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Abstract

Nonalcoholic fatty liver disease (NALFD), characterized by an abnormal accumulation of tri-

glycerides in hepatocytes, is closely linked to insulin resistance, metabolic syndrome, and

changes in lipogenesis in the liver. The accumulation of hepatic lipids can lead to a range of

pathologies from mild steatosis to severe cirrhosis. Endurance exercise is known to amelio-

rate the adverse health effects of NAFLD. Therefore, we aimed to investigate the effect of

voluntary wheel running (VWR) on the metabolic changes in the livers of high-fat diet (HFD)-

induced NAFLD mice and used LC-MS/MS (Liquid chromatography–mass spectrometry) to

determine whether the tested intervention affected the protein expression profiles of the

mouse livers. Male C57BL/6 mice were randomly divided into three groups: control (CON),

high-fat diet sedentary group (HFD), high-fat diet VWR group (HFX). HFX group performed

voluntary wheel running into individually cages, given a high-fat diet for 12 weeks. Food con-

sumption, body weight, and running distance were measured every week. Using 2D (2-

dimensional)-gel electrophoresis, we detected and quantitatively analyzed the protein

expression with >2.0-fold change in the livers of HFD-fed mice, HFD-fed exercise (HFX)

mice, and chow-fed mice. Body weight was significantly increased in HFD compared to

CON (P < 0.05). The 2D-gel electrophoresis analysis indicated that there was a difference

between CON and HFD groups, showing 31 increased and 27 decreased spots in the total

302 paired spots in the HFD group compared to CON. The analysis showed 43 increased

and 17 decreased spots in the total 258 spots in the HFX group compared to CON. More-

over, 12 weeks of VWR showed an increase of 35 and a decrease of 8 spots in a total of 264

paired spots between HFD and HFX. LC-MS/MS of HFD group revealed that proteins

involved in ketogenesis, lipid metabolism, and the metabolism of drugs and xenobiotics

were upregulated, whereas detoxifying proteins, mitochondrial precursors, transport pro-

teins, proteasomes, and proteins involved in amino acid metabolism were downregulated.

On the other hand, VWR counteracted the protein expression profile of HFD-fed mice by

upregulating molecular chaperones, gluconeogenesis-, detoxification-, proteasome-, and

energy metabolism-related proteins. This study provided a molecular understanding of the
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HFD- and exercise-induced protein marker expression and presented the beneficial effects

of exercise during pathophysiological conditions.

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a condition in which excessive triglyceride (TG)

accumulation in hepatocytes results in steatosis and inflammation [1, 2]. The pathophysiology

of NAFLD ranges from nonalcoholic steatohepatitis, which increases the inflammatory

response and hepatocyte fibrosis to hepatic cirrhosis and hepatocellular carcinoma [3, 4]. A

growing number of studies suggest that NAFLD is associated with metabolic syndrome-related

diseases [5], such as type 2 diabetes, obesity, and dyslipidemia, and significantly increases the

risk of cardiovascular disease [6]. Excessive caloric intake, including a high-fat diet (HFD) and

inactivity, plays a critical role in the development of NAFLD [7]. In addition, HFD-induced

metabolic disorders are intimately linked to and promoted by high availability of plasma free

fatty acids in the liver [8].

Above all, early NAFLD treatment is essential to prevent severe liver disease, but so far,

there is no approved medication available for NAFLD. However, numerous studies have

attempted to explore and find an effective solution to attenuate NAFLD development, includ-

ing calorie restriction and physical exercise [9–11]. Regular exercise is an effective regimen for

the prevention and treatment of metabolic disorders. The principal advantage of exercise in

NAFLD is improved insulin sensitivity and lipid profile, and a reduction in the fat accumula-

tion in the liver [11].

Several studies have been conducted to investigate the beneficial effects of exercise using

HFD models. A comparison of the effects of forced treadmill and voluntary wheel running

exercise in a mouse model showed a similar change of physiologic effects, such as weight, fat

mass, and mitochondrial biogenesis markers [12]. However, it is commonly known that forced

treadmill exercise can be adjusted in duration and intensity, while VWR can help to become

habitual with continued access to participate in aerobic exercise [13]. Forced treadmill exercise

was demonstrated to enhance fatty acid oxidation by improving mitochondrial function and

suppressing lipogenesis expression in the liver [14, 15]. In addition, endurance exercise was

reported to ameliorate HFD-induced mitochondrial function in the liver, such as that related

to the mitochondrial transmembrane electric potential and fat oxidation [16] Several studies

showed that VWR can protect against inflammatory markers in adipose tissue and ameliorate

insulin sensitivity in diet-induced obese mouse model [17–19]. Ghareghani et al. demonstrated

that aerobic endurance training can reduce lipogenesis by miR-33-mediated autophagy, which

regulates cholesterol homeostasis in an HFD model [20]. To date, despite the accumulating

evidence of the positive effects of exercise in the HFD model, studies to find exercise-related

protein marker profile are needed for further research.

