well-characterized DNA damage response in the C. elegans

hermaphrodite germline is the induction of apoptosis by CEP-1/

p53, via the transactivation of the pro-apoptotic gene egl-1 [32].

Quantitative RT-PCR analysis showed a 5- to 6-fold increase in

egl-1 transcript levels in the smc-5 and smc-6 mutant worms in

comparison to wild type (Figure 3B). There was also an

approximate two-fold increase in germ cell corpses in all three

smc-5 and smc-6 mutant strains as detected by acridine orange

staining (Table S1). This staining was specifically suppressed in

the smc-5(tm2868);ced-3(n717) double mutant, which had an

impaired ability to implement apoptosis (Table S1). The germ cell

corpses also were confirmed in the smc-5(tm2868) mutant using

a CED-1::GFP reporter that marked cell corpses during

endocytosis (Figure 3C and Table S2). The RNAi knockdowns

of three core pro-apoptotic genes ced-3, ced-4, and egl-1 suppressed

the appearance of the GFP-positive germ cells in the smc-5(tm2868)

mutant, indicating that they were apoptotic germ cell corpses

(Table S2). In summary, the molecular, cytological and functional

evidence demonstrated that the smc-5 and smc-6 mutations resulted

in increased DNA damage response.

The smc-5 and smc-6 mutants showed an abnormal
accumulation of SPO-11-dependent homologous
recombination intermediates

We next examined whether meiotic DSB repair was compro-

mised in the smc-5 and smc-6 mutant germ cells, by monitoring the

appearance and disappearance of the HR strand exchange protein

RAD-51 on meiotic chromosomes [33]. DNA DSBs are formed by

the SPO-11 topoisomerase-like proteins at meiosis entry [34].

Figure 2. SMC-5 and SMC-6 accumulate in germ cells and on
meiotic chromosomes. (A) A drawing representation of an adult
hermaphrodite gonad arm. The progression of germ cell proliferation
and meiosis are indicated by the arrows starting from the distal tip
region of the gonad arm. (B) SMC-6 staining was detected in the
nucleus of germ cells in the distal gonad arm. Mitotic germ nuclei are
located in the pre-meiotic region proximal to the distal tip. Pre-meiotic
S phase nuclei should be located proximal to the transition zone nuclei
[66]. The green bracket marks the transition zone region. (C) SMC-6
staining in pachytene nuclei appeared to accumulate on chromosomes,
which differed from the more diffuse nucleoplasmic staining in the
distal gonad arm in (B). In the diplotene (D) and diakinesis (E) stages of
meiotic prophase I, SMC-5 and SMC-6 staining were detected
exclusively on chromosomes. Scale bars = 5 mm.
doi:10.1371/journal.pgen.1001028.g002
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Following 59-to-39 single-strand end resection, the RAD-51

proteins localize to the single-stranded DNA to promote the

invasion of intact homologous DNA template [14,33]. RAD-51

focal formation usually reaches a maximum density (foci per

nucleus) at early-pachytene and RAD-51 foci begin to disappear at

mid-pachytene [14,35,36]. By late pachytene, there are few RAD-

51 foci as HR repair is completed.

For comparison of equivalent gonadal regions between the wild-

type and the mutant strains, we limited our analysis of RAD-51

focal staining to mutant gonad arms that were close in size to wild

type. RAD-51 staining appeared in the distal region of the smc-5

and smc-6 mutant gonads, where it is rarely seen in wild-type

(Figures S4A–S4C); the quantification of the results is shown in

Figure S4F. The germ cells at the distal region are in mitosis and

pre-meiotic DNA replication, and therefore prior to meiotic entry.

We suspected that these RAD-51 foci were independent of meiotic

DSB. In agreement with this prediction, we found that the RAD-

51 foci in the distal gonads of both smc-5 mutant alleles (tm2868

and ok2421) persisted even though meiotic DSB formation was

blocked by the spo-11(ok79) null mutation [34] (Figures S4D and

S4E). The budding and fission yeast Smc5/6 mutants are known

to exhibit Rad51-dependent DNA replication defects [20,37–42].

The abnormal RAD-51 staining seen here in the pre-meiotic

germline in C. elegans may represent a DNA replication defect.

In the transition zone and at early pachytene, the meiotic germ

cells exhibited slightly more RAD-51 foci in the smc-5 and smc-6

mutants than in wild-type (Figure 4A). The difference in the

number of RAD-51 foci between the mutants and the wild-type

was significantly more pronounced at mid- and late-pachytene

(Figures 4A–4E). In contrast to the pre-meiotic RAD-51 staining,

the aberrant pachytene RAD-51 staining in the smc-5(tm2868) and

the smc-5(ok2421) mutants was significantly reduced by the spo-

11(ok79) mutation (Figures 4F and 4G), which suggests that the

RAD-51 staining defect at pachytene resulted primarily from a

defect in meiotic DSB repair rather than from prior DNA damage

in the pre-meiotic region.

