
sensors

Article

An Optimal Flow Admission and Routing Control
Policy for Resource Constrained Networks

Essia Hamouda

J. H. Brown College of Business & Public Administration, California State University,
San Bernardino, CA 92407, USA; ehamouda@csusb.edu

Received: 5 October 2020; Accepted: 12 November 2020; Published: 17 November 2020
����������
�������

Abstract: Overloaded network devices are becoming an increasing problem especially in resource
limited networks with the continuous and rapid increase of wireless devices and the huge volume of
data generated. Admission and routing control policy at a network device can be used to balance the
goals of maximizing throughput and ensuring sufficient resources for high priority flows. In this paper
we formulate the admission and routing control problem of two types of flows where one has a higher
priority than the other as a Markov decision problem. We characterize the optimal admission and
routing policy, and show that it is a state-dependent threshold type policy. Furthermore, we conduct
extensive numerical experiments to gain more insight into the behavior of the optimal policy under
different systems’ parameters. While dynamic programming can be used to solve such problems,
the large size of the state space makes it untractable and too resource intensive to run on wireless
devices. Therefore, we propose a fast heuristic that exploits the structure of the optimal policy.
We empirically show that the heuristic performs very well with an average reward deviation of
1.4% from the optimal while being orders of magnitude faster than the optimal policy. We further
generalize the heuristic for the general case of a system with n (n > 2) types of flows.

Keywords: wireless communication; performance optimization; markov decision process;
energy efficiency; threshold routing; sensor networks

1. Introduction

Efficient resource utilization is a primary problem in resource constrained networks. In wireless
sensor networks (WSNs) for instance the issue of energy efficiency is crucial to ensure network
connectivity and quality of service. In WSNs, sensor nodes are generally deployed to transmit
sensitive information in a timely manner. They rely on neighboring nodes to relay traffic to a given
destination while operating on limited battery capacity. Energy is used when a node is listening,
receiving, or transmitting. If a node’s battery is depleted, neighboring nodes become incapable of
relaying and transmitting urgent traffic through the node. More importantly, if said node belongs to
the optimal path, a less efficient path will need to be computed which reduces network throughput
and consumes more of the scares resources. It is expected that some sensor networks will be
deployed over large and inhospitable areas [1–6]. Since these networks may not be accessible following
deployment, it is crucial that implemented admission and routing policies are resource efficient
(i.e., consume minimal energy).

Consider a sensor node A with two available paths to the same destination as shown in Figure 1.
We define a task as the transmission of a single flow from a relaying node to the final destination.
We say that a task is successful if its corresponding flow is treated to the full extent - that is, all packets
that belong to the same flow reach their final destination. Consider the scenario where sensor node A is
tasked with relaying two flows. To maximize task success, it may be more efficient to treat one task to
a full extent and reject or treat the second task partially than to partially treat both tasks. For instance,

Sensors 2020, 20, 6566; doi:10.3390/s20226566 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20226566
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/22/6566?type=check_update&version=4


Sensors 2020, 20, 6566 2 of 26

suppose a node is sending information about two events to a control center (CC) simultaneously:
an attack on a battlefield and a fire in another nearby region. The CC would prefer to receive full
information about one flow and act on it, rather than receive partial information about both flows
that would be discarded. Hence, sometimes rejecting a flow may be perceived as more beneficial than
accepting a flow and partially transmitting it due to lack of resources. This saves energy consumption
while transmitting a flow to the full extent.

Node A

l1

l2

µ1

µ2
Node D

(a) Network with two alternate paths from Node A to
Node D.

(b) Node A modeled as a queuing system.

Figure 1. The queueing system at node A where type-i, i ∈ {1, 2} arrivals join queue 1. Instead of
being aborted from the system, packets are routed to queue 2; µ2 ≤ µ1. Served at queue 1 or at queue 2,
packets will reach the same destination D over alternate paths .

In this paper, we model node A (Figure 1) as a queueing system where accepted packets belong to
two different flows. We assume that one of the flows has higher priority than the other. Once a packet
of a given flow is accepted to the system, it joins queue 1 and it is guaranteed service to the full extent
independent of its type. Instead of being rejected or preempted from service, packets have the option
to be served at a slower server behind a second queue (queue 2). Hence, the packet is transmitted
over a less rewarding path. Transmitted type-i packets are rewarded ri, i ∈ {1, 2}, r1 > r2 > 0 if
served at queue 1, and r3 ≤ r2 if served at queue 2. Using the less rewarding path not only minimizes
the number of rejected packets from the system, but also maximizes the chance that both flows will
be treated to the full extent. Most importantly, allowing packets to be served at queue 2, allows the
extension of the life of the path behind queue 1 (the efficient path).

We are interested in finding ways by which node A can, through its local decision policy, accept or
reject and decide which path to choose to transmit packets. The objective is to minimize energy
consumption and maximize the number of flows served, hence maximizing network throughput.

Such decision control mechanism is fundamental to a variety of other interesting applications.
For example, consider the case where a node experiences a flood of traffic as a sign of it being
compromised. A node can be subject to a SYN flood where an attacker attempts to fill the backlog
queue of a victim machine’s Transmission Control Protocol server (TCP) [7,8]. This results in resource
depletion that renders the node unresponsive to legitimate traffic. By recognizing such flood of traffic,
a node may either classify it as high priority traffic to identify the attacker and take the appropriate
measures, or as low priority traffic and route it to another queue with a slower server.

This problem finds applications not only in computers and communication networks but
in various other fields as well. Blockchain-based applications for instance, suffer from high
computational and storage expenses, negatively impacting overall performance and scalability [9].
Therefore, work has been done to move computation and data off the chain (Off-chain). Off-chain
transactions (i.e., high priority traffic) can be executed instantly and usually have low or no transaction
fee. However, on-chain transactions (i.e., low priority traffic) can have a lengthy lag time depending on
the network load and on the number of transactions waiting in the queue to be confirmed. Similarly,
control of multi-class queueing systems has received significant attention in supply chain management
and manufacturing systems ([10–12] and references therein). One of the main tools for such control
problems is to characterize a performance measure of interest and use optimization methods to find
the optimal control policy [13–15]. An agorithm for optimal pricing and admission control is proposed
in [14,16].



Sensors 2020, 20, 6566 3 of 26

In this paper, we develop a dynamic programming formulation of the Admission and Routing
Control (ARC) problem, that maximizes the network throughput by extending the life (the resources)
of the efficient path and thus the number of flows serviced to the full extent. We formulate the ARC
problem as a Markov decision process (MDP) [17] and characterize the optimal policy under the
Poisson traffic model. In particular, we show that the ARC policy that maximizes the expected reward
is stationary and is a state-dependent threshold type policy. While dynamic programming can be
used to solve such problems, the large size of the state space makes it untractable and too resource
intensive to run on network devices and especially on wireless devices. Therefore, we propose a fast
heuristic that exploits the structure of the optimal policy. Much of the computation required for our
method can be done off-line, and the real-time computation requires no more than a table lookup.
Furthermore, computing the parameters of the heuristic control policy is orders of magnitude faster
than computing the optimal. We empirically show that the heuristic performs very well with an average
reward deviation of 1.4% from the optimal while being orders of magnitude faster than the optimal
policy. We further generalize the heuristic for the general case of a system with n (n > 2) types of flows.
We believe our heuristic is general enough to be widely applicable and can be implemented in realtime.
Although the method we propose applies to general network resource constraints, we consider energy
limitations as our motivating application.

The rest of the paper is organized as follows. In Section 2, we provide a literature review.
In Section 3, we describe the model and provide its mathematical formulation. In Section 4, we develop
properties of the expected reward value function and characterize the optimal ARC policy. In Section 5,
we analyze the behavior of the optimal policy through extensive numerical experiments. In Section 6,
we propose a heuristic control policy, for the general case of n types of packets, and conduct extensive
numerical experiments, for the case of 2 types of flows, in order to assess its performance compared to
the optimal policy. In Section 7, we summarize our findings and propose future directions of this work.

2. Literature

In this section, we review the existing literature pertaining to resource constrained environments
in WSNs. This is by no means exhaustive; it is only indicative of the interest and the applications.

Extensive work has been done to address the problem of energy saving with respect to WSNs.
In [18–21], controlled mobility is used to extend the network lifetime. Algorithms for self-organization
of sensor networks have been proposed [22,23] to minimize the risk of data loss during transmission
and to maximize the battery life of individual sensors. Various coverage optimization protocols have
been studied [24,25] where a number of sensor nodes are deployed to ensure adequate coverage of a
region. Using a coverage optimization protocol, nodes with overlapping sensing areas are turned off
to reduce energy consumption. We refer the readers to the following survey [26] of the various other
energy efficient coverage techniques. Research in [19] focused on shortest path algorithms to optimize
energy consumption. However, using the shortest path may lead to an increase in the ratio of lost
packets [27]. In [28], research focused on scheduling sensor nodes to switch on and off, depending on
the queue size, to reduce energy consumption. However, switching nodes from an idle to a busy state
and vice versa has been a major portion of the power consumption [29].

Numerous works have also treated admission control policies relevant to WSNs.
Several algorithms have been used by Internet routers to decide on packets admission and rejection
to manage queues and minimize congestion in TCP [30]. In Tail Drop [31], when the queue
reaches its maximum capacity, the newly arriving packets are rejected independent of their types.
Though traffic may belong to different flows, it is not differentiated, and each packet is treated
identically. When segments are lost, the TCP sender enters slow-start, which reduces throughput
in that TCP session. A more severe problem occurs when segments from multiple TCP flows are
dropped causing global synchronization - that is, all of the involved TCP senders enter slow-start.
This problem can be mitigated by routing segments from one flow (the lower priority flow for instance)
to a different queue, rather than discarding one segment from each flow. In Weighted Random Early



Sensors 2020, 20, 6566 4 of 26

Detection (WRED) [32], flows are differentiated and treated depending on their type. Packets with
a higher IP address precedence are less likely to be dropped than packets with a lower precedence.
Thus, higher priority packets are delivered with a higher probability than lower priority packets. As in
TCP, there is no guarantee that discarded packets belong to the same flow.

Queuing theory has also been widely used in network optimization [33–35]. In [36], a queueing
network model was used to analyze and study the performance of a mobile WSN. In [37,38],
models implementing admission control mechanisms to manage scarce radio resources in WSNs
are described in the form of a queueing system with unreliable devices. Work in [39] proposed
an energy saving mechanism that controls the ON/OFF state of a sensor node. A sensor node enters
an OFF state (multiple fixed duration vacation periods) as soon as its queue is empty and is turned on
(changes to an ON state) only when its queue size reaches a threshold value of packets. A M/M/1-type
queueing model with a control mechanism is proposed in [40] as a tool to reduce power consumption
in WSNs. The tool switches a sensor node from an OFF mode to an ON mode only when its queue size
reaches or exceeds a given size.