High-throughput techniques can fill the knowledge gap regarding the elucidation of the

underlying mechanism of exercise intervention in metabolic disorders at the level of individual

genes or translational proteins [21, 22]. Several studies have suggested that proteomics is a

powerful tool for assessing quantitative protein expression in specific organs [22, 23]. Previous

studies have demonstrated the impact of HFD on mouse liver gene expression to quantitatively

screen and identify protein expression patterns using MS/MS analysis [24, 25].

In the present study, we investigated the protein expression profiles in the liver of HFD-fed

mice under sedentary and aerobic exercise conditions to understand the underlying molecular
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mechanisms associated with the protective effects of exercise. We screened for proteins

involved in de novo synthesis, energy metabolism, and mitochondrial function in the HFD

mouse model using LC-MS/MS.

Materials and methods

Experimental animals and sample preparation

Five-week-old mice (30 male, C57BL/6, DBL Co., Korea) were purchased and randomly

assigned to three groups: CON, control group (n = 9); HFD, high-fat diet sedentary group

(n = 9); HFX, high-fat diet VWR group (n = 12). The CON group was fed a chow diet (18%

protein, 5% fat, 5% fiber, 5% ash, RodFeed, DBL, Co., Korea) and the HFD group was fed a

high-fat diet (34.9% fat by weight, providing 60% calories from fat, D12492, Research diets,

Co., USA) for 12 weeks. The animals were maintained in a room with constant temperature of

22 ± 1˚C and humidity-controlled environment 55 ± 10% with a 12-light/12-h dark cycle and

free access to food and water. Body weight and food intake of the animals were measured

weekly. The institutional animal care and use committee of Chungbuk National University

reviewed and approved the study design before the animal experiments were conducted

(CBNUA-1214-18-01). The procedures for the handling and care of the animals adhered to

the guidelines that comply with the current international laws and policies (NIH Guide for the

Care and Use of Laboratory Animals, NIH Publication No. 85–23, 1985, revised 1996) [26]. All

experiments were conducted to minimize the number of animals used and the possible suffer-

ing/pain that may be caused by any of the experimental procedures used in the present study.

The mice were anesthetized with 2.5% flow rate of isoflurane (Sigma-Aldrich, USA) using

Multiplus-MEVD anesthesia machine with ventilator (Royal Medical Co., Korea), and were

sacrificed immediately post anesthesia by cervical dislocation. Frozen liver tissues (200 mg)

were solubilized in 1.0 ml of lysis buffer consisting of 7 M urea, 2M thiourea, 4% w/v CHAPS,

100 mM dithiolerythritol DTE, 40 mM Tris, 2% v/v pH 3–10 Bio-Lytes (Bio-rad, Hercules,

CA, USA) and a trace of bromphenole blue. Solubilization was aided by tip-probe sonication

for 4 x 30s with 2min on ice between each round of sonication. Samples were centrifuged at

12000 g at 4˚C for 1 h. The supernatant was transferred into new tubes, and then 150 U of

endonuclease (Sigma, St. Louis, MO, USA) was added. Protein samples were stored at −80˚C

until use.

Voluntary wheel running

The HFX group was individually housed, and a running wheel (Lafayette Instrument Com-

pany, USA) was placed in each cage for 12 weeks. Running activities such as distance (meter)

and velocity (meter per minute) were recorded in a 10-min time interval using a computerized

system (Lafayette instrument computerized animal wheel monitoring system; Lafayette Instru-

ment Co., USA).

2D-Polyacrylamide gel electrophoresis

2D-Polyacrylamide gel electrophoresis (PAGE) was performed as described previously [27,

28]. Aliquots in sample buffer (7 M urea, 2M thiourea, 4.5% CHAPS, 100 mM DTE, 40 mM

Tris, pH 8.8) were applied to the immobilized non-linear gradient (pH 3–10) strips (Amer-

sham Biosciences, Uppsala, Sweden). Isoelectric focusing was performed at 80,000 Vh (volt-

hour). The second dimension was analyzed on 9%–16% linear gradient polyacrylamide gels

(18 cm × 20 cm × 1.5 mm) at a constant 40 mA per gel for approximately 5 h. After protein fix-

ation in 40% methanol and 5% phosphoric acid for 1 h, the gels were stained with Coomassie

PLOS ONE Liver proteomic output of high-fat-diet and exercise in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0273049 August 18, 2022 3 / 17

https://doi.org/10.1371/journal.pone.0273049


Brilliant Blue G-250 for 12 h. The gels were then destained with H2O, scanned in a Bio-Rad

(Richmond, CA) GS710 densitometer, and converted into electronic files, which were then

analyzed with Image Master Platinum 5.0 (Amersham Biosciences).

