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Abstract
Disorders such as chronic fatigue syndrome (CFS) and gulf war syndrome (GWS) are characterised by prolonged fatigue and
a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological
dysfunction. Sudden infant death syndrome (SIDS) surprisingly may have certain features in common with these conditions.
Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological
aberration may prove to be associated with certain vasoactive neuropeptides (VN) in the context of molecular mimicry,
inappropriate immunological memory and autoimmunity.

Adenylate cyclase-activating VNs including pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive
intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) act as hormones, neurotransmitters, neuroregulators,
immune modulators and neurotrophic substances. They and their receptors are potentially immunogenic. VNs are widely
distributed in the body particularly in the central and peripheral nervous systems and have been identified in the gut, adrenal
gland, blood cells, reproductive system, lung, heart and other tissues. They have a vital role in maintaining cardio-respiratory
function, thermoregulation, memory, concentration and executive functions such as emotional responses including social cues
and appropriate behaviour. They are co-transmitters for a number of neurotransmitters including acetylcholine and gaseous
transmitters, are potent immune regulators with primarily anti-inflammatory activity, and have a significant role in protection
of the nervous system against toxic assault as well as being important in the maintenance of homeostasis.

This paper describes a biologically plausible mechanism for the development of certain fatigue-related syndromes based on
loss of immunological tolerance to these VNs or their receptors following infection, other events or de novo resulting in
significant pathophysiology possibly mediated via CpG fragments and heat shock (stress) proteins. These conditions extend
the public health context of autoimmunity and VN dysregulation and have implications for military medicine where
radiological, biological and chemical agents may have a role in pathogenesis. Possible treatment and prevention options are
considered.

Keywords: Adenylate Cyclase, autoimmunity, chronic fatigue syndrome (CFS), gulf war syndrome, sudden infant death
syndrome (SIDS), vasoactive neuropeptides

Introduction

Endogenous adenylate cyclase (AC)-activating vaso-

active neuropeptides (VNs) may be implicated in

causing some fatigue-related conditions currently

having no established explanation such as chronic

fatigue syndrome (CFS), Gulf War syndrome (GWS),

fibromyalgia and even sudden infant death syndrome

(SIDS) (Staines 2004a,b,c). This family of VNs

includes pituitary adenylate cyclase-activating

polypeptide (PACAP), vasoactive intestinal peptide

(VIP) and calcitonin gene-related peptide (CGRP).

The possible role of endogenous VN autoimmunity in

these conditions is a novel but unproven concept.

This paper reviews evidence for these conditions

resulting from possible immune dysfunction or other

pathologies associated with VNs or their receptors.

Causes of these aberrations may include a range of

insults such as infection, chemical and biological

agents, radiological and physical and psychological

stressors including trauma. The hypothesis is explored

that infections, possibly exhibiting molecular mimicry

with these VNs, or alternatively VN responses from

any cause, may provoke adverse autoimmune sequelae
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affecting VNs or their receptors and/or their gene

expression. While some of these conditions may

resolve over time, others may have catastrophic (e.g.

SIDS) or long-term sequelae. Variations in outcomes

may relate to the degree of long-term perverse

immunological events.

This paper also proposes that autoimmune dysfunc-

tion of these VNs may represent a family of disorders

mediated by significant pathophysiology such as neu-

ronal apoptosis via dysregulation of key biochemical and

epigenetic pathways which may be mediated in part by

CpG DNA fragments and heat shock (stress) proteins.

Vasoactive neuropeptide roles and functions

AC-activating VNs have significant commonality

between species and are strongly preserved in

evolutionary terms indicating their crucial roles for

survival. Substantial amino acid sequence homology

exists between them, suggesting evolution from

a common ancestral gene, and they demonstrate

some degree of overlap of structure and function as well

as potential for immunological cross-reactivity. These

VNs belong to the secretin-glucagon super-family,

exerting significant control over carbohydrate and lipid

metabolism. They have important roles in vasodila-

tion, neurotrophism, nociception, neuroregulation

and neurotransmission including thermoregulation,

cardio-respiratory control, balance and vestibular

function, emotional and intellectual functioning

including memory and concentration, and immuno-

logical and hormonal modulation.

They exert their effects at high level in controlling

central and peripheral nervous systems and hypothala-

mic–pituitary–adrenal axis functions. Other vital

functions regulated in the brain include olfaction,

feeding and reproductive behaviours, circadian rhythm,

and sleep–wake cycles. They and their receptors are

expressed at important peripheral sites such as heart,

gut, blood, lung, pancreas, liver and urogenital systems

(Ishizuka et al. 1992, Arimura 1998, Sherwood et al.

2000, Hannibal 2002, Hashimoto 2002, Ganea et al.

2003). Compromise of their function is likely to have

serious consequences for homeostasis.

Endogenous opioid activity is functionally related to

cytokine and VN activity suggesting that pain

mediation and perception may be altered in conditions

where endogenous opioid function is impaired

through VN mechanisms (Wilderman and Armstead

1997, Peterson et al. 1998). Nitric oxide (NO)

metabolism is implicated in immunomodulation as

well as possibly mediating chemical sensitivity in these

conditions suggesting a plausible mechanism for some

concurrent symptoms in CFS and GWS (Pall 2002,

Onoue et al. 2002). Synaptic plasticity and pain

behaviours are critically mediated by CGRP in the

amygdala (Han et al. 2005).

VNs influence receptor accumulation and activity

for acetylcholine (Fahrenkrug and Hannibal 2004)

and other neurotransmitters including carbon mon-

oxide (CO) (Watkins et al. 2004) and NO (Parsons

et al. 2005). PACAP is co-located with vesicular

acetylcholine transporter in nerve terminals in all

mouse adrenomedullary cholinergic synapses (Hame-

link et al. 2002) and CGRP is known to induce

acetylcholine receptor expression in rat soleus muscle

(Buffelli et al. 2001). There is a known association of

VPAC2 receptors with acetylcholine and muscle

function (Hinkle et al. 2005).