In order to achieve quality of service in a multi-class two parallel queue system, work in [41–43]
dedicates a server to the high priority flow. In a resource constrained environment, such a model is
not efficient. The dedicated server may be idle for a long time waiting, and consuming resources,
for the high priority traffic to arrive while other servers may be congested. A different approach is
considered in research that focuses on a single server and two classes of jobs. To minimize the sum
of the holding/processing and switching costs, work in [44] switches serving between two classes of
traffic. In [45] the authors consider a two-class single server preemptive priority queue where jobs can
be denied admission to the system and can be aborted from service. Aborted jobs can rejoin the queue
and resume service at a later time. Service does not have to restart but it continues from the step it
was aborted from. In [46], an expulsion/scheduling control mechanism is proposed for a single class
M/M/2 queueing system with non-identical servers. It was further extended in [47] to a multiple
class system where job preemption is allowed.

The concept of termination control, studying a single server one-class workload model is
introduced in [48]. In this work, the service of a job may be aborted before the job has received
full service, and may be removed at any point in time from the queue. The authors further show that
optimal threshold (acceptance and termination) policies exist.

A common characteristic of these methods is that they may find applications in areas such as
workflow and assembly lines. However, they are not applicable to communication networks. One key
element of communication networks is that once a packet transmission starts, it cannot be aborted and
resume its service at a later time. A packet can be either fully transmitted or put back in the queue
before its service starts. Moreover, in resource constrained networks, once a packet is queued or starts
service, processing and computation resources are consumed. Preempting its service (transmission)
and returning it to the queue for its service to restart at a later time, only consumes more of the
scarce resources.

A recurrent assumption of existing work related to admission control is that low priority packets
are denied admission to the queue when higher priority packets are already present. In the event they
are accepted, low priority packets can be at any time rejected from the queue, or aborted from service
in favor of a higher priority packet [45]. Another option in multiserver systems is to restrict sending
the high priority flow over one of the available paths (generally the optimal one). These approaches
may work well in certain applications such as delay tolerant networks and networks with unlimited
resources. They are also applicable in general applications such as in workflow and in assembly
lines. However, in resource constrained computer networks, once a packet is accepted to the system,
resource (energy, computation, memory) consumption starts.



Sensors 2020, 20, 6566 5 of 26

3. Model Description and Formulation

3.1. Model Description

We consider the system given in Figure 1. We model node A as a two-class queueing system and
assume that type-i, i ∈ {1, 2}, packets arrive at node A according to independent Poisson process with
arrival rate λi ≥ 0, respectively. We assume that node A has two paths that lead to the destination D:
an energy efficient path, through queue 1, and a less energy efficient path through queue 2. We assume
that the service at queue 1 and at queue 2 are exponentially distributed with rates µ1 and µ2 respectively,
where µ1 ≥ µ2. We assume that type-1 packets have higher priority than type-2 packets hence, they are
always accepted to queue 1 upon arrival. However, an admission control mechanism at node A decides
to accept or reject type-2 packets. Arrivals (type-1 and accepted type-2 packets) join queue 1. At any
event, arrival or service completion, the decision maker can decide to route a packet to queue 2 or to
serve it at queue 1. This decision is made to give service advantage to the higher priority packets to be
served at queue 1 and to be transmitted over the more energy efficient path. In summary, the system is
controlled in 3-ways: (1) all type-1 packets are always accepted to the system, (2) an admission policy
at node A decides to accept or reject a newly arriving type-2 packet, (3) a routing policy at node A
decides to route type-i, i ∈ {1, 2} packet to queue 2 or to serve it at queue 1. However, type-1 packets
are always given service priority at queue 1.

We assume that the decision maker has complete state information, i.e., it knows the instantaneous
number of packets of type-i, i ∈ {1, 2} in queue 1 and the total number of packets in queue 2.
Thus, the structure of the system is that of a Markovian decision process [49]. As such, we propose
to formulate the admission and routing problem as a MDP and use the value iteration technique
to characterize the form of the optimal policy. We formulate the problem by defining the states,
the transition structure and the feasible actions.

State. The state of the system is described by the vector x = (x1, x2, x3) where xi, i ∈ {1, 2} is the
number of type-i packets in queue 1 and x3 is the number of packets (type-1 and/or type-2) in queue 2.

Events. We distinguish three possible events: (1) the arrival of a new packet, (2) the service
completion at queue 1, and (3) the service completion at queue 2.

Decisions. If the event is an arrival, then if the packet is a type-1, it is automatically accepted to
queue 1 and this changes the state (x1, x2, x3) into state (x1 + 1, x2, x3). If alternatively, it is a type-2
packet, then a decision has to be made to accept or reject the newly arrived packet. If the packet is
accepted, then this changes the state (x1, x2, x3) to (x1, x2 + 1, x3). If it is rejected, the state does not
change. Next, the decision is either to serve a packet in queue 1 or to route it to queue 2. The idea here
is, if there are type-1 packets in queue 1, they are given higher service priority at queue 1. Hence type-2
packets will be served at queue 1 only if there are no type-1 packets in queue 1.
One may argue, since there are two queues why not dedicate queue 1 to type-1 packets and queue 2
to type-2 packets? The main reason for not using this approach is so that type-2 packets will not be
deprived from using the more efficient path when there are no type-1 packets in queue 1. This also
allows type-1 packets to be served at queue 2 in the event queue 1 is heavily congested or when the
server at queue 2 is idle.

Costs and rewards. Packets earn a reward upon service completion. Packets served at queue
1 receive a type-dependent reward ri, i ∈ {1, 2}. Since type-1 packets have a higher priority than
type-2 packets they receive a higher reward r1 ≥ r2 > 0. Packets served at queue 2 receive a reward r3

(0 < r3 < r2) independent of their type.
Packets admitted to the system are also subject to a holding and processing cost h, incurred while

waiting in the queue or while being served. We assume these costs are linear in the number of packets in
the system and are type independent namely, yh ≥ 0 per unit of time when there are y = ∑3

i=1 xi packets
present in the queues. In addition, each time a packet is admitted to the system, type independent
admission cost c ≥ 0 is incurred. Rejecting packets is free of charge. Moreover, routing type-2 packets
to queue 2 is free of charge while routing type-1 has a positive switching cost c2. Imposing a positive



Sensors 2020, 20, 6566 6 of 26

switching cost on type-1 packets is intended to discourage these packets from being routed to queue 2,
and use the less efficient path especially, when there are type-2 packets in queue 1.

For a reward to be collected and for the model to make sense, the cost incurred by a type-i
packet served at queue i must be smaller than the reward it collects at the queue. When served
at queue 1 a packet reward is ri > c + h/µ1. When served at queue 2 a packet reward is r3 >

c + h/µ2 + c2 I{i=1}, i ∈ {1, 2} where the indicator I{i=1} = 1 if the packet is type-1 otherwise, it is
equal to zero. As our application is related to energy optimization in sensor networks, we assume that
all the costs and rewards are in units of energy. The cost h can be interpreted as the energy consumed
to process and maintain a packet in the queue. The cost c is the energy consumed to receive a packet
and c2 is the energy consumed to switch or move a packet from queue 1 to queue 2. Rewards can be
interpreted as the energy saved by successfully transmitting a packet compared to rejecting it.

Criterion. The objective is to maximize the expected discounted reward resulting from accepting,
routing and servicing flows to completion over an infinite horizon.

Uniformization. In order to convert the continuous problem into a discrete one, we follow [50]’s
uniformization technique. We adjust the transition rates of the embedded Markov chain of the
system so that the transition times between decision times is a sequence of independent exponentially
distributed random variables with mean 1

β , where β = α + λ1 + λ2 + µ1 + µ2. Then with probability
λi/β > 0, i = 1, 2, a transition concerns the arrival of a type-i packet, with probability µj/β > 0, j = 1, 2
concerns a service completion at queue j and with probability α/β > 0, the process terminates.
Without loss of generality, we scale the time line so that the rate β = 1.

Discounting. We discount future rewards at a rate α ≥ 0, (i.e., rewards at time t are multiplied by
e(αt)). This is equivalent to a process that lasts an exponentially distributed time with mean 1/α after
which, there will be no more arrivals or service completions.

Note that node A in Figure 1, can be modeled as a single-shared-queue system. In this case,
a routing decision can be made only when a packet reaches the head of the queue, leading to the
head-of-the-line blocking (HOL) problem [51]. As such, single shared queue devices are perceived to
have low performance due to the HOL blocking [52,53]. This is the main reason why network devices
generally use separate queues per output port. In this work, modeling node A as a two-queue system
mitigates the HOL problem, especially that the routing decision is made not only right before service
but also at the arrival of a packet.

3.2. Model Formulation

In the following, we summarize and complete the model in terms of a mathematical formulation.
Let wn(x) be the expected discounted reward of responding to an event given that the system
has reached state x following n state transitions starting from a randomly chosen initial state
(i.e., w0(x) = 0 for all x ≥ 0, where 0 is the zero vector of dimension 3 and the inequality x ≥ 0
is taken component-wise).

Admission: Let Tai wn−1(x) denote the expected discounted reward when an arrival of type-i packet
event occurs and the system is in state x. Let ek be the k-th unit vector of dimension 3. An arrival
of type-2 is accepted to the system only if the difference in reward between accepting the packet
and rejecting it is positive i.e., wn(x + e2)− c ≥ wn(x). Recall that type-1 packets are never rejected.
Thus, for x ≥ 0,

Ta1 wn−1(x) = wn−1(x + e1)− c

Ta2 wn−1(x) = max{wn−1(x + e2)− c, wn−1(x)}

Service: When the system is in state x, a service decision of a packet at queue 1 is made as follows.
If it is a type-1 packet, it proceeds with no delay to service at server 1. If it is type-2 packet, it is
served at server 1 only if there are no type-1 packets in queue 1. In queue 2, packets are served



Sensors 2020, 20, 6566 7 of 26

on a first-come-first-serve independent of their type. We define the service operators Ti at queue
i, i ∈ {1, 2} as follows:

T1wn−1(x) =


wn−1(x) if x1 = x2 = 0
wn−1(x− e1) + r1 if x1 > 0
wn−1(x− e2) + r2 if x1 = 0 and x2 > 0

and

T2wn−1(x) =

{
wn−1(x) if x3 = 0
wn−1(x− e3) + r3 if x3 > 0

Let Tswn−1(x) denote the expected discounted reward when the current state is x and an arrival or
a service completion event occurs. Note that Tswn−1(x), given by Equation (1), represents the expected
reward assuming no routing to queue 2 occurred.

Tswn−1(x) =
2

∑
i=1

(
λiTai wn−1(x) + µiTiwn−1(x)

)
− h

3

∑
j=1

xi (1)

Routing: A type-1 packet may be routed to queue 2 only if no type-2 packets are in queue 1 (x2 = 0)
and it is more rewarding to route the packet to queue 2 than to keep it in queue 1. However, type-2
packets can be routed to queue 2 when x2 > 0 and when it is more rewarding to do so. Let Trwn(x)
denote the expected discounted reward when the current state is x and a routing decision to queue 2 is
to occur.