LC-MS/MS for peptide analysis

Nano LC-MS/MS analysis was performed with an Easy n-LC (Thermo Fisher San Jose, CA,

USA) and an LTQ Orbitrap XL mass spectrometer (Thermo Fisher, San Jose, CA, USA)

equipped with a nano-electrospray source. Samples were separated on a C18 nanopore column

(150 mm × 0.1 mm, 3 μm pore size; Agilent). Mobile phase A for LC separation was 0.1% for-

mic acid and 3% acetonitrile in deionized water, and mobile phase B was 0.1% formic acid in

acetonitrile [28]. The chromatography gradient was designed for a linear increase from 0% B

to 60% B in 9 min, 60% B to 90% B in 1 min, and 3% B in 5 min. The flow rate was maintained

at 1800 nL/min.

Mass spectra were acquired using data-dependent acquisition with a full mass scan (380–

1700 m/z) followed by 10 MS/MS scans. For MS1 full scans, the orbitrap resolution was

15,000, and the automatic gain control (AGC) was 2×105. For MS/MS in the LTQ, the AGC

was 1×104.

Database search

The mascot algorithm (Matrixscience, USA) was used to identify peptide sequences present in

a protein sequence database. Database search criteria were taxonomy: Mus musculus, fixed

modification; carbamidomethylated at cysteine residues; variable modification; oxidized at

methionine residues, maximum allowed missed cleavage, 2; MS tolerance, 10 ppm; MS/MS

tolerance, 0.8 Da. The peptides were filtered using a significance threshold of P<0.05.

Statistical and network analysis

Experimental data were expressed as mean ± standard error of the mean (SEM), and the effect

of time and exercise on physiological parameters such as weight and food intake were analyzed

using two-way ANOVA with Tukey-Kramer post-hoc test with a standard significance thresh-

old (P< 0.05). GraphPad Prism 8.0 (CA, USA) was used for statistical analysis. To analyze the

interactions between HFD-dysregulated proteins and HFX-upregulated proteins found in this

study, we uploaded differentially regulated metabolism-related proteins, with a significance of

>2.0-fold, to the STRING database (Search Tool for the Retrieval of Interacting Genes/Pro-

teins, version 11.0) to search for protein–protein interactions.

Results

Impact of VWR on body weight and food uptake

Fig 1A demonstrate the weekly body weight for each group. HFD induced a significant weight

gain from 3-week to 12-week period in the HFD group compared to the CON group

(P< 0.001). High fat diet had a very significant effect on the body weights [F(22, 324) = 12.88,

P< 0.001]. However, voluntary wheel running for 12 weeks prevented weight gain in the HFX

group (P< 0.001). The food intake was higher in the CON group than in the HFD group [F

(22, 324) = 3.844, P< 0.001; Fig 1B)]. In contrast, there was no difference in the food con-

sumption between the HFD and HFX groups after 12 weeks. When the body weights of the

mice were normalized, we found that the food intake of mice was significantly higher in the

CON group than the other groups. And HFX group had a higher food intake than HFD group

(P< 0.001, Fig 1C). Moreover, cumulative food intake was significantly higher in the CON
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group than HFD group (P< 0.001), while the HFX group had a decreased cumulative intake

as compared to HFD group (P < 0.001, Fig 1D). In addition, VWR showed a gradual decrease

in the running distance over time in the HFX group, at the individual level and a large varia-

tion was observed in the total running distance ranging from about 113 km to 247 km in the

HFX group (S1 Fig).

2D-PAGE analysis

2D-PAGE analysis of the mouse liver showed a total of 393 and 358 protein spots for the CON

and HFD groups, respectively, with 147 non-paired spots between the two groups. There were

302 paired protein spots between the CON and HFD groups, which were used for further

Fig 1. The effects of a high-fat diet and voluntary wheel running (VWR) on body weight, food intake. C57BL/6 mice were fed a high-fat diet (HFD), a high-fat fed with

VWR (HFX), and corresponding control diet (CON) for 12 weeks. (A) The body weight curve of the CON, HFD, and HFX group was monitored. (B) Weekly food intake

of the CON, HFD, and HFX group for 12 weeks. (C) The ratio of weekly average food intake to body weight for all experimental groups. (D) Distribution of food intake for

all experimental groups. The data represent means ± SEM of (A-D) n = 9, the control group (CON); n = 9, the high-fat diet group (HFD); n = 12, the high-fat diet VWR

group (HFX). ��P<0.01, ���P<0.001 compared with CON and ##P<0.01, ###P<0.001 compared with HFD, using two-way ANOVA with Tukey-Kramer post-hoc test with

a standard significance threshold (P<0.05) (A-D).

https://doi.org/10.1371/journal.pone.0273049.g001
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analysis. Among the 302 paired spots, 31 protein spots were found to be upregulated, while 27

spots were downregulated in the HFD group compared with the CON group (Fig 2A–2D).