Because apoptosis in germ cells could generate corpses that have

elevated RAD-51 staining, we also examined the smc-5(tm2868);ced-

3(n717) double mutant that was deficient for germ cell apoptosis.

The ced-3 mutation failed to suppress the aberrant RAD-51 staining

at late pachytene in the smc-5(tm2868) mutant, thus ruling out the

possibility that the RAD-51 defect was induced by apoptosis

(Figure 4H).

Homologous recombination appears to be the predominant

pathway for meiotic double-strand break repair in C. elegans

[43,44]. The lig-4(ok716) mutant in the canonical non-homologous

end-joining (NHEJ) pathway has no measurable effects on RAD-

51 accumulation in the germline [10]. Therefore, the aberrant

RAD-51 staining in the smc-5 and smc-6 mutants likely reflects a

defect in homologous recombination repair rather than NHEJ.

SMC-5 and SMC-6 are dispensable for inter-homolog
crossover formation

The failure to efficiently form inter-homolog crossover and the

subsequent chromosome mis-segregation in meiosis would pro-

duce two expected phenotypes: low embryonic viability due to

aneuploidy and higher than normal frequency of XO males due to

X chromosome mis-segregation. The smc-5 and smc-6 F2 mutants

exhibited normal embryonic viability (98% to 99%) and wild-type

frequencies of male self-progeny (0.1% to 0.2%). Chiasmata

formation appeared to be normal in the smc-5 and smc-6 mutant

oocytes, because the mutant oocytes had an average of six DNA

figures per oocyte consistent with normal inter-homolog linkage

from the six pairs of homologous chromosomes (Table S4). We

also observed the restructuring of meiotic chromosomes at late

prophase consistent with chiasmata formation (Figure 5), as

confirmed by cohesin immunostaining and DNA-DAPI fluores-

cence of the chromatid axes (Figures 5C–5E). The ZHP-3 proteins

are proposed to couple synaptonemal complex morphogenesis and

crossover formation and to mark precursor sites for inter-homolog

crossover formation in late pachytene [45,46]. The average

number of ZHP-3 foci remained unchanged at the wild-type level

Figure 3. Loss of function mutations in smc-5 and smc-6 conferred hypersensitivity to ionizing radiation (IR) and increased DNA-
damage responses in germ cells. (A) Graph of the viability of the eggs produced from mock and radiation-exposed germ cells in mutant F1 and
wild-type L4-stage larvae as described [31]. 297 eggs or more were counted for each genotype and at each dose of IR. (B) Relative mRNA abundance
for egl-1 after normalization to gamma tubulin tbg-1 as measured by quantitative RT-PCR [32]. Error bars represent standard errors. The asterisks (*)
indicate significant changes from the wild-type control (p,0.001, t-Test). Gel analysis confirmed the size of each RT-PCR product and is shown
underneath the graph. (C) Micrographs of germ cell corpses (white arrows) detected by CED-1::GFP fluorescence showed a greater number of corpses
in the smc-5(tm2868) mutant germline. The average number of corpses per gonad and the standard error are indicated. Scale bars = 10 mm.
doi:10.1371/journal.pgen.1001028.g003

Homolog-Independent Meiotic Recombination Repair
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of six foci per nucleus in the smc-5(ok2421) and smc-6(ok3294)

mutant germ cells (Figure S5; [45]). Thus, the combination of

phenotypic and cytological evidence confirmed inter-homolog

crossover formation in the smc-5 and smc-6 mutant germlines.

The smc-5 and smc-6 mutations appeared to disrupt
homolog-independent homologous recombination in
meiosis

Based on our findings, the SMC-5/6 proteins appear to be

required for homologous recombination that does not affect inter-

homolog crossover formation, which possibly involves inter-

homolog non-crossover repair or homolog-independent sister-

chromatid recombination. To address the two possibilities, we

tested whether the smc-5(ok2421) and the smc-6(ok3294) mutations

will confer the RAD-51 defect in the homolog synapsis mutant

him-3(gk149). HIM-3 is an axial element of the synaptonemal

complex that promotes inter-homolog recombination by stabiliz-

ing the close association of homologous chromosomes in wild-type

(Figure 6A; [47]). In the absence of HIM-3 (Figure 6B), inter-

homolog non-crossover repair should be disrupted. If the smc-5 or

the smc-6 mutation also disrupted inter-homolog non-crossover

repair, then the him-3 double mutant with smc-5 or smc-6 should be

similar to the him-3 single mutant (Figure 6C). Conversely, if the

SMC-5/6 proteins promote homolog-independent recombination,

which should be functional in the him-3 mutant [48], then the

RAD-51 staining in the him-3 double mutant should be more

persistent than the him-3 single mutant (Figure 6D).