Trwn−1(x) =

{
max{wn−1(x− e1 + e3)− c2, wn−1(x)} if x2 = 0, x1 > 0
max{wn−1(x− e2 + e3), wn−1(x)} if x2 > 0

(2)

The optimal expected discounted reward at state x is given by Equation (3). It is implied that at
any event, arrival or service completion, the decision maker can decide to route a packet to queue 2 or
serve it at queue 1.

wn(x) = max(Tswn−1(x), Trwn−1(x)) for x1 + x2 > 0 (3)

4. Characterization of the Optimal Arc Policy

To characterize the optimal policy, we use the value iteration technique introduced in [54,55],
by recursively evaluating wn using Equation (3) for n ≥ 0. We prove by induction that if some
structural properties of the discounted reward function wn are satisfied, then these properties are also
satisfied for wn+1 and therefore, they hold for all n ≥ 0. As n tends to infinity, the optimal policy
converges to the unique optimal policy. This convergence result is ensured by Theorem 8.10.1 in [17].
The convergence to the optimal policy is an important result in the MDP literature. It is based on
showing that the iteration from wn to wn+1 is a contraction mapping as stated in Theorem 6.2.3 in [17].
This Theorem also proves that the optimal infinite horizon policy is independent of the choice of w0

and this is why one can simply choose w0(x) = 0.

4.1. Reward Function Properties

Solving the optimality Equation (3) analytically is untractable. Hence, in order to characterize
the structure of the optimal policy, we show that the optimal reward function satisfies a set of
properties which allow us to infer the structure of the optimal policy. The properties are listed
and interpreted below.



Sensors 2020, 20, 6566 8 of 26

Property 1. wn(x + ei)− wn(x) ≥ wn(x + 2ei)− wn(x + ei), for i ∈ {1, 2, 3}.

Property 1 implies that wn(x) is concave in each of the state variables xi. In other words, it implies
that the marginal reward (i.e., wn(x + ei)−wn(x)) of an additional packet of type-i, i ∈ {1, 2} in queue
1 is non-increasing in the number of packets xi for a fixed xj, j 6= i and fixed number of packets, x3 in
queue 2. It also implies that the marginal reward of an additional packet in queue 2 is non-increasing
in the number of packets x3 for a fixed number of packets of type-i, i ∈ {1, 2} in queue 1.

Property 2. wn(x + ei + ej)− wn(x + ej) ≥ wn(x + 2ei)− wn(x + ei), for i 6= j and i, j ∈ {1, 2, 3}.

Property 2, for i = 2 and j = 3, states that the marginal reward of an additional type-2 packet in
queue 1 is non-increasing in x2. Therefore, routing a type-2 packet to queue 2 is less rewarding than
servicing it at queue 1. Similarly, Property 2, when i = 1 and j = 3, states that the marginal reward of
an additional type-1 packet in queue 1 is non-increasing in x1. Consequently, routing a type-1 packet
to queue 2 is less rewarding than servicing it at queue 1. The other cases have similar interpretations.

Property 3. wn(x + ej)− wn(x) ≥ wn(x + ei + ej)− wn(x + ei), for i 6= j and i, j ∈ {1, 2, 3}.

Property 3 states that the marginal reward of an additional type-i packet is non-increasing in
xj, i, j ∈ {1, 2} and i 6= j for fixed xi. Similarly, the marginal value of an additional packet in queue 1
is non-increasing in xj, j ∈ {1, 2} for fixed queue 2 size. Mathematically, Property 3 indicates that the
reward value function is sub-modular.

4.2. Reward Function Bounds

Since all accepted packets are guaranteed to be served at either queue, packets will collect
a reward upon service completion as long as ri > c + h/µ1 and r3 > c + h/µ2 + c2 I{i=1}, i ∈ {1, 2}.
However, since the reward depends on the packet type and on the queue where the packet resides,
in this subsection, we bound the reward collected by packet type. We make use of sample path
approach [56] to prove the following propositions.

Proposition 1. For all n ≥ 0 and x ≥ 0, the difference in reward of serving a type-2 packet at queue 1 does not
exceed r2.

wn(x + e2)− wn(x) ≤ r2, x1 = 0

Proof. Using a sample path analysis, let two instances Π1 and Π2 of the policy where Π1 starts at state
x + e2 and Π2 starts at state x. Π1 will follow the actions of the optimal policy and Π2 will copy the
actions of Π1. An arrival to both instances changes the rewards equally (every arrival is charged a cost
of c). In the event of a departure from state x + e2, due to service completion at queue 1, in this case,
we must have x1 = 0, otherwise type-1 takes priority in service, immediately afterwards Π2 and Π1

become identical, so a reward of r2 is generated. The departure can also be a route to queue 2. In this
case, since there is no switching cost for type-2 packets, the reward does not change.

Proposition 2. For all n ≥ 0 and x ≥ 0, the difference in reward of serving a packet at queue 2 does not
exceed r3.

wn(x + e3)− wn(x) ≤ r3

Proof. Using a sample path analysis, let two instances Π1 and Π2 of the policy where Π1 starts at
state x + e3 and Π2 starts at state x. Π1 will follow the actions of the optimal policy and Π2 will copy
the actions of Π1. A departure from both instances changes the rewards equally (every departure is



Sensors 2020, 20, 6566 9 of 26

rewarded r3 independent of the packet type). Hence, upon a departure from queue 2 at state x + e3,
Π2 and Π1 become identical so the difference in reward is at most r3.

Proposition 3. For all n ≥ 0 and x ≥ 0, the difference in reward to serve a type-1 packet at queue 1 does not
exceed r1.

wn(x + e1)− wn(x) ≤ r1

Proof. Using a sample path analysis, let two instances of the policy where one (Π1) starts at state
x + e1 and the other (Π2) starts at state x. Π1 will follow the actions of the optimal policy and Π2 will
copy the actions of Π1. An arrival to both instances changes the rewards equally (every arrival is
charged a cost of c). In the event of a departure from state x + e1, due to service completion at queue 1
(immediately afterwards Π2 and Π1 become identical), a reward of r1 is generated (since type-1 takes
priority over type-2, the departure will be of type-1 unless x1 = 0). So the difference in reward is at
most r1. The departure can also be a route to queue 2. Note that a routing in both instances changes
the reward equally by the switching cost of c2 < r1.

Proposition 4. For all n ≥ 0 and x ≥ 0, the difference in reward of serving a packet at queue 1 and at queue 2
is larger than ri − r3, i ∈ {1, 2}

wn(x + ei)− wn(x + e3) ≥ ri − r3, i ∈ {0, 1}

Proof. Using a sample path analysis, we first consider the case where i = 1 and prove wn(x + e1)−
wn(x + e3) ≥ r1 − r3. Let two instances Π1 and Π2 of the policy where Π1 starts at state x + e3 and
instance Π2 starts at state x + e1. Instance Π1 will follow the optimal policy and instance Π2 will
copy the actions of Π1. That is, if Π1 routes its packet, then Π2 routes its packets, and if Π1 takes its
packet into service, then Π2 takes its packet into service. For both Instances, while packets are still in
the system, their costs and rewards are the same. Hence, the difference in reward between the two
instances is zero. However, if a packet is served, a reward of r3 in Π1 is collected and a reward of r1 in
Π2 is collected. Hence, the difference in reward between the two instances is r1 − r3 > 0.

The proof of the case where i = 2, is very similar to the above proof. It suffices to replace e1 by e2

and r1 by r2.

Note that in this work, the admission cost is not as relevant as the reward as it is packet
type-independent. However, the problem can be easily generalized to assigning type-dependent
costs cai > 0, i ∈ {1, 2}, (ca1 6= ca2). On the other hand, the switching cost c2 is important for type-1
packets as they are charged only in the event they are routed to queue 2.

We conclude this section with the main results of the paper as illustrated in the following Theorem.

Theorem 1. There exists a stationary optimal policy for any initial state x = (x1, x2, x3) such that:

• Admission policy: The optimal admission control policy is a state-dependent threshold-type,
with threshold curve A(x1, x3), such that a type-2 packet is admitted to queue 1 if and only if
x2 ≤ A(x1, x3) where A(x1, x3) = max{x2|wn(x + e2)− wn(x) ≥ c}.

• Routing policy: The optimal routing control policy is a state-dependent threshold-type, with threshold
curvesR1(x3) andR2(x1, x3), such that:

1. Type-1 packet is routed to queue 2 if and only if x2 = 0 and x1 ≥ R1(x3), where R1(x3) =

max{x1|wn(x− e1 + e3)− wn(x) ≥ c2}.
2. Type-2 packet is routed to queue 2 if and only if x2 ≥ R2(x1, x3), where R2(x1, x3) =

max{x2|wn(x− e2 + e3)− wn(x) ≥ 0}.



Sensors 2020, 20, 6566 10 of 26

The results of Theorem 1 also apply to the average reward criterion (see [57]). Hence, we will
use the average reward criterion for all our numerical experiments as it has the advantage of not
depending on the initial state. To prove the theorem, we will prove Properties 1–3. However, for ease
of flow, we defer all mathematical proofs to the Appendix A.

5. Sensitivity Analysis of the Optimal Policy

In this section, we study the optimal control policy depicted in Theorem 1 and its sensitivity to
the system parameters. We conduct extensive numerical experiments varying system parameters.
As an illustration we consider a base case, where µ1 = 0.35, µ2 = 0.45, λ1 = 0.25, λ2 = 0.25,
r1 = 80, r2 = 60, r3 = 30, h = 0.7, c = 5, c2 = 0. The optimal policy is computed using the
value iteration algorithm of dynamic programming [58]. Convergence is obtained when the expected
reward of successive iterations is within an accuracy of 10−5. The optimal admission control policy
for this system is presented in Figure 2a. The optimal action is to reject type-2 packets in all states
above the switching curve (above the red line) and to accept them in all states below the curve.
Similarly, the optimal routing policy for the system is presented in Figure 2b. The optimal action is to
route type-2 packets to queue 2 only in states above the switching curve (above the blue and red lines).
In states below the switch-curve (below the blue line), no routing is allowed. Below the red line are the
only states where type-1 packets are routed to queue 2 that is, when x2 = 0. We experimented with
several system parameters and we obtained the same results in terms of the shape of the switching
curves of the admission control policy and routing control policy.

(a) Type-2 packets admission policy. (b) Routing policy.

Figure 2. Optimal control policy.

In Figure 3, we superpose both control policy curves where we note that the system gives priority
to type-1 packets to be served at queue 1 by routing excess type-2 packets to queue 2. All numerical
results gave a straight-line switching curve with slope of −1 in the (x1, x2) plane for a given x3 packets
in queue 2. However, proving this result analytically is untractable as it amounts to solving the
optimality Equation (3) in closed form.

We further study the effect of the system parameters on the optimal average reward for various
network load values, ρ ∈ {50%, 75%, 95%}. We isolate the effect of a particular system parameter by
varying its value while holding the values of other system parameters constant.

We study the effect of increasing reward r2 while maintaining the sum of the rewards of r1 and r2

constant. Figure 4a shows that the optimal average reward decreases nonlinearly as the ratio r2/r1

increases. This behavior can be explained as follows. As r2 increases, the incentive for packets to
be routed to queue 2 decreases. Hence, queue 1 becomes overloaded and the overall holding cost
eventually becomes high affecting the optimal average reward. Note however, that under heavy
network load (ρ = 95%), at a certain point, routing to queue 2 becomes inevitable causing lower
reward compared to a system with lower network load (ρ = 75%). This also explains the crossover of



Sensors 2020, 20, 6566 11 of 26

the curves corresponding to the optimal average reward curve for ρ = 75% and the one for ρ = 95% in
the figure.