Among the total 343 protein spots detected in the HFX group, 268 were paired spots

between CON and HFX, while the number of non-paired spots was 200. Analysis of the 268

paired spots revealed 43 upregulated and 17 downregulated proteins in the HFX group (Fig

3A–3D). Among the 264 paired spots found between the HFD and HFX groups, 35 protein

spots corresponded with upregulated, while 8 spots corresponded with downregulated pro-

teins in the HFX group. A total of 173 non-paired protein spots were detected (Fig 4A–4D).

The differentially expressed proteins showed a difference of>2.0-fold.

Proteomic analysis of mouse liver

The proteomic analysis of the mouse livers using 2D-PAGE followed by protein identification

by LC-MS/MS revealed 35 protein spots whose expression levels were changed by> 2.0-fold

with significant alterations (P<0.05) in the HFD vs. CON (Table 1), HFX vs. CON groups

(Table 2) and the HFX vs. HFD groups (Table 3). According to their functional properties, the

identified proteins were grouped into the following nine categories:

Fig 2. 2D-PAGE images and Venn diagram showing differential protein expression (>2-fold) between CON and HFD groups (A-D). (A) The images of 2D-PAGE

show green circles indicating group paired spots, and red circles indicating group non-paired spots. Green circles indicate group paired spots, and orange circles

indicate group non-paired spots. The images of the 2D-PAGE show an increase of 31 spots (B) and a decrease of 27 spots (C) among the 302 paired spots in HFD

compared to CON. The differentially expressed spots showed a difference of>2.0-fold. (D) The numbers in red denote upregulated spots and the numbers in blue

indicate downregulated spots, in the Venn diagram.

https://doi.org/10.1371/journal.pone.0273049.g002
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1. Proteins involved in carbohydrate, lipid, and energy metabolism, such as fructose-1,6-

bisphosphate 1 (Fbp1), ATP synthase (mt-Atp8), ATP5b protein (Atp5b), and enolase 1 B

(Eno1b)

2. Proteins involved in amino acid metabolism, such as phenylalanine hydroxylase (Pah), iso-

valeryl-CoA dehydrogenase (Ivd), and carboxylesterase 3 B (Ces3b)

3. Mitochondrial precursors, such as isovaleryl-CoA dehydrogenase (Ivd), cytochrome b-c1

complex subunit 2 (Uqcrc2), 3-hydroxy-3-methylglutarly-coenzyme synthase 2 (Hmgcs2),

3-hydroxy-3-methlglutarly-CoA synthase (Hmgcs2), and 3-hydroxy-3-methlglutarly-CoA

lyase (Hmgcl1)

4. Molecular chaperones, such as heat shock protein 90-beta membrane 1 (Fkbp4)

5. Proteins involved in detoxification, such as glutathione S-transferases (Gstp1) and glutathi-

one peroxidase 6 (Gpx6), the crystal structure of a murine alpha-class glutathione S-trans-

ferase (1GUK_A)

6. Protein transporters, such as selenium-binding protein (Selenbp2)

Fig 3. 2D-PAGE images and Venn diagram showing differential protein expression (>2-fold) between CON and HFX (A-D). (A) The images of 2D-PAGE

show green circles which indicate group paired spots, and red circles that indicate group non-paired spots. Green circles indicate group paired spots, and orange

circles indicate group non-paired spots. The images of the 2D-PAGE show an increase of 43 spots (B) and a decrease of 17 spots (C) among the 268 paired spots in

HFD compared to CON. The differentially expressed spots showed a difference of>2.0-fold. (D) The numbers in red denote upregulated spots and the numbers in

blue indicate downregulated spots, in the Venn diagram.

https://doi.org/10.1371/journal.pone.0273049.g003
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7. Proteolysis proteins, such proteasome activator subunit 4 (Psme4)

8. Enzymes, such as Aldh1l1 (Aldh1l1)

9. Unknown functional proteins, such as the mCG8752 isoform CRA_c, mCG8752 isoform

CRA_b, and mCG129115 (Fig 5).

Impact of HFD on biochemical pathways

To determine a functional network or interaction between the HFD and HFX protein regula-

tion profiles, we performed four functional association analyses using the STRING database

(version 11.0, https://string-db.org) on 35 protein spots. The network showed that database

(light blue lines) and co-expression (black lines) associations are generated from a list of signif-

icant protein interaction groups gathered from curated databases. The experimental associa-

tion (pink lines) was extracted from a list of significant protein interaction datasets gathered

from other protein–protein interaction databases, such as IMEx and MIntAct. The text mining

associations (light green lines) were extracted from published scientific literature. The majority

of these 28 differentially regulated proteins showed protein–protein interactions (PPI) in all