A number of neurotransmitters are influenced by

VNs and include the adrenergic, noradrenergic,

cholinergic, histaminergic, GABA-ergic, glutamater-

gic, dopaminergic and serotonergic systems (Sandvik

et al. 2001, Shintani et al. 2003). VIP and PACAP

receptors have been demonstrated in guinea pig

cerebral cortex and have substantial effects on cyclic

adenosine monophosphate (cAMP) production

(Zawilska et al. 2005) and PACAP is known to have

a potentiating additive effect with adrenaline and

noradrenaline on cAMP production in rat cerebral

cortex indicating a crucial role in neuroregulation

(Nowak and Kuba 2002).

Much central nervous system processing is under

VN control to a greater or lesser extent and co-

transmitter functions may be a linkage to fatigue

mediation and a range of other symptoms in these

syndromes. In addition to those functions listed

above, high level CNS processes may become

compromised in VN disorders including executive

functions such as ensuring appropriate behaviours and

response to social cues, irritability, emotional lability,

planning for the future, empathy and relationship

building, verbal skills in problem solving and so on.

This would suggest involvement of neuronal connec-

ting pathways between basal ganglia, limbic system of

hippocampus and amygdala and pre-frontal and

frontal cortices as these pathways are sensitive to

compromise (Arnsten and Li 2005).

VNs are mediated by G protein-coupled receptors

(GPCR). The secondary transmitter cAMP is

generated from adenosine triphosphate (ATP) via

AC which is known to exist in multiple isoforms and

exhibits a range of processing functions (Nowak and

Zawilska 1999), therefore, defects of AC activation

will result in impaired cAMP production. VNs operate

via multiple signaling processes (Zhou et al. 2002) and

have complex interactions with a wide range of

neurotransmitters including cross-talk feedback and

control mechanisms. Hence, treatment for postulated

fatigue-related conditions might include upstream

reactivation of cAMP or downstream inhibition of

cAMP breakdown (see below).

SIDS may be the manifestation of an acutely

acquired autoimmune response to these VNs. Recent

minor infection, breathing position and the presence
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of xenobiotic substances including cigarette smoke

may all contribute to loss of immunological tolerance

to these VNs or their receptors. This would have

potentially catastrophic consequences for cardio-

respiratory centres in the brain stem as well as the

heart. PACAP, for example, is a powerful respiratory

stimulant (Runcie et al. 1995) suggesting vulnerability

to respiratory compromise. PACAP-deficient mice

suffer sudden neonatal death attributed to respiratory

control defects, raising the possibility of VN dysfunc-

tion as a potential cause of SIDS (Cummings et al.

2004). Early recognition of potential vulnerability to

SIDS, for example, will be of special interest and may

contribute to the development of preventive strategies.

Endogenous VNs exert a wide spectrum of

immunological functions and have a critical role in

homeostasis of neuronal and immune systems through

a number of pathways including inhibition of

chemokine production in activated microglia. Distur-

bances in their function are recognised as potential

causes of autoimmune disease and they appear to have

a role in protecting bystander lysis, a process in the

pathogenesis of several autoimmune and inflamma-

tory diseases (Delgado et al. 2002). VNs have a role in

maintaining peripheral tolerance by generating tolero-

genic dendritic cells (Delgado et al. 2005).

VIP is known to prevent experimental autoimmune

uveoretinitis (Keino et al. 2004). PACAP is known to

ameliorate experimental autoimmune encephalomye-

litis (Kato et al. 2004) and hypoxia (Suk et al. 2004)

demonstrating its neuro-protective role. In animal

models of EAE, sympathetic nervous system regu-

lation mediated through Th1 cells is significantly

promoted by certain other neurotransmitters, e.g.

neuropeptide Y (NPY) (Bedoui et al. 2003).

PACAP and VIP exert an extraordinary array of

functions in the brain and other organs and peripheral

tissues. VIP has been identified in all regions of the

brain including cerebral vessels (Fahrenkrug et al.

2000) indicating susceptibility to vasodilatory

dysfunction. Neurovascular coupling in vasoactive

pathways is mediated via GABA (Cauli et al. 2004).

Balance and vestibular functions are regulated by

VNs, e.g. CGRP (Kong et al. 2002) and this may have

a vascular component (Lyon and Payman 2000). VIP

is produced and released by intrinsic neurons in the

heart and improves cardiac perfusion and function

(Dvorakova et al. 2005). Hence, the vasodilatory role

of VNs will be an important function lost through VN

failure and may explain a significant extent of the

pathophysiology in these conditions by giving rise to

hypoperfusion and ischemia.

The role of VNs in protecting the brain from

apoptosis is well documented (Falluel-Morel et al.

2004). Apoptosis is known to be higher in SIDS cases

than controls with hippocampus and brainstem,

including dorsal nuclei, being affected (Waters et al.

1999) and apoptotic neurodegeneration is postulated

as the specific pathophysiological mechanism in SIDS

(Sparks and Hunsaker 2002).

Mechanisms associated with apoptosis would,

therefore, indicate a suitable area for investigation,

particularly those mechanisms usually protective

against apoptosis. These roles are fulfilled by VNs,

for example, ischaemia induced apoptosis in the rat

hippocampus is protected by PACAP through

inhibition of the JNK/SAPK and p38 signalling

pathways (Dohi et al. 2002) and PKA and phospha-

tidylinositol 30-OH kinase pathways demonstrate

neuroprotective roles in cerebellar granule neurons

(Bhave and Hoffman 2004). PACAP is also known to

have a neuroprotective effect against a range of

insults. Ethanol-induced apoptosis occurs via caspase

pathways resulting in DNA fragmentation, mitochon-

drial permeability and cell death. PACAP, acting via

its receptor PAC1, protects against ethanol-induced

cell death and may have a therapeutic role in

conditions such as fetal alcohol syndrome (Vaudry

et al. 2002).

Late-gestation blockade of VIP activity in pregnant

mice has shown distinct morphological abnormalities

in the somatosensory cortex of offspring and their

response to hypoxia being subsequently impaired.