The RAD-51 focal staining at late pachytene in the him-3(gk149)

null mutant was similar to wild-type (Figure 4I; [48]). The smc-

5(ok2421) or the smc-6(ok3294) mutation in the him-3 mutant

genetic background drastically increased RAD-51 focal staining at

late pachytene (Figures 4J and 4K), indicating that the smc-5 and

smc-6 mutations impeded homolog-independent homologous

recombination repair in meiosis.

The smc-5(ok2421) and the smc-6(ok3294) mutants
exhibited chromosome fragmentation and
dismorphology at diakinesis

Approximately 20% of the diakinesis oocytes from the smc-5(ok2421)

and smc-6(ok3294) mutants contained chromosome fragments (blue

arrows in Figure 5, and white arrowheads in Figure 7). These

fragments were disproportionately smaller than the linked homologs at

diakinesis, and also showed staining for the cohesin SMC-3 protein

indicating they were derived from chromosomes (Figure 5E). By

contrast, no fragments were observed in wild-type oocytes (Figures 7A

and 7G). Intriguingly, the fragmentation defect was rarely seen in the

smc-5(tm2868) mutant oocytes and appeared to correlate with the

severity of SMC-5 and SMC-6 protein disruption because the smc-

5(tm2868) mutants still produced a truncated SMC-5 protein

(Figure 1B). The fragmentation defect also correlated with the more

severe RAD-51 staining defect at late pachytene that was found in the

smc-5(ok2421) and smc-6(ok3294) mutants (Figure 4A). Similar to the

RAD-51 defect, the spo-11(ok79) null mutation potently reduced

fragmentation from 20.5% in smc-5(ok2421) mutant oocytes to 2.4% in

the smc-5;spo-11 double mutant oocytes (Figure 7G).

The brc-1(tm1145) mutant reportedly exhibited a low pene-

trance fragmentation defect [7], which prompted us to compare

the fragmentation defect in the brc-1(tm1145) mutant oocytes to

the smc-5 and smc-6 mutants. There was an approximate three- to

four-fold lower incidence of the fragmentation defect in the brc-

1(tm1145) mutant oocytes in comparison to the smc-6(ok3294) and

the smc-5(ok2421) mutants, respectively (Figure 7G). The smc-5 and

smc-6 mutant oocytes also exhibited an unresolved diakinesis

Figure 4. Aberrant RAD-51 accumulation in meiotic germ cells
from the smc-5 and smc-6 mutants. (A) The average numbers of
RAD-51 foci per nucleus in the transition zone and pachytene regions of
the gonad arms are represented in the bar graph; the error bars
represent standard errors. The pachytene region was divided into three
equal length areas (early, mid and late) and each quantified separately.
The smc-5 and smc-6 mutants showed significant increases in RAD-51
foci in comparison to wild-type at the mid- to late-pachytene regions
(p#0.01; two-tailed t-Test). The numerical values and sample sizes are
summarized in Table S3. (B–K) Micrographs of RAD-51 immunofluores-
cence and DAPI-DNA fluorescence in late pachytene nuclei from the
wild-type and the mutant germlines. Scale bars = 5 mm.
doi:10.1371/journal.pgen.1001028.g004
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chromosome defect that was absent in the brc-1(tm1145) mutant

and the wild-type oocytes (Figures S6A and S6B). Unresolved

diakinesis chromosomes often appeared with a severe loss of

homologous recombination function as found in the rad-51(lg8701)

and other HR repair mutants (Figure S6A; [14,33,44,49]). These

results together indicate that the smc-5(ok2421) and the smc-

6(ok3294) mutants may be more severely compromised for meiotic

homologous recombination repair than the brc-1(tm1145) mutant.

We utilized chromosome fragmentation at diakinesis as a

quantitative readout to determine the genetic interactions of smc-5

and smc-6 with inter-homolog recombination mutations or sister-

chromatid recombination and cohesion mutations. If the fragmen-

tation defect of the smc-5 and smc-6 mutants was due to disruptions in

sister-chromatid recombination, then additional mutations that

disrupted inter-homolog recombination (e.g. homolog-synapsis

mutants) should enhance the fragmentation defect. Moreover,

additional mutations that disrupted sister-chromatid recombination

or cohesion would be expected to not enhance the fragmentation

defect. We examined two homolog-synapsis defective conditions,

using the him-3(gk149) null mutation and RNAi knockdown of syp-2,

which encodes a synaptonemal complex central element protein

[14]. While the loss of function for him-3 or syp-2 in the wild-type

genetic background caused a modest chromosome fragmentation

defect (1.4% to 1.5%), the homolog synapsis deficiencies consistently

enhanced the penetrance of the fragmentation defects in the smc-

5(ok2421) and the smc-6(ok3294) mutants. There were synergistic

increases from an average of 20% fragmentation for the smc-

5(ok2421) and smc-6(ok3294) single mutants to 30% to 39% for the

double mutants (Figure 7G). This enhancement was more

pronounced in the sensitized smc-5(tm2868) hypomorphic mutant.