Figure 3. Admission and routing policy transient states for a given size of queue 2.

We further study the effect of increasing reward r3 on the optimal average reward while
maintaining the sum of the rewards of r2 and r3 constant. Figure 4b shows that the optimal average
reward increases non-linearly as the ratio r3/r2 increases when the network load is high (ρ = 75%
and ρ = 95%). This increase is due to the fact that as r3 increases, packets in queue 1 have more
incentive to be routed to queue 2 especially if queue 1 has type-1 packets. As type-2 packets are
routed to queue 2, more space opens up in queue 1 for type-1 packets, and more type-2 packets
are admitted, hence, the optimal average reward increases. Moreover, as the network load increases,
routing admitted packets to queue 2 becomes sometimes necessary. Indeed, for higher network load
(ρ = 95%), the optimal average reward is increasing at a faster rate compared to the optimal average
reward for a network with lower load of ρ = 75%. For lower network load (ρ = 50%) however, as r3

increases the optimal average reward decreases nonlinearly. This can be explained as follows: as r3

increases and if type-1 packets are in queue 1, then type-2 packets have more incentive to be routed
to queue 2, and collect a lower reward hence, the optimal average reward decreases. The graphs
generated in Figure 4a,b show results when µ1 = 0.45, µ2 = 0.35, h = 0.7, c = 5, c2 = 0.

Figure 4c shows the sensitivity of the optimal average reward to the arrival rates while maintaining
the sum of λ1 and λ2 constant. The figure shows that the optimal average reward initially increases
at a high rate as λ1 increases then the rate of increase slows down. The increase continues until
queue 1 becomes congested to cause type-1 packets to be routed to queue 2, hence, collect a lower
reward r3, and decrease the optimal average reward. For high network load (ρ = 95%) however,
the optimal average reward eventually starts decreasing as the high load makes it necessary to increase
routing packets to queue 2. Eventually, both queues saturate, leading to an increase in the holding cost,
and a decrease in the optimal average reward. The graph generated in Figure 4c shows results for the
following system parameters: r1 = 80, r2 = 60, r3 = 30, µ1 = 0.45, µ2 = 0.3, h = 0.7, c = 5 and c2 = 0.

In Figure 4d, we study the effect of the service rates µ1 and µ2 on the optimal average reward
while maintaining the sum of µ1 and µ2 constant. As the ratio µ1/µ2 increases, the optimal average
reward increases and eventually levels-off for all network loads considered (ρ ∈ {50%, 75%, 95%}).
This can be explained as follows. As queue 1 service rate µ1 increases, queue 1’s length becomes
shorter discouraging packets from being routed to queue 2. Hence, the optimal average reward
increases. As µ1 continues to increase relative to µ2, less and less routing occurs eliminating the
need for queue 2 which explains the leveling-off of the optimal average reward (since the arrival
rates are held constant). In practice, however, achieving a high service rate to eliminate queue 2 is
rather costly. The graph generated in Figure 4d shows results for the following system parameters:
r1 = 80, r2 = 60, r3 = 30, λ1 = 0.35, λ2 = 0.3, h = 0.7, c = 5 and c2 = 0.



Sensors 2020, 20, 6566 12 of 26

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
28

30

32

34

36

38

40

42

44

46

op
tim

al
 r

ew
ar

d

(a) Optimal reward sensitivity to r2/r1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

52

54

56

58

60

62

64

66

68

op
tim

al
 r

ew
ar

d

(b) Optimal reward sensitivity to r3/r2.

0 1 2 3 4 5 6 7 8 9

1
/ 

2

16

17

18

19

20

21

22

23

24

op
tim

al
 r

ew
ar

d

(c) Optimal reward sensitivity to λ1/λ2.

0 2 4 6 8 10 12 14 16 18 20

1
/ 

2

8

10

12

14

16

18

20

22

24

26

28

op
tim

al
 r

ew
ar

d

(d) Optimal reward sensitivity to µ1/µ2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
holding cost (h)

19

20

21

22

23

24

25

26

op
tim

al
 r

ew
ar

d

(e) Optimal reward sensitivity to h.

0 5 10 15
admission cost (c)

16

17

18

19

20

21

22

23

24

op
tim

al
 r

ew
ar

d

(f) Optimal seward sensitivity to c.

Figure 4. Optimal reward sensitivity to rewards r1, r2, r3, service rates µ1, µ2, arrival rates λ1, λ2,
holding cost h and admission cost c.

Figure 4e shows that the optimal average reward is nonlinearly decreasing in the holding cost
h. Figure 4f shows that the optimal average reward is linearly decreasing in the admission cost
c. These results are interesting and are worth exploiting in a future work in an attempt to get an
analytical expression of the reward. The graphs generated in Figure 4e,f show results for the following



Sensors 2020, 20, 6566 13 of 26

system parameters: r1 = 80, r2 = 60, r3 = 30, λ1 = 0.35, λ2 = 0.3, c2 = 0 and various values of h and
c respectively.

Finally, we would like to note that even though our analysis focused on the case where the
switching cost is zero (c2 = 0), similar results are obtained for c2 > 0. As an illustration, Figure 5,
shows that the optimal reward linearly decreases in c2. This result is expected as when the switching
cost increases, type-1 packets have no incentive to be routed to queue 2. Moreover, as the network
load increases, the optimal reward increases up to a point where both queues become congested.
This explains why the optimal reward when ρ = 75% is higher than the optimal reward when ρ = 95%
as c2 increases. This also lead to the conclusion that there is an optimal load where the reward in
maximized. The results in Figure 5 are obtained for system parameters: r1 = 80, r2 = 60, r3 = 30,
λ1 = 0.35, λ2 = 0.3, h = 0.7 and c = 5.

0 1 2 3 4 5 6 7 8 9 10
19.5

20

20.5

21

21.5

22

22.5

op
tim

al
 r

ew
ar

d

Figure 5. Optimal reward sensitivity to c2.

6. Heuristic Control Policy

It is well established that dynamic programming suffers from the curse of dimensionality. For our
model in particular, the optimal policy is computationally untractable for systems with more than
2 types of packets (i.e., a state space with dimension greater than 3). Hence, it is too resource intensive
to run on resource limited sensor devices. This motivated us to propose an efficient heuristic control
policy that imitates the behavior of the optimal policy and is computationally much faster to obtain for
the general case of n types of packets (see Algorithm 1). As such, we define the state of the system by
the (n + 1) dimensional vector x = (x1, x2, . . . , xn, xn+1) where type-i packets take priority over type-j
packets for i < j. The number of packets in queue 1 is represented by x1 + x2 + · · ·+ xn where xi is the
number of type-i packets while xn+1 depicts the number of packets in queue 2. The heuristic control
policy is characterized by 2(n− 1) parameters: parameters Ai, i = 2, . . . , n control the admission to
queue 1, while parameters Ri, i = 2, . . . , n control the routing to queue 2. Note that type-1 packets
are always admitted to queue 1 (i.e, A1 = ∞). Furthermore, we have A2 ≥ A3 ≥ . . . ≥ An and
R1 ≥ R2 ≥ . . . ≥ Rn ≥ A2. We extend the costs and reward parameters as follows: c is the
admission cost; h is the holding cost; ci is the switching cost for type-i packets (c1 ≥ c2 ≥ . . . ≥ cn) and
ri, i ∈ {1, 2, . . . , n} is the reward of type-i packet served at queue 1 (r1 ≥ r2 ≥ . . . ≥ rn) and rn+1(< rn)

is the reward of packets served at queue 2.
At arrival of type-i packet, we use the following control policy where we define I(x) = the largest

packet type i ∈ {1, . . . , n} such that xi > 0:



Sensors 2020, 20, 6566 14 of 26

Algorithm 1. Proposed heuristic control policy.

if ∑n
k=1 xk < Ai then

admit type-i packet to queue 1
end if
if ∑n

k=1 xk ≥ Ai and I(x) ≥ i and ∑n
k=1 xk ≥ RI(x) then

admit type-i packet to queue 1 and route type-I(x) packet to queue 2
else

do no admit type-i packet
end if

In order to test the performance of the above proposed heuristic, we compare the reward generated
by the heuristic to that of the optimal policy. We use the average reward criterion for this purpose.
The average reward under the optimal policy is obtained using the following optimality equation:

w∗(x) + g∗ = max{Tsw(x), Trw(x)} (4)

where g∗ is the optimal average reward per transition (see [58]) and w∗(x) is the optimal differential
reward, w(x), Ts and Tr as defined in Section 3.2.

The average reward under the heuristic control policy (H) is defined using the following dynamic
programming equation:

wH(x) + gH = −h
n+1

∑
k=1

xk +
n

∑
k=1

λiT H
ai

w(x) + µ1T H
1 w(x) + µ2T H

2 w(x). (5)

where gH is the average reward per transition under the heuristic control policy, wH(x) is the
differential reward under the heuristic policy and T H

ai
, T H

1 and T H
2 are defined as follows:

T H
ai

w(x) =


w(x + ei)− c if ∑n

k=1 xk < Ai

w(x + ei − eI(x) + en+1)− cI(x) if ∑n
k=1 xk ≥ Ai, I(x) ≥ i and ∑n

k=1 xk ≥ RI(x)
w(x) otherwise

T H
1 w(x) =

{
w(x− ei) + ri if ∃ i such that xi > 0 and x1 = x2 = . . . = xi−1 = 0

w(x) otherwise

T H
2 w(x) =

{
w(x− en+1) + ri if xn+1 > 0

w(x) otherwise

In the following, we compare the performance of the proposed heuristic control policy to the
optimal control policy for the case of two types of packets. We examine the impact of a certain
system variable by varying its value while maintaining all other variables constant. Similar to [59],
we use as performance metric the reward Relative Deviation (RD) of the heuristic from the optimal.
The RD, expressed in percentage, is defined as RD = 100× (ψ∗ − ψH)/ψ∗ where ψ∗ denotes the
average reward rate of the optimal control policy obtained by solving Equation (4), and ψH denotes
the average reward rate associated with the heuristic control policy obtained by solving Equation (5).
Here, similar to the optimal policy, the expected reward is obtained using the value iteration algorithm
with the same accuracy of 10−5 .

Table 1 shows a sample of 100 randomly generated system parameter values used to compute
the performance of the heuristic control policy. Based on these results, it is clear that the heuristic



Sensors 2020, 20, 6566 15 of 26

performs very well compared to the optimal policy. For a 95% confidence interval, the average RD is
1.40%± 0.02% with a range of [0, 4.29].

Table 1. Heuristic performance compared to the optimal policy. RD is used as a measure of the
Heuristic performance compared to the optimal policy.