A significant arousal deficit was seen in anti-VIP mice,

which was not associated with deranged peripheral or

brainstem-mediated responses to hypoxia during

sleep (Cohen et al. 2002). Compromise of VN

function, therefore, has likely major respiratory

consequences. This finding may have significant

implications for infection in mothers of SIDS victims

prior to birth.

Cardiovascular function is in part regulated by VNs.

Some variation in the cardiac roles of PACAP exists

and is dose dependent, for example, PACAP may

promote both tachycardia and bradycardia (Chang

et al. 2005). PACAP activates intracardiac postganglio-

nic parasympathetic nerves by shortening the effective

refractory period, and has a greater profibrillatory

effect than vagal stimulation (Hirose et al. 2001).

Neuroexcitability in intracardiac neurons depends on

PAC1 receptor activation (DeHaven and Cuevas

2004). Conceivably PACAP opposition, for example,

through autoimmune effects on the PAC1 receptor

might, therefore, result in decreased cardiac

responsiveness.

Brown adipose tissue metabolism and thermal stress

have been linked to SIDS. Neonatal adipose tissue is a

primary site of cytokine and cytokine receptor action

(Gray et al. 2002) and metabolism is a noradrenaline-

cAMP-proton pump system. While the precise

mechanism of brown adipose tissue metabolism

dysfunction is unclear, a combination of factors

including metabolic stress, infection, necrosis and

vascular hypoperfusion has been suggested (Stephen-

son and Variend 1987). Hence, VN failure may be

mediated through these pathways in SIDS.
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Postulated immunoregulatory dysfunction of

vasoactive neuropeptides

The development of autoantibodies to PACAP and

VIP in mammalian tissues suggests that immunologi-

cal tolerance may be readily broken. It has been

postulated that depletion of VIP by specific antibodies

in autoimmune disease may interfere with VIP

regulation of T cells and inflammatory cells and result

in further amplification of autoreactive immunological

responses (Bangale et al. 2002). Also, as VIP receptors

are expressed on T-lymphocytes, VIP could directly

affect cytokine production and proliferation of

T-lymphocytes (Johnson et al. 1996).

Some researchers have found aberrations of the

oligoadenylate synthetase pathway, a key ATP-

associated RNase L-mediated antiviral mechanism,

in CFS (Nijs and De Meirleir 2005). The oligoade-

nylate system is considered a major regulator of cell

metabolism including cell growth and differentiation,

oncogenic stability and apoptosis in addition to

antiviral functions (Mykhailyk et al. 2003). This

pathway is influenced by VIP (Chelbi-Alix et al. 1991)

and cAMP (Itkes 1994) suggesting possible dysregula-

tion with VN compromise.

Autoimmune dysfunction of VNs or their receptors

might arise via a number of pathways. Cytosine-

guanosine dinucleotide DNA (CpG) fragments are

immuno-stimulating or suppressing sequences which

may exist in promoter regions of VN receptors and be

vulnerable to assault mechanisms such as hypomethy-

lation, resulting in dysregulation of transcriptional/

translational capacity. (Pei and Melmed 1995, Lutz

et al. 1999). CpG mechanisms may also control

secretin gene expression through methylation mecha-

nisms (Lee et al. 2004, Pang et al. 2004) and

methylation of gene promoters may have a role in

calcitonin/alpha CGRP gene regulation (Broad et al.

1989). The PACAP receptor gene is known to be

G þ C rich (Aino et al. 1995).

Antibody responses to VNs or VN receptors might

hypothetically occur, giving rise to IgM or IgG

antibody types, resulting in short or long term

autoimmunity to these vital substances. Such mecha-

nisms might also result from mimicry with bacterial

residues, giving rise to mistaken recognition of self

VN-CpG for bacterial CpG and perverse VN

autoimmunity. CpG elements are known to be potent

stimulators of immune responses (Krieg 2003).

Heat shock proteins (HSPs) or stress proteins may

also play a role in VN autoimmunity or dysfunction.

These are important chaperone molecules for proper

intracellular functioning of VNs and are known to

have a key role in immunoregulation (Srivistava

2002). Moreover, HSPs and CpG are mutually

engaged in CpG signalling and recognition (Band-

holtz et al. 2003) suggesting that dysfunction or

compromise of one may result in compromise of the

other, with resulting compromise of VN function

(Staines 2005d,e).

High level and intricate homeostasis maintenance

appear to be hallmark functions of VNs. As noted

above they and their receptors are thought to be

immunogenic and are implicated in a range of

inflammatory and autoimmune conditions. They

also have complex self-regulatory mechanisms invol-

ving autoantibody catalysis. The pleiotropic pheno-

typic presentation of postulated VN autoimmune

disorders may reflect the multiplicity of pathogeneses

resulting from ligand and receptor diversity.

VN receptors are predominantly G-protein coupled

receptors (GPCR) being heterotrimeric seven trans-

membrane helical structures which control intracellu-

lar functioning mostly via cAMP through a number of

kinases and related pathways (Vaudry et al. 2000).

They and their receptors are widely and commonly

distributed through all species and function in

remarkably similar ways. As also noted above they

exert stimulatory and inhibitory influence on AC,

a vital step in cyclic AMP metabolism.

Functional redundancy of these substances and

their receptors is limited. Despite high evolutionary

preservation of VNs and a high degree of commonality

in peptide structure and amino acid sequencing there

are only three known receptor types for PACAP and

VIP namely PAC1, VPAC1 and VPAC2. It is

proposed that this relative lack of functional redun-

dancy makes them vulnerable and susceptible to

compromise from different causes resulting in diverse

clinical conditions. Autoimmune dysfunction of

GPCRs is known but not widely documented.

However, some studies have shed some light on

autoimmune and toxic processes affecting GPCRs.

Also molecular mimicry effects have been documen-

ted between some toxins, venoms and infections and

VN receptors and are probably due to cross-reactive

epitopes (Holz and Habener 1998, Goetzl et al. 2004).

