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Background:Amnesticmild cognitive impairment (aMCI) is considered to be a transitional stage between healthy
aging and Alzheimer's disease (AD), and consists of two subtypes: single-domain aMCI (sd-aMCI) and multi-
domain aMCI (md-aMCI). Individuals with md-aMCI are found to exhibit higher risk of conversion to AD. Accu-
rate discrimination among aMCI subtypes (sd- ormd-aMCI) and controls could assist in predicting future decline.
Methods:We apply our novel thickness network (ThickNet) features to discriminatemd-aMCI from healthy con-
trols (NC). ThickNet features are extracted from the properties of a graph constructed from inter-regional co-
variation of cortical thickness.We fuse these ThickNet features using multiple kernel learning to form a compos-
ite classifier. We apply the proposed ThickNet classifier to discriminate between md-aMCI and NC, sd-aMCI and
NC and; and also between sd-aMCI andmd-aMCI, using baseline T1MR scans from the SydneyMemory and Age-
ing Study.
Results: ThickNet classifier achieved an area under curve (AUC) of 0.74, with 70% sensitivity and 69% specificity in
discriminatingmd-aMCI from healthy controls. The same classifier resulted in AUC= 0.67 and 0.67 for sd-aMCI/

NC and sd-aMCI/md-aMCI classification experiments respectively.
Conclusions: The proposed ThickNet classifier demonstrated potential for discriminating md-aMCI from controls,
and in discriminating sd-aMCI from md-aMCI, using cortical features from baseline MRI scan alone. Use of the
proposed novel ThickNet features demonstrates significant improvements over previous experiments using cor-
tical thickness alone. This result may offer the possibility of early detection of Alzheimer's disease via improved
discrimination of aMCI subtypes.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Recent reports suggest that the amyloid pathology may begin up to
20 years before any clinical symptoms appear (Amieva et al., 2008;
Braak and Braak, 1991; Braak and Del Tredici, 2011). This highlights
the importance of preclinical detection, which still stands as a challenge
(Cuingnet et al., 2011). Therefore, there is an urgent need for the devel-
opment of reliable computer-assisted tools for predicting the conver-
sion in mild cognitive impairment (MCI) due to AD.

The progression rates of clinically-diagnosed mild cognitive impair-
ment (MCI) to dementia are reported to be about 12% per annum
(Petersen, 2009). Amnestic subtype of MCI (aMCI) is found to have
. This is an open access article under
the highest conversion rate to AD as compared to other dementias
(Yaffe et al., 2006). Researchers have categorized aMCI into two broad
sub-types of aMCI, based on the number of domains impaired: single-
domain (sd-aMCI) and multiple-domain (md-aMCI) subtypes. There is
evidence to suggest thatmd-aMCI is themost likely subtype to progress
to AD (Bäckman et al., 2004) and to dementia (Alexopoulos et al., 2006;
Brodaty et al., 2013). Moreover, an association between prior subtype of
MCI and subsequent progression to a particular dementia is also report-
ed (Yaffe et al., 2006). Hence differential identification of aMCI subtypes,
and their relation to specific dementia diagnoses and differential rates of
conversion to dementia is worth investigating (Yaffe et al., 2006).

StructuralMRI (sMRI) is a widely available noninvasivemethod that
can capture atrophy in the brain structures in terms of subcortical
volumetry/shape (Beg et al., 2013; Cuingnet et al., 2011; P. Raamana
et al., 2014; Raamana et al., 2014a) as well as cortical thickness features
(Cuingnet et al., 2011; Eskildsen et al., 2013; Julkunen et al., 2010;
Raamana et al., 2014b). Hence it would be of prognostic value to devel-
op imaging biomarkers, based on baseline structural MRI alone, which
the CC BY-NC-ND license
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Table 1
Demographics of aMCI and normal subjects included in this study.

Diagnostic group Total N Age in years
Mean (SD)

Gender Education in N years
Mean (SD)

NC 42 78.57 (4.13) 17 M + 25 F 11.97 (3.10)
sd-aMCI 38 79.92 (4.87) 25 M + 13 F 12.68 (3.53)
md-aMCI 32 78.63 (4.44) 17 M + 15 F 11.52 (3.84)
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can accurately discriminate between the multiple-domain subtype of
aMCI and controls.