µ1 µ2 λ1 λ2 r1 r2 r3 RPD (%)

0.45 0.22 0.35 0.20 91 80 54 2.70
0.44 0.43 0.29 0.16 72 64 39 0.55
0.34 0.11 0.22 0.12 63 48 26 3.02
0.41 0.35 0.28 0.16 91 89 83 0.65
0.44 0.08 0.23 0.13 45 41 40 3.38
0.39 0.17 0.26 0.15 66 63 25 2.10
0.47 0.26 0.35 0.20 60 39 28 3.86
0.81 0.75 0.35 0.20 104 68 41 0.01
0.89 0.83 0.17 0.09 87 55 48 0.00
0.66 0.32 0.08 0.05 97 70 12 0.00
0.74 0.58 0.35 0.20 100 84 31 0.21
0.52 0.44 0.35 0.20 82 47 23 1.37
0.94 0.83 0.23 0.13 66 32 32 0.58
1.05 0.72 0.53 0.89 95 51 28 1.80
1.19 0.64 0.55 0.92 90 41 37 2.00
0.72 0.58 0.39 0.65 81 40 20 3.31
1.17 0.84 0.60 1.01 90 63 6 0.10
0.89 0.74 0.81 0.49 95 70 23 1.62
0.95 0.76 0.86 0.51 36 24 19 4.27
0.99 0.69 0.84 0.50 31 12 7 2.06
1.20 0.75 0.97 0.58 63 39 12 2.06
1.15 0.65 0.90 0.54 89 62 28 1.33
0.81 0.61 0.71 0.43 79 50 25 2.55
1.08 0.67 0.87 0.52 94 56 22 1.84
1.23 0.73 0.98 0.59 57 48 31 1.40
0.81 0.56 0.68 0.41 88 66 47 1.78
1.23 0.56 0.89 0.54 95 89 86 0.88
1.05 0.41 0.73 0.44 98 65 13 0.61
1.15 0.79 0.97 0.58 76 51 7 0.84
0.86 0.26 0.35 0.20 104 83 65 0.01
0.53 0.40 0.21 0.12 76 39 16 0.02
0.95 0.73 0.17 0.10 78 54 31 0.00
0.33 0.26 0.09 0.05 93 74 59 0.01
0.79 0.57 0.12 0.07 98 55 29 0.00
0.78 0.69 0.05 0.03 61 25 17 0.00
1.03 0.82 0.56 0.74 98 91 77 0.70
1.08 0.81 0.56 0.75 59 53 10 0.55
0.71 0.61 0.40 0.53 80 47 19 1.80
0.84 0.56 0.42 0.56 69 66 50 0.85
0.83 0.43 0.38 0.51 86 51 21 0.56
0.91 0.70 0.48 0.65 99 72 11 0.42
0.81 0.52 0.40 0.53 73 19 11 2.49
0.70 0.51 0.36 0.48 43 25 10 2.22
0.60 0.55 0.34 0.46 89 41 36 4.29
0.59 0.52 0.33 0.44 84 70 64 2.57
0.65 0.31 0.29 0.38 77 37 36 2.81
0.77 0.45 0.37 0.49 52 33 32 3.32
0.80 0.59 0.42 0.56 59 45 39 2.26
0.90 0.47 0.41 0.55 79 31 25 1.65
0.96 0.59 0.47 0.62 100 83 38 0.36
0.99 0.56 0.47 0.62 85 28 21 1.63
0.43 0.41 0.25 0.34 85 77 20 1.67
0.92 0.51 0.43 0.57 73 43 36 1.35
0.90 0.55 0.43 0.58 76 66 35 0.59
0.67 0.66 0.40 0.53 59 54 21 2.23
0.88 0.48 0.41 0.54 94 46 33 0.94
0.86 0.73 0.48 0.64 98 39 37 3.33
0.70 0.45 0.34 0.46 75 55 46 1.62



Sensors 2020, 20, 6566 16 of 26

Table 1. Cont.

µ1 µ2 λ1 λ2 r1 r2 r3 RPD (%)

0.64 0.48 0.34 0.45 87 50 7 0.34
0.52 0.50 0.31 0.41 85 78 77 3.26
0.87 0.82 0.51 0.68 98 81 64 1.42
0.93 0.76 0.50 0.67 81 55 21 1.04
0.81 0.65 0.44 0.58 72 40 34 2.83
0.86 0.36 0.37 0.49 78 78 21 0.25
0.74 0.42 0.35 0.47 65 59 10 0.37
0.86 0.76 0.49 0.65 83 46 34 2.37
0.88 0.45 0.40 0.53 77 75 66 0.61
0.43 0.42 0.26 0.34 95 67 46 3.45
0.84 0.49 0.40 0.53 88 38 23 1.18
0.69 0.58 0.38 0.51 70 45 32 2.65
0.90 0.41 0.39 0.52 79 37 20 0.74
0.89 0.44 0.40 0.53 78 38 20 0.81
0.90 0.87 0.53 0.71 53 31 18 3.34
0.95 0.46 0.42 0.56 96 78 48 0.31
0.81 0.33 0.34 0.46 88 80 19 0.24
0.93 0.83 0.53 0.70 88 30 22 2.90
0.83 0.79 0.48 0.65 83 50 20 1.86
0.94 0.69 0.49 0.65 65 62 54 1.08
0.86 0.45 0.40 0.53 76 62 51 0.74
0.56 0.40 0.29 0.38 109 12 12 3.69
0.75 0.24 0.30 0.39 119 90 10 0.57
1.13 0.25 0.41 0.55 109 51 45 0.40
0.90 0.50 0.42 0.56 113 41 21 0.69
0.54 0.43 0.29 0.38 81 42 9 1.16
0.65 0.45 0.33 0.44 88 88 37 0.76
1.11 0.58 0.51 0.68 98 61 22 0.29
0.57 0.40 0.29 0.39 107 102 17 0.54
1.15 0.65 0.54 0.72 36 25 13 1.33
1.16 0.62 0.53 0.71 91 45 37 0.82
0.69 0.55 0.37 0.50 109 56 39 1.84
0.73 0.53 0.38 0.50 51 29 14 2.19
0.83 0.77 0.48 0.64 109 101 72 1.08
0.91 0.72 0.49 0.65 55 51 36 1.42
1.01 0.39 0.42 0.56 109 80 65 0.29
0.74 0.54 0.39 0.52 89 76 15 0.61
1.12 0.61 0.52 0.69 120 38 25 0.66
1.08 0.80 0.56 0.75 81 47 19 0.87
0.76 0.50 0.38 0.50 64 46 16 0.99
1.04 0.36 0.42 0.56 102 100 95 0.38
0.86 0.80 0.50 0.66 109 93 42 1.03

For a system with more than two types of packets, computing the optimal policy becomes
untractable due to the exponential explosion of the number of states. However, computing the
thresholds of this heuristic is orders of magnitude faster than computing the optimal policy. In fact,
much of the computation required (i.e., computation of the system parameters) for the heuristic can be
done off-line, and the real-time computation requires no more than a table lookup. The computation
of the system parameters of the heuristic is approximately, and at worst equal to the number of
parameters times the size of the square of the cardinality of the state space. Numerical results show
that the heuristic performs very well compared to the optimal policy. For a 95% confidence interval,
the average computation time is 0.045%± 0.005% with a range of [10−4, 9× 10−4] over a sample of
100 cases.

Given that the computation time of the optimal policy scales exponentially in the state
space, computing the optimal policy beyond two priority classes is untractable. For instance,
consider a system with three types of packets. Even if we succeed to compute the optimal policy
and the associated parameters, it will require a huge state dependent look-up table (five hyper-surfaces
representing the state dependent thresholds). For the heuristic however, we will need to store only
five static control parameters (i.e., two admission and three routing threshold parameters).



Sensors 2020, 20, 6566 17 of 26

Finally, in practice, traffic flow (i.e., arrival rate λ) changes over time. Our model however,
assumes a constant traffic flow (λi for flow type-i). This is by no means a limitation of our model.
In fact, this issue can be approached in one of two ways: either using a transient analysis which is
well documented as being untractable especially in the context of an MDP framework; or computing
different policy parameters off-line for each traffic flow. These parameters would be used for the
particular traffic flow in effect during deployment.

7. Conclusions

In this paper, we considered an admission and routing control problem to address the issue of
resource limitation in resource constrained networks (such as WSNs). We formulated the admission
and routing control problem of two types of flows where one has a higher priority than the
other, as a Markov decision problem. We characterized the optimal policy and showed that it is
a state-dependent threshold type policy. Furthermore, we conducted extensive numerical experiments
to gain more insight into the behavior of the optimal policy under different system parameters. Due to
the computational challenges of the optimal policy (curse of dimensionality) which makes it untractable
and too resource intensive to run on wireless devices, we proposed a heuristic that mimics the optimal
control policy. Through extensive numerical results, we showed that the heuristic performs very well.
It is also orders of magnitude faster than the optimal policy. Much of the required computation can
be done off-line, and the real-time computation requires no more than a table lookup. We further
generalized the heuristic for the case of a system with n types of flows (n ≥ 2).

The results presented in this work provide a first step towards a better understanding of the
structure of the optimal policy. There are several avenues for future research. In particular, it would be
of interest to generalize the system to multi-server queues with more than two paths leading to the
same destination. We expect the problem to become considerably more difficult with each additional
feature and it is not clear if the optimal policy would be tractable. A clear extension of this work is to
implement and test the proposed admission and routing control policy in real resource constrained
network devices.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

In order to prove Theorem 1 we first state the following Lemma.

Lemma A1. Let V be the set of functions, v, defined on R3 such that v satisfies Properties 1–3. Then wn ∈
V , ∀n ∈ Z+, where Z+ is the set of non-negative integers.

Proof. First, note that by adding Properties 2 and 3 we obtain Property 1. Therefore, it suffices to
prove Properties 2 and 3. To prove these properties, we use induction on the remaining number of
periods. The following is a sketch of the proof.

• Step 1: we observe that Properties 2 and 3 hold for n = 0.
• Step 2: we assume 2 and 3 hold for some n ≥ 0.
• Step 3: we prove that 2 and 3 hold for n + 1.

We introduce the following notation:

∆iwn(x + ei) = wn(x + ei)− wn(x)

∆ijwn(x + ei + ej) = wn(x + ei)− wn(x)



Sensors 2020, 20, 6566 18 of 26

Hence, we can write

max{wn(x + ei), wn(x)} = wn(x) + max{wn(x + ei)− wn(x), 0}
= wn(x) + max{∆iwn(x), 0}

We show that Ts and Tr satisfy Properties 2 and 3 and thus satisfy Property 1.

Operator Ts

Note that operators Ta1 , T1 and T2 satisfy Properties 2 and 3 by induction as they do not involve
any decision. Hence, we only need to show that Ta2 satisfies Properties 2 and 3. Using the difference
operator, we have:

Ta2 wn−1(x) = wn−1(x) + max{∆2wn−1(x)− c, 0}

To show that Ta2 satisfies Property 2, let

Let Q(x) =Ta2 wn−1(x + 2ei)− Ta2 wn−1(x + ei)− Ta2 wn−1(x + ei + ej) + Ta2 wn−1(x + ej)

=(∆iwn−1(x + ei)− ∆iwn−1(x + ej)) + max{∆jwn−1(x + 2ei)− c, 0} −max{∆jwn−1(x + ei)− c, 0}

−max(∆jwn−1(x + ei + ej)− c, 0) + max{∆jwn−1(x + ej)− c, 0}

Using submodularity property, we infer that : ∆jwn−1(x + ei) ≥ ∆jwn−1(x + ej) ≥ ∆jwn−1(x +

ei + ej) and
∆jwn−1(x + ei) ≥ ∆jwn−1(x + 2ei) ≥ ∆jwn−1(x + ei + ej).