Failure of constitutive or expressed activity of

GPCRs may be at the heart of VN autoimmune

disorders. The multi-functioning nature of GPCRs

and consequent cAMP activation pathways suggest

vulnerability to compromised function. These recep-

tors are capable of exhibiting agonism, antagonism

and inverse agonism having both stimulatory and

inhibitory roles and acting through complex mecha-

nisms (Milligan 2003). Mutations in receptor struc-

ture modify their function (Cao et al. 2000). VN

autoimmune disorders may prove to operate by

aberrant GPCR signaling via these mechanisms

(Staines 2005f).

Autoantibodies are found to nuclear and stress

proteins (Ro52 and Grp78) in Sjogren’s syndrome

(SS) (Gordon et al. 2001) and this association is

postulated to induce an autoimmune cascade in

other conditions (Purcell et al. 2003). Structural

similarities with some neuropeptides may suggest their
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involvement in neurological autoimmune responses.

Human muscarinic acetylcholine receptor (mAChR)

antibodies from SS sera increase cerebral NO synthase

activity and NO synthase mRNA levels in rat frontal

cortex indicating central parasympathetic functional

deregulation (Reina et al. 2004).

Antibodies to mAChR have been identified in CFS

patients (Tanaka et al. 2003a) and autoimmunity to

neurotransmitter receptors is also implicated in some

psychiatric disorders (Tanaka et al. 2003b) indicating

that receptor autoimmunity may result in both primary

and secondary psychiatric disorders consequent to

receptor pathology. These examples illustrate the multi-

faceted and complex roles of VNs and their receptors in

neuro-physiology, neuropsychology and autoimmunity.

Genomic expression of null receptor types may play

a role in VN autoimmune disorders. Receptors of the

“hip” variety are believed to be null variant or fail to

transduce signals despite normal ligand binding

properties (Zhou et al. 2002). Selective over-

expression of these receptors due to defects in genomic

expression control may effectively reduce opportu-

nities for proper signal transduction. Alternatively,

blocking of otherwise normally transducing receptors

by pathogenic autoantibodies may simply block signal

transduction perhaps analogously to myasthenia gravis

(MG). As these antibodies may be polyclonal with

varying degrees of blocking capacity, this may explain

heterogeneity in phenotypic expression of VN auto-

immune fatigue disorders. In other words fatigue

disorders of varying degrees of severity and duration

may result.

CpG DNA methylation disorders are being con-

sidered as possible causes of neuronal pathology (Iliev

et al. 2004). These fragment sequences in mammals

are usually methylated and lower in frequency

compared with bacterial DNA which are hypomethy-

lated and higher in frequency. In evolutionary

terms this represents a “friend or foe” detection

system (Goldberg et al. 2000). However, evolutionary

residues in mammals have regions reflecting more

bacterial characteristics and which are prone to

hypomethylation and may predispose to autoimmune

phenomena.

Disruption of usual DNA translation mechanisms

or epigenetic phenomena associated with these CpG

DNA fragments are possible innate sources of

auotoimmune reactivity as well as other immunomo-

dulatory responses. VN receptor autoimmunity might

conceivably result from perverse immunological

memory induced via HSPs or cytosine-guanine

(CpG) DNA dinucleotide fragments if directed

against the VNs or their receptors. As relative over-

expression and under-expression of genomic VN or

receptor characteristics may be indicated both

immunostimulatory and immunosuppressive CpG

fragments may have applications in treatment and

prevention and are considered further below.

An intriguing alternative hypothesis is that involving

VN receptor desensitisation. Several studies have

shown that PAC1 and VPAC receptors undergo

homologous desensitisation when pre-exposed to their

respective ligands. This mechanism is mediated in

retinoblastoma cells via GPCR kinase3 and PKC but

not PKA mechanisms (Dautzenberg and Hauger

2001). As noted above, VNs are known to be self-

regulated by respective antibodies and catalytic

mechanisms. VN fatigue-related disorders may result

from loss of control over this neurotransmitter-

regulating desensitising mechanism, as it is usually a

reversible physiological process. But it is also one

subject to impairment depending on other impacting

factors such as xenobiotics, infection, immune

dysregulation and so on.

Consequences of these anti-receptor mechanisms

would be potentially serious as there would be

uncoupling of the activity-dependence mechanism

which routinely provides potentiation of the AC

second messenger system. Pre-synaptic facilitation

may be impaired resulting in significant enhancement

or exacerbation of the desensitising mechanism.

Uncoupling of activity dependency might then

occur. Thus, the role of AC as a “coincidence

detector” to engage G receptors may be lost. Retro-

grade signaling may also then be impaired to the pre-

synaptic cell resulting in false messages being relayed

and VN release excessively prolonged. Interestingly

“class-switching” between G stimulatory and G

inhibitory receptors occurs (Halls et al. 2005) and

this may also explain GPCR dysfunction.

Loss of this functionality may also result in loss of

associativity which normally enhances the efficiency of

this messaging system. While both inhibitory and

stimulatory GPCR receptor components influence AC

activity, desensitisation mechanisms may operate

anomalously. The voltage gated calcium channels of

L-, N- and P/Q-types appear affected (Hayashi et al.

2002). Hence this proposed mechanism may be

crudely analogous to Lambert-Eaton syndrome

(LES) and autoimmune impairment of calcium

channels (Waterman 2001).

Dysregulation of multiple complex biochemical

pathways

Multiple complex biochemical pathways are mediated

by AC-activating VNs. Some key pathways are

considered below. Effector pathways for apoptosis

are considered along with glutamate metabolism as a

model for dysregulation of vital neurotransmitter and

biochemical mechanisms postulated in VN auto-

immune disorders. These pathways exemplify mecha-

nisms operating in conditions of cellular and somatic

stress within and beyond the central nervous system

(Staines 2005a).
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PACAP may be a potent mediator of the stress

response to certain stimuli (Norrholm et al. 2005).