Fig 4. 2D-PAGE images and Venn diagram showing differential protein expression (>2-fold) between HFD and HFX (A-D). (A) The images of 2D-PAGE show

green circles that indicate group paired spots, and red circles that indicate group non-paired spots. Green circles indicate group paired spots, and orange circles

indicate group non-paired spots. The images of the 2D-PAGE show an increase of 35 spots (B) and a decrease of 8 spots (C) among the 264 paired spots in HFD

compared to CON. The differentially expressed spots showed a difference of>2.0-fold. (D) The numbers in red denote upregulated spots and the numbers in blue

indicate downregulated spots, in the Venn diagram.

https://doi.org/10.1371/journal.pone.0273049.g004
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four association algorithms. In the protein network, mt-Atp8, Uqcrc2, and Atp5b, which were

related to electron transport chain (ETC), exhibited more interactions than the other proteins.

Interestingly, those three proteins mentioned above were also downregulated in the HFD but

were upregulated by the physical activity in the HFX group (Fig 6).

Discussion

High-fat diet induces the development of NAFLD, the most widespread chronic liver disease

in many regions of the globe, especially in Western countries [29, 30]. NAFLD is also consid-

ered an independent predictor of cardiovascular diseases and increases the risk of chronic kid-

ney disease [31]. However, the current therapeutic outcomes for dealing with NAFLD-related

metabolic pathologies are unsatisfactory [32]. In line with this, exercise has been proposed as

an effective treatment strategy for NAFLD through various mechanisms, such as the upregula-

tion of antioxidant enzymes and anti-inflammatory mediators and through the regulation of

the endoplasmic reticulum stress-associated pathways [33, 34]. In light of these studies, we

identified the HFD-induced NAFLD-linked protein expression profile in sedentary and exer-

cise intervention mouse models through a high-throughput quantification of proteins.

Firstly, we found a significantly increased body weight in HFD group (P < 0.001, Fig 1A),

but VWR prevented the weight gain in HFX group (P < 0.001). The food intake was decreased

Table 1. Liver proteins differentially expressed in the HFD vs. CON.

Accession

Number

Symbols Protein name Mass Total

Mascot

score

Matched

peptide

Sequences Calculated

PI

Sequence

Coverage

emPAI Fold

change

(HFD/

CON)

Spot

number

AAH48380.1 Ces3b Carboxylesterase 3B 63790 52 1(1) 1(1) 5.79 1 0.11 1.2 114

NP_062287.1 Selenbp2 selenium-binding protein

2

53165 933 97(97) 15(15) 5.78 31 3.13 -3.4 165

NP_062287.1 Selenbp2 selenium-binding protein

2

53165 1075 90(90) 18(18) 5.78 31 4.92 -2.5 166

NP_058054.2 Hmgcs2 ATP synthase subunit

beta

56265 1464 253(253) 19(19) 5.19 40 8.62 1.1 182

AAH37127.1 Atp5b Atp5b protein 56632 597 28(28) 10(10) 5.24 23 1.73 -1.2 215

EDL38956.1 Hmgcs2 3-hydroxy-

3-methylglutaryl-

Coenzyme A synthase 2

59142 509 13(13) 9(9) 8.36 14 1.10 1.9 217

EDL21456.1 Pah phenylalanine

hydroxylase

50265 506 22(22) 11(11) 5.91 20 1.84 1.2 224

NP_001020559.1 Eno1b enolase 1B 47453 1129 51(51) 20(20) 6.37 31 7.87 -1.4 254

NP_062800.1 Ivd isovaleryl-CoA

dehydrogenase

44695 626 30(30) 11(11) 8.53 23 3.56 -2.2 284

AAB03107.1 Hmgcll1 3-hydroxy-

3-methylglutaryl-CoA

lyase

34641 44 1(1) 1(1) 8.70 2 0.15 -2.9 365

EDL26822.1 Psme4 proteasome 31081 139 2(2) 2(2) 8.80 6 0.37 -1.3 423

EDL01226.1 mCG8752 mCG8752, isoform

CRA_b

31728 262 10(10) 5(5) 6.47 15 1.10 -2.1 399

NP_038569.1 Gstp1 glutathione S-transferase

P 1

23765 209 4(4) 3(3) 7.68 18 1.20 -3.9 483

1GUK_A 1GUK_A Chain A, Crystal

Structure of Murine

Alpha-Class Gsta4-4

25559 534 23(23) 11(11) 6.77 38 6.54 -3.7 481

EDL31590.1 mt-Atp8 ATP synthase 17589 158 6(6) 2(2) 5.01 16 0.70 -1.3 534

https://doi.org/10.1371/journal.pone.0273049.t001
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over time in HFD group (P < 0.001), but the normalization of the body weights yielded a sig-

nificantly increased food intake in HFX group (P < 0.001). In addition, the cumulative food

intake of mice was significantly different among groups over time (P< 0.001, Fig 1D). Our

results were supported by a recent study which demonstrated that VWR (for 30 min, 5 days)

reduces weight gain by preferentially decreasing the intake of high-fat food [35]. Our data

showed that HFX group consumed the lowest cumulative food intake among all groups, cor-

roborating with the aforementioned report.