We prove the property for each case.

1. case 1: assume ∆jwn−1(x + ei + ej)− c ≥ 0

Q(x) = ∆iwn−1(x + ei + ej)− ∆iwn−1(x + 2ej) ≤ 0, by the inductive hypothesis.

2. case 2: assume ∆jwn−1(x + ej) − c ≥ 0 ≥ ∆jwn−1(x + ei + ej) − c
and ∆jwn−1(x + 2ei)− c ≥ 0 ≥ ∆jwn−1(x + ei + ej)− c

Q(x) =∆iwn−1(x + ei + ej)− ∆iwn−1(x + 2ej)︸ ︷︷ ︸
≤ 0 by the inductive hypothesis

+∆jwn−1(x + ei + ej)− c︸ ︷︷ ︸
≤ 0 by the assumption

≤ 0

3. case 3: assume ∆jwn−1(x + ei) − c ≥ 0 ≥ ∆jwn−1(x + ej) − c ≥ ∆jwn−1(x + ei + ej)− c and
∆jwn−1(x + 2ei)− c ≥ 0.

Q(x) =∆iwn−1(x + ei + ej)− ∆iwn−1(x + 2ej)︸ ︷︷ ︸
≤ 0 by the inductive hypothesis

+∆jwn−1(x + ei + ej)− c− ∆jwn−1(x + ej)− c︸ ︷︷ ︸
≤ 0 by the assumption

≤ 0

4. case 4: assume ∆jwn−1(x + ej) − c ≥ 0 and ∆jwn−1(x + ei) − c ≥ 0 ≥ ∆jwn−1(x + 2ei) −
c≥ ∆jwn−1(x + ei + ej)− c

Q(x) =∆iwn−1(x + ei + ej)− ∆iwn−1(x + 2ej)︸ ︷︷ ︸
≤ 0 by the inductive hypothesis

+∆jwn−1(x + ei + ej)− c− ∆jwn−1(x + 2ei) + c︸ ︷︷ ︸
≤ 0 by the assumption

≤ 0



Sensors 2020, 20, 6566 19 of 26

5. case 5: assume ∆jwn−1(x + ei) − c ≥ 0 ≥ ∆jwn−1(x + ej) − c≥ ∆jwn−1(x + ei + ej)− c and
∆jwn−1(x + ei)− c ≥ 0 ≥ ∆jwn−1(x + 2ei)− c≥ ∆jwn−1(x + ei + ej)− c

Q(x) =∆iwn−1(x + ei)− ∆iwn−1(x + ej)︸ ︷︷ ︸
≤ 0 by the inductive hypothesis

−∆jwn−1(x + ei)− c︸ ︷︷ ︸
≥ 0 by the assumption

≤ 0

6. case 6: assume 0 ≥ ∆jwn−1(x + ei) − c ≥ ∆jwn−1(x + ej) − c ≥ ∆jwn−1(x + ei + ej) − c and
0 ≥ ∆jwn−1(x + ei)− c ≥ ∆jwn−1(x + 2ei)− c ≥ ∆jwn−1(x + ei + ej)− c

Q(x) =∆iwn−1(x + ei)− ∆iwn−1(x + ej) ≤ 0 by the inductive hypothesis.

Since the set V is closed under addition and multiplication by a scalar, it follows that Ts satisfies
Property 2.

To show that Ta2 satisfies Property 3, let

Q(x) =Ta2 wn−1(x + ei + ej)− Ta2 wn−1(x + ej)− Ta2 wn−1(x + ei) + Ta2 wn−1(x)

=(∆iwn−1(x + ej)− ∆iwn−1(x)) + max{∆jwn−1(x + ei + ej)− c, 0} −max{∆jwn−1(x + ej)− c, 0}

−max{∆jwn−1(x + ei)− c, 0}+ max{∆jwn−1(x)− c, 0}

Using submodularity, we infer that ∆jwn−1(x)− c ≥ ∆jwn−1(x + ei)− c ≥ ∆jwn−1(x + ej)− c ≥
∆jwn−1(x + ei + ej)− c. In the following we prove the property for each case.

1. case 1: assume ∆jwn−1(x) − c ≥ ∆jwn−1(x + ei) − c ≥ ∆jwn−1(x + ej) − c ≥ ∆jwn−1(x + ei +

ej)− c ≥ 0

Q(x) =(∆iwn−1(x + ej)− ∆iwn−1(x)) + ∆jwn−1(x + ei + ej)− c− ∆jwn−1(x + ej) + c

− ∆jwn−1(x + ei) + c + ∆jwn−1(x)− c

=∆iwn−1(x + 2ej)− ∆iwn−1(x + ej)

≤0 by the inductive hypothesis

2. case 2: assume ∆jwn−1(x)− c ≥ ∆jwn−1(x + ei)− c ≥ ∆jwn−1(x + ej)− c ≥ 0 ≥ ∆jwn−1(x + ei +

ej)− c

Q(x) =∆iwn−1(x + 2ej)− ∆iwn−1(x + ej)− ∆jwn−1(x + ei + ej) + c

=∆iwn−1(x + 2ej)− ∆iwn−1(x + ej)− ∆jwn−1(x + ei + ej) + c

=− (∆jwn−1(x + ej)− c)

≤0 by the assumption

3. case 3: assume ∆jwn−1(x)− c ≥ ∆jwn−1(x + ei)− c ≥ 0 ≥ ∆jwn−1(x + ej)− c ≥ ∆jwn−1(x + ei +

ej)− c

Q(x) =−(∆jwn−1(x + ej)− c)︸ ︷︷ ︸
≤ 0 from case 2

+∆jwn−1(x + ej)− c︸ ︷︷ ︸
≤ 0 by the assumption

= 0



Sensors 2020, 20, 6566 20 of 26

4. case 4: assume ∆jwn−1(x)− c ≥ 0 ≥ ∆jwn−1(x + ei)− c ≥ ∆jwn−1(x + ej)− c ≥ ∆jwn−1(x + ei +

ej)− c

Q(x) = 0︸︷︷︸
Per case 3

+∆jwn−1(x + ei)− c︸ ︷︷ ︸
≤ 0 by the assumption

≤ 0

5. case 5: assume 0 ≥ ∆jwn−1(x)− c ≥ ∆jwn−1(x + ei)− c ≥ ∆jwn−1(x + ej)− c ≥ ∆jwn−1(x + ei +

ej)− c

Q(x) =(∆iwn−1(x + ej)− ∆iwn−1(x)) ≤ 0 by the inductive hypothesis

Since the set V is closed under addition and multiplication by a scalar, it follows that Ts satisfies
Property 3.

Operator Tr

Trwn−1(x) =

{
max{wn−1(x− e1 + e3)− c2, wn−1(x)} if x2 = 0, x1 ≥ 0, route type 1
max{wn−1(x− e2 + e3), wn−1(x)} if x2 > 0, route type 2

To show that Tr satisfies Property 2, we need to prove that

Trwn−1(x + 2ei)− Trwn−1(x + ei)− Trwn−1(x + ei + ej) + Trwn−1(x + ej) ≤ 0

For simplicity we prove the property for i = 1 and j = 2. The rest of the properties follow the
same procedure.

1. x2 = 0, x1 ≥ 0

Trwn−1(x) = wn−1(x) + max{∆−13wn−1(x)− c2, 0} (A1)

Let Q(x) =Trwn−1(x + 2e1)− Trwn−1(x + e1)− Trwn−1(x + e1 + e2) + Trwn−1(x + e2)

=wn−1(x + 2e1)− wn−1(x + e1)− wn−1(x + e1 + e2) + wn−1(x + e2)

+ max{∆−13wn−1(x + 2e1)− c2, 0} −max{∆−13wn−1(x + e1)− c2, 0}
−max{∆−13wn−1(x + e1 + e2)− c2, 0}+ max{∆−13wn−1(x + e2)− c2, 0}

Note that, by Property 2 the following inequalities hold.
∆−13wn−1(x + e1) − c2 ≥ ∆−13wn−1(x + e1 + e2) − c2 ≥ ∆−13wn−1(x + 2e1) − c2 ≥
∆−13wn−1(x + e2)− c2

We prove the property for each case.

(a) case 1: assume ∆−13wn−1(x + e1) − c2 ≥ ∆−13wn−1(x + e1 + e2) − c2 ≥ ∆−13wn−1(x +

2e1)− c2 ≥ ∆−13wn−1(x + e2)− c2 ≥ 0.

Q(x) =wn−1(x + 2e1)− wn−1(x + e1)− wn−1(x + e1 + e2) + wn−1(x + e2)

+ ∆−13wn−1(x + 2e1)− ∆−13wn−1(x + e1)− ∆−13wn−1(x + e1 + e2) + ∆−13wn−1(x + e2)

=∆1wn−1(x + e3)− ∆1wn−1(x− e1 + e2 + e3)

≤0 by the inductive hypothesis



Sensors 2020, 20, 6566 21 of 26

(b) case 2: assume ∆−13wn−1(x + e1) − c2 ≥ ∆−13wn−1(x + e1 + e2) − c2 ≥ ∆−13wn−1(x +

2e1)− c2 ≥ 0 ≥ ∆−13wn−1(x + e2)− c2.

Q(x) =∆1wn−1(x + e3)− ∆1wn−1(x− e1 + e2 + e3)︸ ︷︷ ︸
From case 1

−(∆−13wn−1(x + e2)− c2)

using the assumption, ∆−13wn−1(x + e1 + e2)− c2 ≥ ∆−13wn−1(x + 2e1)− c2,

and after simplification, we can express Q(x) as,

Q(x) ≤ ∆1wn−1(x + e1)− ∆1wn−1(x + e2)︸ ︷︷ ︸
≤ 0 by concavity Property 2

− (∆−13w(x + e1)− c2)︸ ︷︷ ︸
≥ 0 by assumption

≤0

(c) case 3: assume ∆−13wn−1(x+ e1)− c2 ≥ ∆−13wn−1(x+ e1 + e2)− c2 ≥ 0 ≥ ∆−13wn−1(x+
2e1)− c2 ≥ ∆−13wn−1(x + e2)− c2.

Q(x) ≤ ∆1wn−1(x + e1)− ∆1wn−1(x + e2)− (∆−13wn−1(x + e1)− c2)︸ ︷︷ ︸
≤ 0 from previous case

−(∆−13wn−1(x + 2e1)− c2)

≤ ∆1wn−1(x + e1)− ∆1wn−1(x + e2)− (∆−13wn−1(x + e1)− c2)︸ ︷︷ ︸
≤ 0 from previous case

− (∆−13wn−1(x + 2e1)− c2)︸ ︷︷ ︸
≤ ∆−13w(x + e1)− c2 by assumption

≤ ∆iwn−1(x + e1)− ∆iwn−1(x + e2)− 2(∆−13wn−1(x + e1)− c2)

≤0

(d) case 4: assume ∆−13wn−1(x+ e1)− c2 ≥ 0 ≥ ∆−13wn−1(x+ e1 + e2)− c2 ≥ ∆−13wn−1(x+
2e1)− c2 ≥ ∆−13wn−1(x + e2)− c2.