Delgado (2002) reports inhibition of the MEKK1/

MEK4/JNK pathway, leading to a reduction in

phosphorylated c-Jun and stimulation of JunB,

mediated through the VPAC1 receptor via the

cAMP/PKA pathway. VIP/PACAP interference with

the stress-induced SAPK/JNK pathway in activated

microglia may thus represent a significant element in

the regulation of inflammatory responses in the CNS

by endogenous VNs.

Dysregulation of dehydroepiandrosterone (DHEA)

metabolism has been noted in CFS (Maes et al. 2005,

Cleare et al. 2004) and abnormal responses to ACTH

occurs indicating inappropriate responses to stress

(Scott et al. 2000). PACAP has a stimulatory effect on

steroid secretion including cortisol and DHEAS in the

adrenal gland and is mediated via catecholamines

(Breault et al. 2000). VIP also is involved in ACTH-

independent regulation of steroidogenesis in adrenal

(tumour) cells (Haidan et al. 1998).

PACAP and VIP are potent neurotrophic substances

and play a vital role in neuronal survival (Shioda et al.

1998). PACAP inhibits apoptosis in many tissues

including cerebellar granule cells by inhibition of

caspase-3, and mitochondrial pathways play a pivotal

role in these anti-apoptotic effects. Ceramide (C2)

mitochondrial potential inhibitory effects mediated via

caspase systems together with cytochrome c release

from mitochondria are countered via PACAP in

apoptosis. PACAP acts by strongly inhibiting C2-

ceramide-induced activation of caspase-3 (Vaudry et al.

2003, Falluel-Morel et al. 2004). Ceramide-induced

apoptosis is also inhibited in PC12 cells by PACAP by

affecting signaling downstream of JNK activation

(Hartfield et al. 1998). Moreover, PACAP has been

shown to stimulate MAPK in both PKA- and PKC-

independent manner in astrocytes (Moroo et al. 1998).

VIP also inhibits translocation of cytochrome c from

mitochondria in hippocampal cells in protecting against

apoptotic cell death (Antonawich and Said 2002).

Hence, the implications for VN failure are serious as

PACAP/VIP play a critical role in mitochondrial and

other pathways in protecting against apoptosis.

Complex biochemical pathways intersect immune

and neurotransmitter functions and are modulated by

VNs and glutamate serves as a useful model. For

example, exposure to ammonia during prenatal and

lactation periods results in long-lasting impairment of

N-methyl-D-aspartate (NMDA) receptor function

which may be associated with altered aspartate

amintotransferase activity (Minana et al. 1995) and

hence altered glutamate function which may be

relevant in SIDS.

Lee et al. (2005) note significant differences for

alanine/aspartate transaminase and gamma glutamyl

transaminase in blood tests in Gulf War veterans.

NMDA is known to have a trophic effect on cerebellar

granule cells (Caballero-Benitez et al. 2004) and

is known to enhance activity of AAT considerably

(Moran and Rivera-Gaxiola 1992). NMDA may in

turn be modulated by cAMP which is induced by

PACAP (Llansola et al. 2004). PACAP is able to

enhance NMDA receptor function and also enable

RACK1 expression of brain-derived neurotrophic

factor (BDNF) (Yaka et al. 2003). Also, PACAP

helps regulate glial glutamate transport and meta-

bolism (Figiel and Engele 2000). Hence, loss or

compromise of function of PACAP would be expected

to have significant effects on NMDA and neuronal

function.

Intra- and extra-cellular calcium regulation appears

to be vital in VN function. Dziema and Obrietan

(2002) note that PACAP potentiates L type Ca(2þ)

activity. Suprachiasmatic nucleus neurons become

sensitive to glutamate only after PACAP adminis-

tration, suggesting that PACAP sets the lower

concentration threshold required for glutamate to

initiate a robust rise in postsynaptic cytosolic Ca(2þ).

Modulatory actions of PACAP are related to the

p42/44 mitogen activated protein kinase (MAPK)

signal transduction cascade. Aoyagi and Takahashi

(2001) note that PACAP enhances Ca(2þ) dependent

glutamate neurotransmitter release in PC12 cells by

modulating steps subsequent to Ca(2þ) entry and

Chen et al. (2000) note that ATP increases Ca(2þ) by

mobilising internally stored Ca(2þ) followed by an

influx of Ca(2þ). Defer et al. (2000) note that AC is

tissue specific particularly in relation to Ca(2þ)/-

calmodulin functions and that signals received by

GPCRs can be differentially integrated. Calcium

regulated by VNs thus plays a key role in coordinating

cellular and neurotransmission functions (Endoh

2004).

Receptor function including AC is vital in coordi-

nated and integrated VN activity. Nowak and Zawiska

(1999) note that the plethora of GPCRs and the

functional differentiation of G-protein subunits and

many AC isoforms permit a very complex signaling

system with a wide variety of integrative characte-

ristics. Chabardes et al. (1999) note AC types 5 and

6 constitute a sub-family having the property of being

inhibited by submicromolar Ca2þ concentrations

in addition to Galpha(i)-mediated processes. This

ensures wide responses in cAMP synthesis. Mons et al.

(1999) note AC types 1 and 8 stimulate Ca2þ/

calmodulin in the hippocampus and this suggests a

role for hippocampus related memory function.

Chern (2000) notes that AC isoenzymes are tightly

controlled by various signals and one of their most

important impacts is on the complexity and fine-tuning

of cellular signaling especially in the CNS where

multiple signals constantly occur. MAP kinase and

CREB mechanisms may also become disrupted result-

ing in significant neuro-physiological impairment.

Hippocampal functions such as long-term potentiation
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by the mossy fibre pathway are likely to be associated

with PACI-R in presynaptic cells (Otto et al. 1999)

suggesting their vulnerability to VN dysfunction.

Shaked et al. (2005) note that T cells reactive to

CNS-specific self-antigens protect neurons against

glutamate toxicity. Antigen-specific autoimmune T

cells increase the ability of microglia-enriched cultures

to remove glutamate. This up-regulation of glutamate

uptake induced by IFN-gamma activation is not

accompanied by the acute inflammatory response seen

in LPS-activated cultures. Hence, T cells or their

cytokines can cause microglia to adopt a phenotype

that facilitates rather than impairs glutamate clearance

to contribute to restoration of homeostasis.