The smc-5(tm2868);him-3(gk149) double mutant oocytes exhibited

chromosome fragments in 20% of the oocytes, which was a 10-fold

increase in fragmentation compared to the smc-5(tm2868) and the

him-3(gk149) single mutants (Figure 7G). By contrast, double mutants

with brc-1(tm1145) (Figure 7G) or the cohesin Smc1 mutant, him-

1(e879), failed to enhance the fragmentation defect (Figure S6C).

The brc-1(tm1145) and the him-1(e879) mutations disrupt sister-

chromatid recombination and cohesin function, respectively [7,50].

Thus, the specific enhancements of the fragmentation defect by the

loss of homolog-synapsis and not by further disruptions to sister-

chromatid recombination support the hypothesis that the SMC-5/6

proteins function in meiotic sister-chromatid recombination.

Discussion

The successful completion of homolog-independent
homologous recombination is crucial for genomic
stability in germ cells

The requirement for homolog-independent recombination

under normal meiotic conditions, when inter-homolog repair is

functional, has not been tested. Challenges in addressing this

question are the lack of experimental means to robustly disrupt

homolog-independent recombination in meiosis without also

perturbing inter-homolog recombination.

This study provides evidence that the SMC-5/6 proteins in C. elegans

are required for the successful completion of homologous recombina-

tion repair of meiotic DSBs, consistent with similar observations in

fission yeast [22]. Our findings further pinpoint this requirement for the

SMC-5/6 proteins in C. elegans to homolog-independent homologous

recombination. The smc-5 and smc-6 mutations disrupted the normal

progression of homolog-independent homologous recombination

intermediates in the him-3(gk149) mutants (Figures 4J and 4K).

Although we have not directly assessed sister-chromatid recombination

in the meiotic germ cells, the genetic interactions between smc-

5(ok2421) and brc-1(tm1145) (Figure 7G) and between smc-5(ok2421) or

smc-6(ok3294) with the him-1(e879) mutation (Figure S6C) are

consistent with sister-chromatid recombination being disrupted in the

smc-5(ok2421) and smc-6(ok3294) mutants. Additionally, the smc-

5(ok2421) and smc-6(ok3294) mutants each showed a gradual

transgenerational sterility defect, consistent with the loss of germ cell

Figure 5. Chromosome fragmentation defects in smc-5 and smc-6 mutant diakinesis oocytes that successfully formed crossovers.
Cartoon representations (A and B) of a pair of homologous chromosomes at diakinesis. (A) In wild-type, inter-homolog association is maintained by
cohesion between the recombinant chromatids. The location of the chromatid exchange is indicated by the two black arrows, which provides the
focal point for the restructuring of chromatid axes that results in a ‘‘cross-shape’’ or cruciform structure of the diakinesis chromosomes in C. elegans
[67]. (B) If inter-homolog crossover failed to form, the homologous chromosomes would prematurely separate and the chromosome axes will not
have the cruciform shape. (C) Micrograph of an smc-5(ok2421) mutant oocyte containing six linked homolog pairs with the wild-type cruciform shape,
indicating successful inter-homolog crossover formation. Projection depth and scale bar = 5 mm. (D) A cartoon representation of the linked homolog
and DNA fragment shown in (C and E). (E) Magnified view of a linked homolog pair (white arrow) and a chromosome fragment (light blue arrow) from
(C) for which cohesin SMC-3 staining also was detected on the fragment. Projection depth = 2 mm.
doi:10.1371/journal.pgen.1001028.g005
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genomic stability. Together, the cytological and phenotypic evidence

from the smc-5 and smc-6 mutants provides the first experimental

support that the proper execution of homolog-independent recombi-

nation in meiosis is crucial for genomic stability in germ cells.

Chromosome fragmentation at diakinesis
A chromosome fragment arising simply from incomplete DSB

repair in a chromatid should remain bound to its sister chromatid by

cohesion and should not appear as a free fragment at diakinesis.

Sister-chromatid cohesion is presumably maintained in the smc-5

and smc-6 mutants as evident by the intact chiasma and the cohesin

SMC-3 staining on diakinesis chromosomes (Figure 5E and Table

S4). Therefore, we hypothesize that the appearance of fragments

may require the localized loss of chromatid cohesion near the site of

homolog-independent repair in addition to incomplete or aberrant

DSB repair. In budding yeast, cohesin-mediated repair in G2 phase

of the mitotic cell cycle can establish de novo damage-induced

cohesion [51,52], and cohesin-mediated repair in both budding

yeast and human requires the Smc5/6 complexes [19–21,53].

Although evidence suggests that damage-induced cohesion may not

form during meiosis in budding yeast [54], whether damage-

induced cohesion exists in meiosis in other species remains to be

determined. Intriguingly, the human Rec8 cohesin subunit that

functions in meiosis was able to rescue damage-induced cohesion in

the budding yeast scc1(mcd1) mutant [54].