Q(x) ≤ ∆1wn−1(x + e1)− ∆1wn−1(x + e2)− 2(∆−13wn−1(x + e1)− c2)︸ ︷︷ ︸
≤ 0 from previous case

+∆−13wn−1(x + e1 + e3) + c2︸ ︷︷ ︸
≤ 0 by assumption

≤0

(e) case 5: assume 0 ≥ ∆−13wn−1(x+ e1)− c2 ≥ ∆−13wn−1(x+ e1 + e2)− c2 ≥ ∆−13wn−1(x+
2e1)− c2 ≥ ∆−13wn−1(x + e2)− c2.

Q(x) ≤ ∆1wn−1(x + e1)− ∆1wn−1(x + e2)− 2(∆−13wn−1(x + e1)− c2) + ∆−13wn−1(x + e1 + e3) + c2︸ ︷︷ ︸
≤ 0 from previous case

+ ∆−13wn−1(x + e1) + c2︸ ︷︷ ︸
≤ 0 by assumption

≤0

2. x2 > 0

Trwn−1(x) = max{wn−1(x− ej + e3), wn−1(x)}
= wn−1(x) + max{∆−23wn−1(x), 0} (A2)

Note that Tr(x) given in Equation (A2) is a special case of Tr(x) expression given in Equation (A1)
where c2 = 0 and ei is substituted by ej, therefore the proof of Property 2 follows.

In order to prove that Tr satisfies Property 3, we need to prove that

Trwn−1(x + ei + ej)− Trwn−1(x + ej)− Trwn−1(x + ei) + Trwn−1(x) ≤ 0.



Sensors 2020, 20, 6566 22 of 26

For simplicity we prove the property for i = 1 and j = 2. The rest of the properties follow the
same procedure.

1. x2 = 0, x1 ≥ 0

Trwn−1(x) = wn−1(x) + max{∆−13wn−1(x)− c2, 0} (A3)

Q(x) =Trwn−1(x + e1 + e2)− Trwn−1(x + e2)− Trwn−1(x + e1) + Trwn−1(x) ≤ 0

=wn−1(x + e1 + e2)− wn−1(x + e2)− wn−1(x + e1) + wn−1(x)

+ max{∆−13wn−1(x + e1 + e2)− c2, 0)} −max{∆−13wn−1(x + e2)− c2, 0)}

−max{∆−13wn−1(x + e1)− c2, 0}+ max{∆−13wn−1(x)− c2, 0}

Note that, by Property 2 the following inequalities hold. ∆−13wn−1(x + e1 + e2) − c2 ≥
∆−13wn−1(x + e2)− c2 ≥ ∆−13wn−1(x + e1)− c2 ≥ ∆−13wn−1(x)− c2. We prove the property for
each case.

(a) case 1: assume ∆−13wn−1(x + e1 + e2) − c2 ≥ ∆−13wn−1(x + e2) − c2 ≥ ∆−13wn−1(x +

e1)− c2 ≥ ∆−13wn−1(x)− c2 ≥ 0

Q(x) =Trwn−1(x + e1 + e2)− Trwn−1(x + e2)− Trwn−1(x + e1) + Trw(x)

=wn−1(x + e1 + e2)− wn−1(x + e2)− wn−1(x + e1) + wn−1(x)

+ (wn−1(x + e2 + e3)− wn−1(x + e1 + e2)− c2)− (wn−1(x− e1 + e2 + e3)− wn−1(x + e2)− c2)

− (wn−1(x + e3)− wn−1(x + e1)− c2) + (wn−1(x− e1 + e3)− wn−1(x)− c2)

=∆1wn−1(x− e1 + e2 + e3)− ∆1wn−1(x− e1 + e3)

≤0 by the inductive proposition of Property 3

(b) case 2: assume ∆−13wn−1(x + e1 + e2) − c2 ≥ ∆−13wn−1(x + e2) − c2 ≥ ∆−13wn−1(x +

e1)− c2 ≥ 0 ≥ ∆−13wn−1(x)− c2.

Q(x) =Trwn−1(x + e1 + e2)− Trwn−1(x + e2)− Trwn−1(x + e1) + Trwn−1(x)

=∆1wn−1(x− e1 + e2 + e3)− ∆1wn−1(x− e1 + e3)− (∆−13wn−1(x)− c2)

Per assumption wn−1(x + e2 + e3)− wn−1(x− e1 + e2 + e3) ≥ wn−1(x + e1 + e2)− wn−1(x + e2)

Q(x) ≤wn−1(x + e1 + e2)− wn−1(x + e2) + wn−1(x)− (wn−1(x + e3)− c2)︸ ︷︷ ︸
≥ wn−1(x + e1) by the assumption

≤wn−1(x + e1 + e2)− wn−1(x + e2) + wn−1(x)− wn−1(x + e1)

=∆1wn−1(x + e2)− ∆1wn−1(x)

≤0 by the inductive hypothesis

(c) case 3: assume ∆−13wn−1(x+ e1 + e2)− c2 ≥ ∆−13wn−1(x+ e2)− c2 ≥ 0 ≥ ∆−13wn−1(x+
e1)− c2 ≥ ∆−13wn−1(x)− c2.

Q(x) =∆1wn−1(x + e2)− ∆1wn−1(x)︸ ︷︷ ︸
≤ 0 from previous case

+ (∆−13wn−1(x + ei)− c2)︸ ︷︷ ︸
≤ 0 by assumption

≤0



Sensors 2020, 20, 6566 23 of 26

(d) case 4: assume ∆−13wn−1(x+ e1 + e2)− c2 ≥ 0 ≥ ∆−13wn−1(x+ e2)− c2 ≥ ∆−13wn−1(x+
e1)− c2 ≥ ∆−13wn−1(x)− c2.

Q4(x) =∆1wn−1(x + e2)− ∆1wn−1(x) + (∆−13wn−1(x + ei)− c2)︸ ︷︷ ︸
≤ 0 from previous case

+ (∆−13wn−1(x + ej)− c2)︸ ︷︷ ︸
≤ 0 by assumption

≤0

(e) case 5: assume 0 ≥ ∆−13wn−1(x+ e1 + e2)− c2 ≥ ∆−13wn−1(x+ e2)− c2 ≥ ∆−13wn−1(x+
e1)− c2 ≥ ∆−13wn−1(x)− c2.

Q(x) = ∆1wn−1(x + e2)− ∆1wn−1(x) ≤0 by the inductive hypothesis.

2. For x2 > 0

Trwn−1(x) = max{wn−1(x− e2 + e3), wn−1(x)}
= wn−1(x) + max{∆−23wn−1(x), 0} (A4)

Note that the expression of Tr(x) given in Equation (A4) is a special case of the one of Tr(x)
given in Equation (A3) where c2 = 0 and ei is substituted by ej, therefore Tr(x) satisfies
Property 3. Finally, it is straightforward (using the induction argument) to show that wn(x) =
max(Tswn−1(x), Trwn−1(x)), for x1 + x2 > 0 satisfies Properties 2 and 3, hence satisfies Property 1.
This completes the proof of Lemma A1.

Proof of Theorem 1. For a given n we obtain an optimal policy Πn. It can be shown that there exists
an optimal stationary policy Π∗ such that Π∗ = limn→∞ Πn. This is true because wn(x) converges to
an optimal time-independent discounted reward, w, for any α > 0 (see [58]).

The admission policy structure is due to Property 1. Indeed the latter indicates that the difference
wn(x + e2)−wn(x) is non increasing in x2. Thus wn(x) has a unique maximum at A(x1, x3) as defined
in the theorem.

The routing policy structure for type-2 packets is due to Property 2. The latter indicates that the
difference wn(x− e2 + e3)− wn(x) is non decreasing in x2. Therefore, there exists a unique threshold
R2(x1, x3). Similarly, for type-1 packets, Property 3 implies that there exists a unique thresholdR1(x3)

(since x2 = 0 in this case). R1(x3) andR2(x1, x3) are defined in the theorem.
This completes the proof of the theorem.

References

1. Puccinelli, D.; Haenggi, M. Wireless sensor networks: Applications and challenges of ubiquitous sensing.
IEEE Circuits Syst. Mag. 2005, 5, 19–31. [CrossRef]

2. Rabby, M.K.M.; Alam, M.S. A priority based energy harvesting scheme for charging embedded sensor nodes
in wireless body area networks. PLoS ONE 2019, 14, e0214716. [CrossRef] [PubMed]

3. Anguita, D.; Brizzolara, D.; Parodi, G. Building an Underwater Wireless Sensor Network Based on Optical:
Communication: Research Challenges and Current Results. In Proceedings of the 2009 Third International
Conference on Sensor Technologies and Applications, Glyfada, Greece, 18–23 June 2009; pp. 476–479.

4. Hassan, J. Future of Applications In Mobile wireless Sensor Networks. In Proceedings of
the 2018 1st International Conference on Computer Applications Information Security (ICCAIS),
Riyadh, Kingdom of Saudi Arabia, 4–6 April 2018; pp. 1–6.

5. Nishikawa, Y.; Sasamura, T.; Ishizuka, Y.; Sugimoto, S.; Iwasaki, S.; Wang, H.; Fujishima, T.; Fujimoto, T.;
Yamashita, K.; Suzuki, T.; et al. Design of stable wireless sensor network for slope monitoring. In Proceedings
of the 2018 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Anaheim, CA, USA,
14–17 January 2018; pp. 8–11.

http://dx.doi.org/10.1109/MCAS.2005.1507522
http://dx.doi.org/10.1371/journal.pone.0214716
http://www.ncbi.nlm.nih.gov/pubmed/31009483


Sensors 2020, 20, 6566 24 of 26

6. Sun, Z.; Akyildiz, I.F. Connectivity in Wireless Underground Sensor Networks. In Proceedings of the 2010
7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), Boston, MA, USA, 21–25 June 2010; pp. 1–9.

7. Bogdanoski, M.; Shuminoski, T.; Risteski, A. Analysis of the SYN flood DoS attack. Int. J. Comput. Netw.
Inf. Secur. 2013, 5, 1–11. [CrossRef]

8. Oncioiu, R.; Simion, E. Approach to Prevent SYN Flood DoS Attacks in Cloud. In Proceedings of the 2018
International Conference on Communications (COMM), Bucharest, Romania, 14–16 June 2018; pp. 447–452.

9. Eberhardt, J.; Tai, S. On or Off the Blockchain? Insights on Off-Chaining Computation and Data.
In Proceedings of the European Conference on Service-Oriented and Cloud Computing, Oslo, Norway,
27–29 September 2017; pp. 3–15. [CrossRef]

10. Gupta, M.K.; Hemachandra, N.; Venkateswaran, J. Some parametrized dynamic priority policies for 2-class
M/G/1 queues: completeness and applications. arXiv 2018, arXiv:1804.03564.

11. Dimitris, B.; Niño-Mora, J. Optimization of Multiclass Queueing Networks with Changeover Times via the
Achievable Region Approach: Part II, the Multi-Station Case. Math. Oper. Res. 1999, 24, 331–361.