Rangon et al. (2005) note that VIP has a protective

effect for glutamate acting via the VPAC2 receptor.

Similarly, Shintani et al. (2005) note PACAP mRNA

levels were increased up to 3.5 £ 8 h after glutamate

exposure in rat neuronal cultures indicating a

neuroprotective role of PACAP. Moreover, others

(Dong et al. 2000, Kopp et al. 2001) note the role of

intracellular calcium regulation by PACAP as a

mechanism to control glutamate toxicity in hippocam-

pal and suprachiasmatic neurons. Glutamate trans-

porters have a vital role in clearing glutamate from the

extracellular environment and absorbing it via astro-

cytes to protect neurons from toxicity (Onoue et al.

2002) and these transporters are potently activated by

PACAP (Schluter et al. 2002, Figiel et al. 2003).

As noted above, PACAP plays a critical role in

protecting tissues from hypoxia. Rabl et al. (2002)

note that turtles have much greater levels than

mammals to protect them from diving induced

hypoxia. The gaseous neurotransmitters NO and CO

play vital roles in cellular metabolism and are tightly

regulated by VNs to preserve homeostasis. These

gaseous transmitters are postulated to be associated

with SIDS because of their known association with

cigarette smoking (Staines 2004b). Martinez et al.

(2005) also note the role of the PAC1 receptor in NO

signaling and septic shock. Hence, VNs have complex

and crucial regulatory functions of gaseous neuro-

transmitters and may include NO, CO and ammonia.

Insulin activity is significantly modulated by VNs

through AC and cyclic AMP/PKA pathways (Rado-

savljevic et al. 2004). PACAP potently enhances

glucose-stimulated insulin secretion in pancreatic

islets and enhances insulin action in adipocytes

(Nakata et al. 1999). Hence, PACAP and VIP play a

significant role in neuroendocrine regulation of

insulin-glucose homeostasis (Wei and Mojsov 1996)

and the PAC1 receptor is required to maintain normal

insulin secretory responsiveness to glucose (Jamen

et al. 2000). CFS patients display significantly lower

ACTH response levels in stress testing and insulin

tolerance tests (ITT) (Gaab et al. 2002) as well as

reporting subjective hypoglycaemia. VN dysregulation

may account for these problems (Shintani et al. 2003).

CPG and heat shock proteins may have

important roles in vasoactive neuropeptide

immune dysregulation

Cytosine-guanine dinucleotide fragments (CpG) of

DNA are postulated to be the active ingredients in

bacterial extracts able to induce immune responses

including adjuvant effects and may have applications in

human vaccines (Krieg et al. 1995, Ada and Ramshaw

2003, Tsuchiya et al. 2005). The immune activating

effects of CpG may occur through acquired bacterial

or viral DNA, oligodeoxynucleotide (ODN) or

through self-derived DNA fragments and may have a

role in other autoimmune conditions such as systemic

lupus erythematosus (SLE) (Krieg 1995, Jones et al.

2002, Januchowski et al. 2004). They rescue B cells

from apoptosis, suggesting an autoimmune role

(Yi et al. 1999).

Microbial pathogens containing CpG fragments are

known to bind Toll-like receptors and/or stimulate

microbe-specific T cells to express CD40 ligand,

thereby licensing antigen presenting cells that bear

both microbial and auto-antigens to break tolerance

and precipitate autoimmune disease (Ichikawa et al.

2002, Ebert et al. 2005). In lupus-prone mice,

abnormal innate responses through their pattern-

recognition TLR9 receptors implies that response to

infectious danger in these mice is inappropriate and

may be linked to lupus pathogenesis (Krieg 1995,

Lenert et al. 2003). Hence, autoimmune and

inflammatory processes are known to be induced

through these mechanisms.

HSPs may also be implicated in the recognition of

bacterial or mammalian CpG DNA by acting as a

ligand transfer molecule and/or play a central role in

the signalling cascade induced by CpG DNA

(Bandholtz et al. 2003). Moreover, innate and

adaptive immune mechanisms may act through a

cross priming adjuvant mechanism to engage heat

shock protein in autoreactive responses (Kumaraguru

et al. 2003). HSPs also activate Toll-like receptors in

triggering innate immunity, perhaps through adjuvant-

like signals (van Eden et al. 2003, Millar et al. 2003).

HSPs thus have an established place in regulation of

the immune response (Pockley 2003). HSPs also bind

with other antigenic peptides to form immunostimu-

latory complexes (Srivistava 2002) and interestingly

may take the role of antigenic presentation and

processing in immunoprotected regions such as the

central nervous system (Oglesbee et al. 2002). Indeed

aberrant self HSP expression may lead to enhance-

ment/modulation of autoimmune responses in the

context of myelin basic protein and MHC class II type

interactions (Mycko et al. 2004).

As noted above mammalian DNA normally has

lower than predicted CpG dinucleotide fragments and

these are also usually methylated (Shiota 2004). These

characteristics differ from bacterial and viral DNA
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which contains higher percentages of CpG fragments

and these are more likely to be hypomethylated,

providing a biological “friend or foe” identification

system.

Ancient DNA sequences mimicking bacterial and

viral genomes containing higher proportions of CpG

elements have become incorporated into mammalian

DNA as human endogenous retrovirus (HERV).

These genetic components have become methylated

over time making them mostly benign components of

mammalian DNA. However, these DNA components

may undergo hypomethylation through a range of

stimulating factors, making them able to regulate

transcriptional activity and expression of the HERV

family (Lavie et al. 2005) with implications for a range

of pathologies. Interestingly promoter regions of the

secretin receptor gene have high CpG representation

(Lee et al. 2004) which may also be a feature of

PACAP and VIP receptor genes.