As another possibility, the loss of Smc5/6 function could

produce abnormal chromosome structures and fragments

through ectopic recombination. The fission and budding yeast

Smc5/6 complexes are thought to function in a late step in

recombination repair, perhaps in the regulation of HR

intermediates [20,37,55,56]. Aside from DNA damage response,

the yeast Smc5/6 complexes also are required for genomic

stability during DNA replication. Budding and fission yeast

mutants deficient for the Smc5/6 complexes were found to

accumulate Rad51-dependent joint molecules near collapsed

replication forks [37,38]. These aberrant structures are thought

to result from ectopic template switching events in the

resuscitation of collapsed replication forks [38,57]. A similar

DNA replication defect in the C. elegans smc-5 and smc-6 mutant

germ cells may account for the abnormal SPO-11-independent

RAD-51 staining seen in the pre-meiotic region (Figure S4). This

function may be analogous to restraining ectopic strand invasion

events during homologous recombination repair. Such a defect

during homologous recombination repair could explain the

increased staining intensity for RAD-51 in the smc-5 and smc-6

mutant germ cells at pachytene. The proposed roles for the

SMC-5/6 complex in damage-induced cohesion and the

regulation of ectopic recombination may underlie meiotic defects

not only in programmed DSB repair but also inappropriate

cohesion loss near the DNA lesion, and the combination of both

Figure 6. Possible outcomes for the combined genetic disruptions of smc-5 or smc-6 and him-3. (A) Schematic diagram depicts the biased
repair of SPO-11 DSBs via inter-homolog recombination repair in meiosis. (B) In the absence of HIM-3, SPO-11 DSBs are repaired via homolog-
independent (i.e. sister-chromatid) recombination [48]. (C–D) Two predicted repair outcomes for the double mutants. (C) If the SMC-5/6 proteins
function mainly in inter-homolog repair which is already disrupted by the him-3 mutation, then the overall repair efficiency as monitored by the removal
of RAD-51 staining should be the same in the double mutants as compared to the smc-5 and smc-6 single mutants. (D) If the SMC-5/6 proteins function
mainly in inter-sister repair, then the double mutant should exacerbate the repair defects and the RAD-51 intermediates should persist at late pachytene.
doi:10.1371/journal.pgen.1001028.g006
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defects may account for the increased frequency for chromosome

fragments at diakinesis.

An experimental model to examine homolog-
independent homologous recombination repair

We showed that chromosome fragmentation and dismorphol-

ogy defects were present in the smc-5 and smc-6 mutant oocytes just

prior to fertilization, but they had no discernable effects on

offspring viability and chromosome segregation. This finding

supports our hypothesis that C. elegans, as an experimental model,

could decouple the successful completion of meiotic DSB repair

from the potentially lethal effects of chromosome fragments and

other abnormal chromosome configurations. C. elegans may be

uniquely useful to study the molecular mechanisms involved in

homolog-independent repair, which may be utilized in many

species to maintain genomic integrity during meiosis [6–11].

Materials and Methods

Genetics and phenotypic analyses
The C. elegans Bristol (N2) strain served as the wild-type control

and all strains were maintained at 20uC under standard growth

Figure 7. Chromosome fragmentation defects linked to homolog-independent repair of meiotic DSB. (A–F) Micrographs of DAPI-
stained diakinesis chromosomes are shown at the same magnification. Chromosomal fragments are indicated by white arrowheads, and scale
bars = 5 mm. (G) A graph of the percentages of diakinesis oocytes containing chromosome fragments. The smc-5(ok2421) and the smc-6(ok3294)
mutant oocytes showed significantly higher frequency of chromosome fragmentation over wild-type (*p,0.001, Fisher’s Exact Test). The smc-
5(ok2421) fragmentation defect was drastically suppressed by the spo-11(ok79) mutation (**p = 0.006). The disruption of inter-homolog
recombination by destabilizing homolog-synapsis consistently enhanced the fragmentation defects in all three smc-5 and smc-6 mutant strains
(***). By contrast, the brc-1 mutation affecting sister-chromatid recombination [7] failed to enhance the fragmentation defect of the smc-5(ok2421)
mutation ({). The numerical values, sample sizes, and statistical comparisons are summarized in Table S5.
doi:10.1371/journal.pgen.1001028.g007

Homolog-Independent Meiotic Recombination Repair

PLoS Genetics | www.plosgenetics.org 9 July 2010 | Volume 6 | Issue 7 | e1001028



conditions [58]. Genetic mutations, rearrangements and trans-

genic reporters used in this study are as follows:

LGI: him-1(e879) [50]

LGII: smc-5(tm2868), smc-5(ok2421), smc-6(ok3294) [In this study],

mIn1[dpy-10(e128) mIs14[myo-2::gpf; pes-10::gfp]] [59]

LGIII: brc-1(tm1145) [7]