Next, we analyzed the quantitative protein expression profile among groups and established

that the level of enolase 1B was higher in the HFD group than in the CON group. Enolase is a

glycolytic enzyme which plays an important role of catalyzing 2-phosphoglycerate dehydration

to phosphoenolpyruvate as part of glycolytic and gluconeogenesis pathway [36]. Enolase 1

(enolase alpha) is known as a diagnostic marker of multiple tumors and numerous autoim-

mune diseases [37], including rheumatoid arthritis [38]. A recent study demonstrated that

enolase1/MBP-1, functions as a tumor suppressor by binding and inhibiting c-myc promoter-

binding protein and could play the role of an important sensor/regulator in stressful condi-

tions [39, 40]. In addition, upregulation of enolase 3 in human liver cell line could promote the

lipid accumulation. The higher levels of enolase 1B in HFD group suggested that 12 weeks of

HFD intake might induce an excessive fat accumulation and cause inflammation and damage

Table 2. Liver proteins differentially expressed in the HFX vs. CON.

Accession

Number

Symbols Protein name Mass Total

Mascot

score

Matched

peptide

Sequences Calculated

PI

Sequence

Coverage

emPAI Fold

change

(HFX/

CON)

Spot

number

AAH48380.1 Ces3b Carboxylesterase 3B 63790 52 1(1) 1(1) 5.79 1 0.11 4.2 114

NP_062287.1 Selenbp2 selenium-binding protein

2

53165 933 97(97) 15(15) 5.78 31 3.13 1.1 165

NP_062287.1 Selenbp2 selenium-binding protein

2

53165 1075 90(90) 18(18) 5.78 31 4.92 1.2 166

NP_058054.2 Hmgcs2 ATP synthase subunit

beta

56265 1464 253(253) 19(19) 5.19 40 8.62 -2.1 182

AAH37127.1 Atp5b Atp5b protein 56632 597 28(28) 10(10) 5.24 23 1.73 2.6 215

EDL38956.1 Hmgcs2 3-hydroxy-

3-methylglutaryl-

Coenzyme A synthase 2

59142 509 13(13) 9(9) 8.36 14 1.10 -1.9 217

EDL21456.1 Pah phenylalanine

hydroxylase

50265 506 22(22) 11(11) 5.91 20 1.84 4.9 224

NP_001020559.1 Eno1b enolase 1B 47453 1129 51(51) 20(20) 6.37 31 7.87 2.7 254

NP_062800.1 Ivd isovaleryl-CoA

dehydrogenase

44695 626 30(30) 11(11) 8.53 23 3.56 1.1 284

AAB03107.1 Hmgcll1 3-hydroxy-

3-methylglutaryl-CoA

lyase

34641 44 1(1) 1(1) 8.70 2 0.15 1.6 365

EDL26822.1 Psme4 proteasome 31081 139 2(2) 2(2) 8.80 6 0.37 2.5 423

EDL01226.1 mCG8752 mCG8752, isoform

CRA_b

31728 262 10(10) 5(5) 6.47 15 1.10 1.2 399

NP_038569.1 Gstp1 glutathione S-transferase

P 1

23765 209 4(4) 3(3) 7.68 18 1.20 -1.8 483

1GUK_A 1GUK_A Chain A, Crystal

Structure of Murine

Alpha-Class Gsta4-4

25559 534 23(23) 11(11) 6.77 38 6.54 1.2 481

EDL31590.1 mt-Atp8 ATP synthase 17589 158 6(6) 2(2) 5.01 16 0.70 2.3 534

https://doi.org/10.1371/journal.pone.0273049.t002

PLOS ONE Liver proteomic output of high-fat-diet and exercise in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0273049 August 18, 2022 10 / 17

https://doi.org/10.1371/journal.pone.0273049.t002
https://doi.org/10.1371/journal.pone.0273049


to the liver [41]. Our results indicated that the majority of the differentially expressed proteins

in the livers of HFD and HFX mice were involved in the energy metabolism of carbohydrates

and lipids, as reported previously [42, 43]. Fbp1, a rate-limiting enzyme in gluconeogenesis, is

involved in regulating the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate [44,

45]. The accelerated energy expenditure by regular exercise maintains glucose homeostasis in

working skeletal muscles through increased glucose uptake and utilization of lipids and muscle

glycogen [46]. During prolonged exercise periods such as VWR, the requirement of glucose

uptake by contracting muscles is supported by energy homeostasis in the form of glucose

release from the liver [47]. Our data demonstrated an increase in liver Fbp1 protein expression

after VWR in the HFX group compared with the HFD group. This finding was consistent with

previous studies showing that regular exercise could activate metabolic pathways, such as glu-

coneogenesis, by the oxidation of fatty acids by the liver to fulfill the energy demand. Further-

more, the data suggested that increased gluconeogenesis reflects the increased mitochondrial

redox state. Atp5b and mt-Atp8 are mitochondrial membrane ATP synthases that produce

ATP from ADP in a proton gradient across the membrane. In our experiments, the mitochon-

drial precursor-related proteins Atp5b and mt-Atp8 were reduced by HFD, but HFX reversed

this effect. In addition, we provided evidence that mitochondrial biogenesis is increased in the

HFX group.