12. Hassin, R.; Puerto, J.; Fernandez, F.R. The use of relative priorities in optimizing the performance of
a queueing system. Eur. J. Oper. Res. 2009, 193, 476–483. [CrossRef]

13. Gupta, M.K.; Hemachandra, N. On 2-moment completeness of non pre-emptive, non anticipative
work conserving scheduling policies in some single class queues. In Proceedings of the 2015 13th
International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), Mumbai, India, 25–29 May 2015; pp. 267–274.

14. Rawal, A.; Kavitha, V.; Gupta, M.K. Optimal surplus capacity utilization in polling systems via fluid models.
In Proceedings of the 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt), Hammamet, Tunisia, 12–16 May 2014; pp. 381–388.

15. Li, C.; Neely, M.J. Delay and rate-optimal control in a multi-class priority queue with adjustable service
rates. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012;
pp. 2976–2980.

16. Sinha, S.K.; Rangaraj, N.; Hemachandra, N. Pricing surplus server capacity for mean waiting time sensitive
customers. Eur. J. Oper. Res. 2010, 205, 159–171. [CrossRef]

17. Puterman, M.L. Markov Decision Processes; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2005.
18. Gouvy, N.; Hamouda, E.; Mitton, N.; Zorbas, D. Energy efficient multi-flow routing in mobile Sensor

Networks. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC),
Shanghai, China, 7–10 April 2013; pp. 1968–1973.

19. Zhang, D.; Li, G.; Zheng, K.; Ming, X.; Pan, Z. An Energy-Balanced Routing Method Based on Forward-Aware
Factor for Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2014, 10, 766–773. [CrossRef]

20. Zhang, D.G.; Liu, S.; Zhang, T.; Liang, Z. Novel unequal clustering routing protocol considering energy
balancing based on network partition and distance for mobile education. J. Netw. Comput. Appl. 2017, 88, 1–9.
[CrossRef]

21. Zhang, D.; Zheng, K.; Zhang, T.; Wang, X. A novel multicast routing method with minimum transmission
for WSN of cloud computing service. Soft Comput. 2014, 19, 1817–1827. [CrossRef]

22. Dressler, F. Self-Organization in Sensor and Actor Networks; John Wiley and Sons Ltd.: Chichester, UK, 2007.
23. Pathan, A. Security of Self-Organizing Networks: MANET, WSN, WMN, VANET; CRC Press:

Boca Raton, FL, USA, 2011.
24. Gu, X.; Yu, J.; Yu, D.; Wang, G.; Lv, Y. ECDC: An energy and coverage-aware distributed clustering protocol

for wireless sensor networks. Comput. Electr. Eng. 2014, 40, 384–398. [CrossRef]
25. Le, N.T.; Jang, M. Energy-efficient coverage guarantees scheduling and routing strategy for wireless sensor

networks. Int. J. Distrib. Sens. Netw. 2015, 11, 612383. [CrossRef]
26. More, A.; Raisinghani, V. A survey on energy efficient coverage protocols in wireless sensor networks.

J. King Saud Univ. Comput. Inf. Sci. 2017, 29, 428–448. [CrossRef]
27. Alghamdi, T. Energy efficient protocol in wireless sensor network: optimized cluster head selection model.

Telecommun. Syst. 2020, 74, 331–345. [CrossRef]
28. Wang, Z.; Chen, Y.; Liu, B. A sensor node scheduling algorithm for heterogeneous wireless sensor networks.

Int. J. Distrib. Sens. Netw. 2019, 15. [CrossRef]

http://dx.doi.org/10.5815/ijcnis.2013.08.01
http://dx.doi.org/10.1007/978-3-319-67262-5_1
http://dx.doi.org/10.1016/j.ejor.2007.11.058
http://dx.doi.org/10.1016/j.ejor.2009.12.023
http://dx.doi.org/10.1109/TII.2013.2250910
http://dx.doi.org/10.1016/j.jnca.2017.03.025
http://dx.doi.org/10.1007/s00500-014-1366-x
http://dx.doi.org/10.1016/j.compeleceng.2013.08.003
http://dx.doi.org/10.1155/2015/612383
http://dx.doi.org/10.1016/j.jksuci.2016.08.001
http://dx.doi.org/10.1007/s11235-020-00659-9
http://dx.doi.org/10.1177/1550147719826311


Sensors 2020, 20, 6566 25 of 26

29. Shih, E.; Cho, S.; Lee, F.S.; Calhoun, B.H.; Chandrakasan, A. Design Considerations for Energy-Efficient
Radios in Wireless Microsensor Networks. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004,
37, 77–94. [CrossRef]

30. Santhi, V.; Natarajan, A.M. Active Queue Management Algorithm for TCP Networks Congestion Control.
Eur. J. Sci. Res. 2011, 54, 245–257.

31. Comer, D.E. Internetworking with TCP/IP, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006.
32. Floyd, S.; Jacobson, V. Random Early Detection (RED) gateways for Congestion Avoidance.

IEEE/ACM Trans. Netw. 1993, 1, 397–413. [CrossRef]
33. Robertazzi, T.G. Computer Networks and Systems: Queueing Theory and Performance Evaluation-Queueing Theorty

and Performance Evaluation, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2012.
34. Kleinrock, L. Queueing Systems, Volume 2: Computer Applications; Wiley: Hoboken, NJ, USA, 1976.
35. Kleinrock, L. Queuing Systems, Volume 1: Theory; Wiley: Hoboken, NJ, USA, 1975.
36. Lenin, R.B.; Ramaswamy, S. Performance analysis of wireless sensor networks using queuing networks.

Ann. Oper. Res. 2015, 233, 237–261. [CrossRef]
37. Adou, Y.; Markova, E.; Gudkova, I. Performance Measures Analysis of Admission Control Scheme Model

for Wireless Network, Described by a Queuing System Operating in Random Environment. In Proceedings
of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–5.

38. Borodakiy, V.Y.; Samouylov, K.E.; Gudkova, I.A.; Ostrikova, D.Y.; Ponomarenko-Timofeev, A.A.;
Turlikov, A.M.; Andreev, S.D. Modeling unreliable LSA operation in 3GPP LTE cellular networks.
In Proceedings of the 2014 6th International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), St. Petersburg, Russia, 6–8 October 2014; pp. 390–396.

39. Kempa, W.M. Analytical Model of a Wireless Sensor Network (WSN) Node Operation with a Modified
Threshold-Type Energy Saving Mechanism. Sensors 2019, 19, 3114. [CrossRef]

40. Ghosh, S.; Unnikrishnan, S. Reduced power consumption in wireless sensor networks using queue based
approach. In Proceedings of the 2017 International Conference on Advances in Computing, Communication
and Control (ICAC3), Mumbai, India, 1–2 December 2017.

41. Moy, J. Open Shortest Path First (OSPF). Available online: https://tools.ietf.org/html/rfc2328 (accessed on
11 November 2020)

42. Hedrick, C. Routing Information Protocol (RIP); Rutgers University: Camden, NJ, USA, 1988.
43. Zhang, X.; Zhou, Z.; Cheng, D. Efficient path routing strategy for flows with multiple priorities on scale-free

networks. PLoS ONE 2017, 12, e0172035. [CrossRef] [PubMed]
44. Groenevelt, R.; Koole, G.; Nain, P. On the bias vector of a two-class preemptive priority queue. Math. Methods

Oper. Res. 2002, 55, 107–120. [CrossRef]
45. Brouns, G.A.; van der Wal, J. Optimal threshold policies in a two-class preemptive priority queue with

admission and termination control. Queueing Syst. 2006, 54, 21–33. [CrossRef]
46. Xu, S. A duality approach to admission and scheduling controls of queues. Queueing Syst. Theory Appl. 1994,

16, 272–300. [CrossRef]
47. Righter, R. Expulsion and scheduling control for multiclass queues with heterogeneous servers.

Queueing Syst. Theory Appl. 2000, 34, 289–300. [CrossRef]
48. Brouns, G.; van der Wal, J. Optimal threshold policies in a workload model with a variable number of service

phases per job. Math. Methods Oper. Res. 2003, 58, 483–501. [CrossRef]
49. Puterman, M. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley and Sons Inc.:

Hoboken, NJ, USA, 1994.
50. Lippman, A.L. Applying a new device in the optimization of exponential queueing systems. Oper. Res. 1975,

23, 687–710. [CrossRef]
51. Khorov, E.; Kiryanov, A.; Loginov, V.; Lyakhov, A. Head-of-line blocking avoidance in multimedia

streaming over wireless networks. In Proceedings of the 2014 IEEE 25th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington DC, USA, 2–5 September 2014;
pp. 1142–1146. [CrossRef]

52. Elhafsi, E.H.; Molle, M.; Manjunath, D. On the application of forking nodes to product-form queueing
networks. Int. J. Commun. Syst. 2008, 21, 135–165. [CrossRef]

http://dx.doi.org/10.1023/B:VLSI.0000017004.57230.91
http://dx.doi.org/10.1109/90.251892
http://dx.doi.org/10.1007/s10479-013-1503-4
http://dx.doi.org/10.3390/s19143114
https://tools.ietf.org/html/rfc2328
http://dx.doi.org/10.1371/journal.pone.0172035
http://www.ncbi.nlm.nih.gov/pubmed/28199382
http://dx.doi.org/10.1007/s001860200175
http://dx.doi.org/10.1007/s11134-006-8307-z
http://dx.doi.org/10.1007/BF01158765
http://dx.doi.org/10.1023/A:1019117305543
http://dx.doi.org/10.1007/s001860300312
http://dx.doi.org/10.1287/opre.23.4.687
http://dx.doi.org/10.1109/PIMRC.2014.7136339
http://dx.doi.org/10.1002/dac.881


Sensors 2020, 20, 6566 26 of 26

53. Kumar, A.; Manjunath, D.K.J. Communication Networking: An Analytical Approach; Morgan Kaufman:
San Francisco, CA, USA, 2004.

54. Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
55. Howard, R. Dynamic Programming and Markov Processes; Massachusetts Institute of Technology Press:

Cambridge, UK, 1960.
56. Liu, Z.; Nain, P.; Towsley, D. Sample path methods in the control of queues. Queueing Syst. 1995, 21, 293–335.

[CrossRef]
57. Weber, R.R.; Stidham, S. Optimal control of service rates in networks of queues. Adv. Appl. Probab. 1987,

19, 202–218. [CrossRef]
58. Bertsekas, D.P. Dynamic Programming and Optimal Control, 2nd ed.; Athena scientific: Belmont, MA, USA,

2001; Volume 2.
59. ElHafsi, M.; Fang, J.; Hamouda, E. Optimal production and inventory control of multi-class mixed backorder

and lost sales demand class models. Eur. J. Oper. Res. 2020. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01149166
http://dx.doi.org/10.2307/1427380
http://dx.doi.org/10.1016/j.ejor.2020.09.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature
	Model Description and Formulation
	Model Description
	Model Formulation

	Characterization of the Optimal Arc Policy
	Reward Function Properties
	Reward Function Bounds

	Sensitivity Analysis of the Optimal Policy
	Heuristic Control Policy
	Conclusions
	
	References