LGIV: him-3(gk149) [48], spo-11(ok79) [34], rad-51(lg8701) [33],

nT1[qIs51] (IV:V), nT1[unc-?(n754) let-?] (IV;V) [60]

LGV: bcIs39[lim-7::ced-1-gfp] [32,61]

RNAi knockdown for smc-5 was induced by microinjection of 1–

2 mg/mL of double-stranded RNA specific to the smc-5 gene in

phosphate-buffered saline (PBS) in adult hermaphrodites at 1 day

after L4 development, and mock control worms were injected with

PBS containing no RNA. The smc-5 RNA was transcribed in vitro

using T7 RNA polymerase (Promega) and a double-stranded DNA

template containing T7 promoter sequences (underlined in lower

case below) amplified from wild-type N2 genomic DNA using the

following primers:

59 gcgtaatacgactcactatagggTCCGTGTGCATTTCTTGCTC 39

and

59 gcgtaatacgactcactatagggATAGGCTTTCGAGGCATCAC 39

The RNAi knockdown of syp-2 was performed as described

[45].

For the germline apoptosis analysis, worm strains containing the

CED-1::GFP reporter construct [32] were grown at 20uC until the

L4 larval stage and were then shifted to 25uC for 16 hours prior to

analysis for GFP-positive germ corpses.

For ionizing radiation hypersensitivity, L4 hermaphrodites from

wild-type and F1 mutant strains were irradiated in a Philips

RT250 orthovoltage unit at 30, 60 and 90 Gy of ionizing

radiation. The worms recovered for 24 hours before eggs were

collected and counted for embryo lethality as described [31]. 297

to 545 embryos were counted for each genotype per dose of

radiation.

Quantitative RT-PCR analysis
Approximately 500 embryos were collected and grown for

72 hours at 20uC to young adulthood (approximately 1 day after

L4 larval development), at which time they were harvested for

RNA extraction using TRIzol reagent (Invitrogen). 250 ng of

extracted RNA were used for oligo(dT)-primed cDNA synthesis

using Superscript III First Strand Synthesis Kit (Invitrogen).

Quantitative PCR were performed using the ABI 7500 Fast Real

Time PCR system and the SYBR Green PCR kit (5 Prime)

following manufacturer’s protocol but at reduced 15 mL reaction

volumes. PCR primers for egl-1 and gamma-tubulin tbg-1 are

described in [32]. All RT-PCR products were confirmed by melt

curve analysis and by gel analysis to verify that the amplification

depended on reverse transcription and the cDNA products were

the expected size (Figure 3B). The amounts of template cDNA

were titrated to validate the measurements. The mRNA

abundance was calculated based on threshold cycle numbers

(Ct) and normalized to tbg-1 using the equation: relative

abundance = 22[(Ct,gene-of-interest)2(Ct,normalization control)]

Antibody preparation, western blotting and
immunoprecipitation

Rabbit antibodies were raised to peptides containing an amino

terminal cysteine-glycine (CG) linker and the following sequences:

SMC-5 carboxyl terminus: TNSHGKHYDTSAKIDATFAKM-

GISA

SMC-6 internal residues 849–868: DAMEMVENDKKNHPMPP-

GET

Antibodies were purified on peptide affinity columns prior to

use. Rat antibodies to C. elegans SMC-3 used for immunofluores-

cence were described in [50]. Commercial rabbit anti-human

Smc3 antibodies (Bethyl Laboratories, Inc., cat. no. A300-060A)

were used for the immunoprecipitation study. The cross-reactivity

of anti-human Smc3 antibodies to the C. elegans SMC-3 protein

was confirmed by western blot and mass spectrometry analysis

(data not shown) of precipitated proteins. Other antibodies used in

the study include mouse anti-tubulin DM1alpha (Sigma), mouse

anti-p-granule OIC1D4 (Developmental Studies Hybridoma

Bank, [62]) and guinea pig anti-ZHP-3 [45]. Rabbit anti-RAD-

51 antibodies obtained from two different sources had nearly

identical staining (Strategic Diagnostics, Inc., cat. no. 2948.00.02;

and [33])

Worm lysate preparation, western blot and immunoprecipita-

tion were performed as described [50,63]. The detection of the

SMC-5 and SMC-6 proteins in whole worm lysates required 50 to

100 wild-type worms, and 150 to 200 smc-5(tm2868) mutant

worms for the truncated SMC-5 protein.