Spontaneous hypomethylation of susceptible

endogenous CpG sequences, or exposure to exogen-

ous bacterial CpG DNA and subsequent stimulation

of cellular processes may mediate innate and acquired

immune pathways including class switching from IgM

to more pathogenic IgG immunoglobulin types (He

et al. 2004). IgM and IgG reactivity to key fragments

of certain VNs or related HSPs thus might theoreti-

cally occur. Such postulated mechanisms could

establish perverse autoreactive loss of immunological

tolerance and effectively create immunisation against

these VNs. The known susceptibility of CpG

fragments to hypomethylation from toxic causes

such as biological poisons and radiation might

predispose to the development of these and other

pathologies (Chen et al. 2004, Pogribny et al. 2004).

These mechanisms might also link fatigue-related VN

autoimmune disorders to exposure to radiological,

biological and chemical warfare agents, extending the

context of public health and military medicine

importance of these postulated disorders.

Therapeutic and preventive interventions

The development of therapeutic and preventive

strategies for postulated VN autoimmune conditions

will be determined by the complex pathophysiology

underpinning them. Mostly these strategies relate to

restoring the functional characteristics of VNs possibly

compromised (Staines 2005c). Analogies with other

illnesses may provide therapeutic parallels. Some

speculative possibilities are listed below:

Substitution/replacement

Simple substitution/replacement interventions are the

most obvious, however, a significant theoretical

impediment is the propensity of these substances to

induce tachyphylaxis (Whalen et al. 1999). Feedback

signaling of VNs is thought to be quite complex and

cascade effects are still largely unpredictable. Catalytic

antibody self-regulatory activity occurs for VNs,

although little is known about how extensively self-

regulation occurs. Catalytic activity of these antibodies

has been described as an innate function originating

over the course of phylogenetic evolution as opposed

to somatic processes (Gololobov et al. 1999).

Because of rapid natural degradation of VNs, e.g. by

naturally occurring antibodies and hydrolysis, liposo-

mal therapeutic vehicles are being explored to prolong

their biological effects. Sterically stabilised liposomes

(SSL) are being developed to provide long acting

formulations of VIP resistant to the rapid degradation

usually observed (Sethi et al. 2005).

Plasma exchange

Perverse immunological memory in early B cell clones

may also be an important factor in establishing basic

autoimmune pathology. While traditionally viewed as

the line of humoral defence, B cell activation is

increasingly being associated with T cell lineage

development and cellular immune responses. Hence,

B cells as therapeutic targets have increasing potential

in autoimmune disorders (Looney et al. 2004).

Specific mono- and polyclonal catalytic antibody

generation may provide opportunities for targeting

abnormal autoimmune epitopes in treatment. Circu-

lating T and B cells and immunoglobulins could be

filtered and pathogenic cells and antibodies removed.

This may provide a screening and potentially

therapeutic approach to prevent SIDS and other

fatigue-related disorders, but is not established.

Analogues with MG treatment

The known association of VPAC2 receptors with

acetylcholine and muscle function (Hinkle et al. 2005)

suggests a patho-mechanism crudely analogous with

autoimmune dysfunction in MG and may provide a

useful model to explore. Hence treatment options

such as pyridostigmine and thymectomy may be

considered. In a series of three case reports,

Kawamura et al. (2003) describe successful use of

oral pyridostigmine in the treatment of CFS. This is

an interesting finding given the possible association of

pyridostigmine with the aetiology of GWS (Abou-

Donia et al. 2004, Staines 2005b). Should specific

anti-VN T cells from thymus prove to be associated

with GWS and CFS, thymectomy could be con-

sidered. However, given that antigen in GWS and

CFS may indeed be VNs or their receptors and related

HSPs widely distributed throughout the body such a

proposed solution does not immediately appear

rational. Corticosteroids are used judiciously with

MG but may not yet be justified in postulated VN

autoimmune fatigue-related conditions.
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Analogues with LES treatment

Should calcium channelopathy prove to be a

significant element in VN autoimmune disorders,

parallels with LES may prove useful. Hence calcium

channel promoters, acetylcholinesterases, immune

suppressants, plasma exchange and intravenous

immunoglobulins may be considered in this context.

Anti-idiotype antibodies

Should fatigue-related disorders be found to result

from immune responses to VNs or their receptors

there may be scope to develop anti-idiotype anti-

bodies. While theoretically a possibility, there are no

close analogues of these disorders in which this

treatment is effective. Because of the known associa-

tion of the VPAC2 receptor with acetylcholine activity

as noted above, MG may be a crude analogue

inasmuch as acetylcholine receptors are compromised

albeit by a different mechanism. However, anti-

idiotype antibody treatment in MG is of equivocal

effectiveness. Alternatively should self antibodies to

VN regulatory mechanisms be the causative mechan-

ism these could be extracted by plasma exchange or

specific anti-idiotype antibodies.

Epigenetic DNA modifications

T- and B-cell functioning may be influenced by VNs

through selective screening of specific epitope carriers.

While this research is still in its infancy, potentially VN

analogous autoimmune conditions such as SLE may

shed light on new CpG therapeutic technologies

(Januchowski et al. 2004). Targeting genomic

expression abnormalities may also be possible through

therapeutic CpG immunostimulating and immunosup-

pressive technologies. Genomic modification of VN

expression may be relevant in SIDS should respiratory

control deficits be proven to play a causal role.

Moreover, CpG binding proteins in microglia are

mostly RNA processing enzymes suggesting a profound

array of opportunities by which CpG may influence

cellular processes in the CNS (Zhang et al. 2005).

CpG and DNA vaccines

Prevention of possible VN autoimmune fatigue related

disorders may be important areas for future develop-

ment. Immunoprotective CpG DNA fragments may

be applied as vaccines to protect VNs or their

receptors from degradation or dysfunction. Beneficial

natural immunity against pro-inflammatory cytokines

may also be amplified by DNA vaccines (Karin 2004)

although these will need to be developed with care

(Klinman et al. 2003). Strategies to prevent or treat

VN autoimmune disorders may include active and

passive vaccination to protect VN receptors from

direct immunogenic or indirect molecular mimicry

effects. The underlying principle for vaccination

would be to protect those at risk from neurological

autoimmune dysfunction. However, this approach

would be complex and criteria for being at risk would

need to be identified. To speculate, a vaccine for SIDS

may be theoretically possible based on protecting vital

VN function from disruption at critical stages in infant

development.