Table 3. Liver proteins differentially expressed in the HFX vs. HFD.

Accession

Number

Symbols Protein name Mass Total

Mascot

score

Matched

peptide

Sequences Calculated

PI

Sequence

Coverage

emPAI Fold

change

(HFX/

HFD)

Spot

number

AAH10445.1 Fkbp4 Hsp90b1 Heat shock protein

90, beta (Grp94), member 1

92717 2808 87(87) 55(55) 4.74 42 21.44 5.7 12

AAH24055.1 Aldh1l1 Aldh1l1 protein 99527 1323 42(42) 26(26) 5.69 25 3.16 3.7 15

AAH48380.1 Ces3b Carboxylesterase 3B 63790 52 1(1) 1(1) 5.79 1 0.11 4.2 90

NP_062287.1 Selenbp2 selenium-binding protein 2 53165 752 43(43) 12(12) 5.78 23 2.46 3.8 138

NP_062287.1 Selenbp2 selenium-binding protein 2 53165 1432 97(97) 23(23) 5.78 37 9.04 3.2 139

NP_062287.1 Selenbp2 selenium-binding protein 2 53165 1594 127(127) 23(23) 5.78 47 8.55 3.8 144

NP_062287.1 Selenbp2 selenium-binding protein 2 53165 455 18(18) 8(8) 5.78 17 1.03 4.6 145

NP_062287.1 Selenbp2 selenium-binding protein 2 53165 212 5(5) 4(4) 5.78 7 0.43 3.3 183

NP_032282.2 Hmgcs2 hydroxymethylglutaryl-CoA

synthase

57300 1115 120(120) 19(19) 8.65 27 4.64 -2.5 207

NP_032282.2 Hmgcs2 hydroxymethylglutaryl-CoA

synthase

57300 201 7(7) 4(4) 8.65 7 0.39 2.5 370

EDL01201.1 mCG129115 mCG129115 52628 144 3(3) 3(3) 4.95 5 0.31 -2.9 197

CAA27558.1 Gpx6 glutathione peroxidase 22504 335 10(10) 6(6) 6.74 32 3.28 2.7 225

NP_062800.1 Ivd isovaleryl-CoA

dehydrogenase

46695 933 65(65) 17(17) 8.53 29 7.36 2.5 691

NP_062268.1 Fbp1 fructose-1,6-bisphosphatase

1

37288 1185 97(97) 18(18) 6.15 38 11.47 5.2 285

BAA19003.1 Phyh LN1 39053 542 23(23) 12(12) 7.64 26 6.97 4.6 322

EDL01227.1 mCG8752 mCG8752, isoform CRA_c 50255 802 59(59) 13(13) 6.02 26 2.72 2.6 357

EDL26822.1 Psme4 proteasome 31081 139 2(2) 2(2) 8.80 6 0.37 2.5 375

NP_038569.1 Gstp1 glutathione S-transferase P 1 23765 345 19(19) 5(5) 7.68 28 4.90 4.4 428

NP_080175.1 Uqcrc2 cytochrome b-c1 complex

subunit 2

48262 971 34(34) 16(16) 9.26 30 5.09 3.4 714

EDL31590.1 mt-Atp8 ATP synthase 17589 158 6(6) 2(2) 5.01 16 0.70 2.3 717

https://doi.org/10.1371/journal.pone.0273049.t003
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The essential proteins that control mitochondrial biogenesis, such as cytochrome b-c1 com-

plex subunit 2, isovalertl-CoA dehydrogenase, and hydroxymethyglutaryl-CoA synthase, were

all upregulated in the liver of the HFX mice, compared with the HFD mice. Some previous stud-

ies have suggested that exercise improves the function of mitochondrial biogenesis even though

the mice were fed an HFD. Lezi et al. observed that 6 weeks of moderate-intensity treadmill

exercise increased mitochondrial biogenesis [48]. Gehrke et al. demonstrated that VWR

increased mitochondrial fatty acid β–oxidation in the liver of mice fed a HFD for 12 weeks [49].

These findings suggested that HFD decreases energy metabolism and the expression of mito-

chondrial precursor-related proteins, but exercise reverses these effects in the liver.