Fluorescence microscopy
All micrographs were captured on an Olympus BX61

epifluorescence compound microscope with a Hamamatsu ORCA

ER camera. Images of whole gonad arms were captured with a

106 Plan Fluorite (NA 0.3) dry objective. All other images were

captured with a 606Plan Apochromat (NA 1.35) oil objective at

0.25 to 0.28 mm z-sections and deconvolved using Huygens

Essential software version 3.4 (Scientific Volume Imaging). Images

were processed using ImageJ and Photoshop CS2 software

packages. Slide preparation was performed as described [64] with

the exception of ZHP-3 and RAD-51 (Strategic Diagnostics, Inc.)

that were processed as described by [45]. Quantification of RAD-

51 foci was performed on germline stained with the RAD-51

antibodies described by [33]. The intensity of RAD-51 fluores-

cence for individual gonads was normalized to the background

fluorescence found in the rachis of the gonad. RAD-51 counts for

the pre-meiotic nuclei were limited to the first eight rows of germ

nuclei from the distal tip. The meiotic region of the germline was

divided into four equal length sections from the beginning of

transition zone (polarized chromosome morphology) to the exit

from pachytene (onset of cellularization). The four sections were

classified as transition zone, early-, mid- and late-pachytene.

Statistical evaluations were performed using the two-tailed t-

Test using Microsoft Excel and the two-tailed Fisher’s Exact test

calculated as described [65].

Supporting Information

Figure S1 Immunostaining detection of the SMC-5 and SMC-6

proteins in the C. elegans germline is specific. Micrographs of

pachytene and diakinesis germ cells from the smc-5 and smc-6

mutants co-stained with antibodies to the cohesin SMC-3 protein

(A–E) and the SMC-6 protein (A–C, E, F and I) or the SMC-5

protein (D, G and H). The smc-5 and smc-6 mutations specifically

reduced the immunostaining for their cognate proteins (A–E,

and H). The enrichment of the SMC-5 and SMC-6 proteins on

diakinesis chromosomes appeared to be inter-dependent (F, G

and I). The smc-5(tm2868) mutation may retain some biological

function, therefore we cannot rule out the possibility that some

residual SMC-5/6 proteins are still present, but are below the limit

of detection by immunostaining. Scale bars = 5 mm.

Found at: doi:10.1371/journal.pgen.1001028.s001 (1.41 MB TIF)

Figure S2 The smc-5 and smc-6 mutants exhibited compromised

germline functions. (A) Transgenerational sterility appeared in the
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smc-5(ok2421) and smc-6(ok3294) homozygous mutant strains but

was absent in the wild-type and the brc-1(tm1145) mutant strains.

Individual L4 hermaphrodites were isolated to establish indepen-

dent colonies (n = 19 to 20 colonies per genotype). For the mutant

strains, the L4 hermaphrodites used to establish the colonies were

homozygous F1 mutants produced by heterozygous mutant

parents. Each colony was then maintained for 12 generations,

during which time five L4 hermaphrodites from each plate were

transferred to a new plate every four to five days to allow the next

generation of offspring to develop into L4 larvae. If a plate

representing an independent colony has less than five viable L4

progeny, then the line is considered to be ‘‘sterile’’. The line-graph

presents the percentages of the starting independent colonies that

are sterile at each generation. (B) The smc-5 and smc-6 mutants

produced fewer fertilized eggs compared to the wild-type strain.

Fertilized eggs produced by individual hermaphrodites were

counted every six to 12 hours for four days starting from the late

L4 larval stage. Ten or more hermaphrodites were analyzed per

genotype, generation and RNAi treatment condition. The bar

graph represents the average of the total eggs produced by an

individual hermaphrodite per genotype/RNAi condition, and the

error bars represent the SEMs. (C) A comparison of the average

number of eggs produced per day between age-matched wild-type

(n = 6) and the smc-5(tm2868) homozygous F1 mutant strain

(n = 17). The color key shown in (C) also applies to (D and E). (D)

Gonads from the wild-type and the smc-5(tm2868) mutant

hermaphrodites at the specified ages were dissected, DAPI-DNA

stained and visualized on a compound epifluorescence microscope

for the presence or absence of sperm in the spermatheca. 12 to 21

hermaphrodites were examined for each genotype. (E) The smc-

5(tm2868) mutant hermaphrodites were allowed to mate with

males marked by a Pmyo-2::GFP reporter for 24 hours. Following

the mating procedure, individual hermaphrodites were then

transferred to separate plates and the number of larval offspring

produced was counted. Mated hermaphrodites were identified

based on the presence of male and GFP-positive larval offspring,

and vice versa for unmated hermaphrodites. Hermaphrodites that

did not produce any offspring were excluded from the analysis.

The bar graph represents the average number of offspring

produced by mated (n = 24) and unmated (n = 12) smc-5(tm2868)

F1 mutant hermaphrodites, and the error bars represent the

SEMs.

Found at: doi:10.1371/journal.pgen.1001028.s002 (0.51 MB TIF)

Figure S3 The smc-5 and smc-6 F1 mutants have smaller gonads

with few germ cells in comparison to the wild-type. (A–D)

Micrographs of dissected DAPI-stained gonads from age-matched

wild-type and smc-5 and smc-6 mutants are shown at the same

magnification. The white bracket indicates the approximate length

of the gonad arm from the distal tip to the end of pachytene.