Novel neuroprotective agents

Novel small peptides with stress-protein-like

sequences have been identified which exhibit strong

levels of neuroprotection. These proteins protect

neurons from cell death associated with electrical

activity and heat shock protein antibodies and, there-

fore, may play a role in the treatment of neurodege-

nerative diseases. Therapeutic strategies for a range of

neuroprotective substances including members of the

VIP/PACAP family are also suggested (Brenneman

and Gozes 1996, Gozes and Divinski 2004).

Preservation of function by other substances

regulated by VNs may also be considered. For

example, CSF endogenous opioid substances are

regulated by PACAP and these have a role in cerebral

arterial responses to hypoxia (Wilderman and Arm-

stead 1997), which in turn may be relevant to

protection from SIDS. Endogenous pain mediation

may play a significant role in these conditions and

restoration of this function may be appropriate if

shown to be attributed to VN dysfunction (Julien et al.

2005). Finally, mutually enhancing “cross-over”

effects of VIP/PACAP functioning may suggest that

therapeutic interventions may have synergistic ben-

efits with these substances (Samborski et al. 2004).

Drug treatments

Pharmaceuticals such as anti-depressants have been

shown empirically to provide symptomatic relief to

some fatigue-related disorders. These conditions have

been shown not to be primary organic depression but

may be explained as collateral symptomatology to

possible VN autoimmune dysfunction.

Blockade of 5-HT could elicit symptomatology

consistent with a VN autoimmune disorders. This

effect may be explained by the role of serotonin in

controlling VIP release mechanisms. Altered VIP

expression may occur prenatally through serotonin

imprinting in ontogenesis (Mirochnik et al. 2003)

suggesting implications for monitoring the use of

selective serotonin uptake inhibitor (SSRI) and tri-

cyclic anti-depressants in pregnancy. However,

decreased 5-HT1A receptor numbers and affinity

are noted in CFS particularly in the hippocampus

(Cleare et al. 2005) possibly indicating heterogenous

modulating relationships between VIP and 5-HT

receptors in CFS. Chloroquine may also have a role in

treatment or prevention (Hong et al. 2004).
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Phosphodiesterase (PDE) inhibitors

Because of the likely cAMP disruption in these

conditions, cAMP promoting agents such as phos-

phodiesterase inhibitors may have a role (Staines

2006). Drugs such as rolipram, a phosphodiesterase

type 4 inhibitor, activate cAMP-response element

binding proteins (CREB) signalling as well as

enhancing cAMP levels by impeding cAMP catabo-

lism (Conti and Blendy 2004). Imipramine also

appears to have a key role in cAMP metabolism and,

therefore, may be useful in combination drug therapy

(Itoh et al. 2004, Knuuttila et al. 2004). Rolipram was

developed as an anti-depression drug but has been

found also to have anti-inflammatory and immuno-

regulatory activities (Sommer et al. 1995, Abbas et al.

2000). Unfortunately, side-effects such as nausea,

vomiting and headache are reported suggesting the

need for less side effect-inducing analogues in therapy

(Xu et al. 1999) and continuous administration may

be necessary to sustain its therapeutic effect (Martinez

et al. 1999). Later-generation drugs of this family may

prove to have better tolerance.

Conclusion

The autoimmune hypothesis of VNs suggests that

relatively minor infection or inflammation results in

predictable pro-inflammatory cytokine and other

responses which may have subsequent serious effects

involving VN dysfunction. Other pro-inflammatory

effects such as NO release and possible chemical

sensitivities may also result. Modulation and termina-

tion of these inflammatory responses is required by

VNs. Autoimmune effects, e.g. on PACAP/VIP or the

PAC1/VPAC1/VPAC2 receptors will have a negating

effect on VN function and also subsequent effects on

intracellular mechanisms.

While some inflammatory or infectious events may be

trivial, compromise of the functions of VNs such as

PACAP/VIP/CGRP is not. Brain, cardiac and other

organs known to exhibit similar PACAP/VIP receptor

function would also be expected to demonstrate

dysfunction somewhat simultaneously. Prevention of

SIDS and other disorders if shown to be VN

autoimmune conditions mayevolve from these concepts.

Public health implications may exist if “epidemics”

or simply seasonal circulating organisms have particu-

lar molecular mimicry with VNs or their receptors.

Short term relatively benign IgM may shift to a more

pathogenic IgG phenotype as autoimmune responses

to VNs/receptors and result in longer-term profound

impairment and disability. These VN autoimmune

processes may also have implications for military

medicine where radiological, chemical and biological

agents may play an important role in pathogenesis.

Postulated autoimmune VN conditions may share a

common pathophysiology in contributing to apoptosis

of neuronal and other vital neurological cells and that

this underpins failure or compromise of important

neuroregulatory mechanisms. Perhaps paradoxically,

necessary apoptosis of autoreactive immunological

cells, e.g. B and plasma cells may not occur and this

predisposes to autoimmune dysfunction of VNs or their

receptors. Dysregulation of innate immune systems

through CpG and TLR9 interactions may also prove to

have important roles in establishing autoreactivity.

Further understanding of possible autoimmune

dysfunction of these VNs and their receptors may

elucidate the mechanisms of disabling fatigue-related

syndromes such as CFS and GWS, and possibly

SIDS, and open the way for routine laboratory

investigations and prevention options. VN and

receptor reactivation may prove to become successful

interventions. A spectrum of interventions including

genomic, immunological and biochemical/drug thera-

pies may prove to be possible in VN autoimmune

fatigue-related disorders. Interventions such as phos-

phodiesterase inhibitors, immunotherapy, VN repla-

cement or VN receptor reactivation may prove to be

useful in these conditions but are not yet tested.
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