Specifically, several essential pathways, including those related to the metabolism of xenobi-

otics and lipids, were downregulated, resulting in a decrease in SBP2 and Phyh (LN1) protein

levels in HFD-fed mice. SBP2 is expressed in the liver and has specific properties of binding

with xenobiotics like selenium and acetaminophen [50, 51]. Zhou et al. demonstrated that the

high fat- and fast food-fed mice groups showed downregulated pathways of carbohydrate/lipid

metabolism, including the downregulated expression of Selenbp2, but exercise could alleviate

the altered DNA methylation induced by the high-fat or fast-food diet [52]. In addition, our

experimental results showed that SBP2 levels were increased in HFX mice, corroborating the

findings of previous studies. However, the exact role of SBP2 in liver pathology is unclear, but

Fig 5. Protein-protein interaction scheme generated from differentially regulated protein upon HFD, and exercise focused on metabolism using STRING

(version 11.0).

https://doi.org/10.1371/journal.pone.0273049.g005
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its alteration in response to exercise can make it a novel therapeutic target in various liver dis-

eases. Exercise improves lipid metabolism in the liver. Phyh (LN1) is known to convert phyta-

noyl-CoA to 2-hydroxyphytanoly-CoA, which is a process of lipid metabolism, and activate β-

oxidation [53]. Our study indicated that 12 weeks of VWR increased the expression of the

lipid metabolism-related proteins Fbp1, Atp5b, and mt-Atp8.

Aerobic organisms inevitably produce reactive oxygen species (ROS), which are byproducts

of oxidative metabolism that could induce oxidative damage to cells [54]. In general, a cell has

antioxidant enzymes that protect against the detrimental effects of ROS [54]. However, dis-

rupting the ROS-antioxidant balance under physiological conditions leads to excessive ROS

production and the prevalence of metabolic diseases [55]. Our results showed that exercise

increased the expression of the liver antioxidant enzymes and proteolysis proteins. Glutathione

S-transferase (GST) is a glutathione sulfur transferase enzyme essential for metabolizing pro-

oxidant xenobiotics in the liver [54]. There is some evidence that endurance exercise can

Fig 6. Summary of differentially expressed liver proteins from a high-fat diet and 12 weeks of voluntary wheel running intervention. Interpretation of proteomic

analysis results by LC-MS/MS based on enriched functional annotation of proteins present at higher or lower levels in HFX compared to HFD. Proteins were grouped

according to their functional properties into nine categories, as shown in the figure. ATP, adenosine triphosphate; TCA, tricarboxylic acid cycle; ETC, electron transport

chain; ROS, reactive oxygen species; CoA, coenzyme A. Red color denotes upregulated protein expression in the HFX group compared to the HFD group and blue color

indicates downregulated protein expression in the HFD group compared to the CON group.

https://doi.org/10.1371/journal.pone.0273049.g006
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upregulate liver GST levels, but HFD can downregulate its expression in the liver. Our data

showed an increased expression of liver GST P1, 1GUK_A, and Ceb3b after 12 weeks of VWR,

suggesting that regular exercise, even with HFD, can increase the levels of antioxidant enzymes

in the liver. Regular exercise may protect against excessive alterations in metabolism-related

proteins and mitochondrial oxidative proteins.

In summary, in this study we were able to (1) screen the expression profiles of specific pro-

teins in the liver by using MS/MS, (2) verify the functional role of these proteins in our experi-

mental setup, and (3) understand the beneficial effects of exercise in specific

pathophysiological conditions. The establishment of high fat diet-induced obesity mouse

model is more challenging as a metabolic disease model than the genetic model of obesity, but

it may closely resemble the environmental effects of human obesity. Various metabolic condi-

tions, such as metabolic syndrome and NAFLD, can be confirmed by the protein spectrum

associated with the disease, as implied by this study. Further understanding of the expression

of proteins, such as changes in de novo protein synthesis in the liver through exercise, is

needed to identify specific protein isoforms to understand mitochondrial bioenergetics under

different conditions. The function of unknown proteins (e.g., MCG8752 and MCG129115)

found in the current study can be explored in the context of NAFLD and exercise. The limita-

tion of this study was that VWR assumed considerable changes in the expression of proteins,

but we did not know the intensity and volume of exercise affecting protein expression in the

liver. In addition, if the blood analysis, such as glucose, triglycerides, AST, and so on, was pre-

sented together with the current results, it would have supported the results.

In conclusion, in the present study we demonstrated that high-fat diet and regular exercise

can modulate proteomics in the liver. The beneficial effects of voluntary wheel running in

HFD-fed mice were reflected by the upregulation of gluconeogenesis, detoxification, mito-

chondrial biogenesis, and proteolysis pathways in the liver.

Supporting information

S1 Fig. Distribution of weekly running distance of mouse in HFX group. In the middle of

the box, the cross (+) indicates mean data.

(TIF)
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