Found at: doi:10.1371/journal.pgen.1001028.s003 (0.41 MB TIF)

Figure S4 Aberrant RAD-51 focal staining is found in the pre-

meiotic region in the smc-5 and smc-6 mutants. (A–E) Micrographs

of DAPI and RAD-51 antibody staining in dissected gonads. The

genotypes are indicated at the top of each set of micrographs. The

white dashed lines mark the pre-meiotic regions. Scale

bars = 5 mm. (F) The average numbers of RAD-51 foci per

nucleus are presented in the bar graph. The error bars represent

the SEMs.

Found at: doi:10.1371/journal.pgen.1001028.s004 (2.48 MB TIF)

Figure S5 ZHP-3 localization appeared normal in the smc-5 and

smc-6 mutants. Micrographs of DAPI and ZHP-3 antibody stained

germ cells at the late pachytene stage. The genotypes are indicated

at the top of each set of micrographs. The average numbers of

ZHP-3 foci per late pachytene germ cell (6 SEM) are indicated for

the wild-type, the smc-5(ok2421) and the smc-6(ok3294) mutants.

Scale bars = 5 mm.

Found at: doi:10.1371/journal.pgen.1001028.s005 (0.78 MB TIF)

Figure S6 The smc-5 and smc-6 mutant oocytes exhibit

chromosome dismorphology resembling defects seen in the rad-

51(lg8701) mutant. (A) Micrographs of diakinesis chromosomes

visualized by DAPI-DNA fluorescence in which the chromosomes

failed to resolve properly in the rad-51(lg8701), smc-5(ok2421) and

smc-6(ok3294) mutants. (B) The bar graph represents the

percentages of oocytes at the ‘‘21’’ to ‘‘23’’ positions of the

gonad with less than 4 resolved DNA bodies (n = 30 oocytes per

genotype). (C) The fragmentation defect of the smc-5(ok2421) and

smc-6(ok3294) mutants were not enhanced by the cohesin him-

1(e879) mutation. For each genotype, embryos were harvested and

grown at the permissive temperature of 15-degree C for the him-

1(e879) mutation until the worms had developed into late-stage L4

larvae. The worms were then shifted to the restrictive temperature

of 25-degree C for 16 hours to disrupt cohesin function [1], before

they were dissected and analyzed for the presence of DAPI-stained

chromosome fragments. The difference in growth temperature

had no obvious effects on the frequency of chromosome

fragmentation in the smc-5(ok2421) and smc-6(ok3294) single

mutants. More importantly, the him-1(e879) mutation did not

enhance the fragmentation defect in the double mutants with

either the smc-5(ok2421) and the smc-6(ok3294) mutant (Fisher’s

Exact Test, p values .0.8). The measurement counts and

statistical comparisons are summarized in Table S5. [1] Chan

RC, Chan A, Jeon M, Wu TF, Pasqualone D, et al. (2003)

Chromosome cohesion is regulated by a clock gene paralogue

TIM-1. Nature 423:1002–1009.

Found at: doi:10.1371/journal.pgen.1001028.s006 (0.29 MB TIF)

Table S1 Average germ corpses per gonad measured by

acridine-orange staining. Acridine-orange staining was carried

out by incubating the worms in a M9 solution containing 50 mg/

mL of acridine-orange (Anaspec) for 3 hours followed by washes

and destaining with additional M9 solution as described [2]. The

RNAi inactivation of pro-apoptotic genes was performed by the

feeding RNAi method [3], for which the worms were fed on the

RNAi vector containing bacteria for two successive generations.

[2] Gartner A, MacQueen AJ, Villeneuve AM (2004) Methods for

analyzing checkpoint responses in Caenorhabditis elegans. Methods

Mol Biol 280:257–274. [3] Kamath RS, Ahringer J (2003)

Genome-wide RNAi screening in Caenorhabditis elegans. Methods

30:313–321.

Found at: doi:10.1371/journal.pgen.1001028.s007 (0.03 MB

DOC)

Table S2 Average germ corpses per gonad measured by

CED-1::GFP.

Found at: doi:10.1371/journal.pgen.1001028.s008 (0.03 MB

DOC)

Table S3 Average number of RAD-51 foci per nucleus 6 SEM

in different regions of the germline from wild-type and mutant

hermaphrodites. The sample size number (n) indicates the number

of germ nuclei examined for each region per genotype.

Found at: doi:10.1371/journal.pgen.1001028.s009 (0.03 MB

DOC)

Table S4 Average number of similar size DAPI-stained DNA

figures in diakinesis oocytes.

Found at: doi:10.1371/journal.pgen.1001028.s010 (0.03 MB

DOC)
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Table S5 Proportion of oocytes with one or more chromosome

fragments at diakinesis. Statistical comparisons were performed

using the Fisher’s Exact Test [4]. [4] Agresti A (1992) A survey

of exact inference for contingency tables. Statistical Science

7:131–153.

Found at: doi:10.1371/journal.pgen.1001028.s011 (0.07 MB

DOC)
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