Previouswork thus farmainly focused on analyzing the groupdiffer-
ences i.e. regional differences in gray matter loss or cortical thinning.
Initial attempts to study the group differences among normal controls
(NC), sd-aMCI and md-aMCI were based on voxel-based morphometry
(Bell-McGinty et al., 2005; Brambati et al., 2009; Whitwell et al., 2007),
with few studies analyzing cortical thickness (Fennema-Notestine et al.,
2009; Seo et al., 2007). When comparing sd-aMCI or md-aMCI relative
to controls, most of the studies reported differences in medial temporal
and inferior temporal lobes (Brambati et al., 2009; Whitwell et al.,
2007), which is expected. In the same experiments, Seo et al. (2007)
and Fennema-Notestine et al. (2009) reported differences in precuneus
aswell, suggesting the importance of precuneus as away to detect early
stage atrophy caused by AD. When comparing sd-aMCI relative to md-
aMCI, Bell-McGinty et al. (2005) reported a significant loss of volume
of the left entorhinal cortex and inferior parietal lobe, whereas Seo
et al. (2007) reported cortical thinning in the left precuneus. In summa-
ry, these studies suggest thatmoderate differences exist among the sub-
types, and that the structural alterationsprecede the development of AD
(Bell-McGinty et al., 2005). They also suggest that sd-aMCI and md-
aMCI clinical subtypes could possibly represent increasing severity
points along the continuum between normal aging and AD (Bäckman
et al., 2004; Brambati et al., 2009).

The reports from previous studies were on the existence of group-
differences among the aMCI subtypes, and where the differences exist,
they improve our understanding of the early stage changes caused by
AD. However, the sample sizes examined have been small (except
for Fennema-Notestine et al., 2009;Whitwell et al., 2007) and unbal-
anced e.g. 9 sd-aMCI, 22 md-aMCI, and 61 NC in Seo et al. (2007), 9
sd-aMCI, 28 md-aMCI and 47 NC in Bell-McGinty et al. (2005) and
88 sd-aMCI, 25md-aMCI, and 145 NC inWhitwell et al. (2007). A bal-
anced sample i.e. equal representation for each class in the cohort, is
important to ensure that the primary class of interest is not severely
underrepresented (Wallace et al., 2011). In a study where the goal is
to identify which patients are at increased risk of conversion to
dementia, it is important that aMCI (both single andmultiple domain
subtypes) group is not underrepresented, as in the case of Bell-
McGinty et al. (2005), Seo et al. (2007), and Whitwell et al. (2007).
Furthermore, it is important to evaluate the diagnostic utility of these
measures, which none of the aforementioned studies have assessed
based on MRI measures (Bell-McGinty et al., 2005; Brambati et al.,
2009; Fennema-Notestine et al., 2009; Seo et al., 2007; Whitwell et al.,
2007).

In this study, we propose a novel ThickNet-based classifier for detec-
tion of md-aMCI. Our ThickNet fusionmethod has been previously test-
ed on ADNI dataset for the detection of prodromal AD (P. Raamana et al.,
2014). This method utilizes imaging biomarkers based on differential
changes in cortical thickness, taking into account pair-wise differences
between cortical surface patches. As there is tremendous variability of
cortical thickness across the population, the signature of the disease is
muchmore visible in cortical thickness gradients taken between differ-
ent brain regions, for example anterior–posterior gradients in AD as AD
is known to affect cortices such as the medial temporal lobes, the
precuneus, parietal areas, entorhinal cortex preferentially and early in
the course of the disease. In order to capture such inter-regional gradi-
ents (or rather co-variation in general), we formulated these network
features. These features will likely complement existing features
for early detection based on cortical thickness. These thickness net-
work (ThickNet) features are combined using probabilistic multiple
kernel learning approach to form a composite ThickNet classifier.
This classifier significantly improves the predictive power in dis-
criminating md-aMCI fromNC, compared to themean thickness values
alone (Raamana et al., 2014b).We also show that ourmethod improves
the predictive power in the sd-aMCI vs. NC and sd- vs. md-aMCI classi-
fication experiments.
2. Materials and methods

2.1. Participants

The study sample was part of the SydneyMemory and Ageing Study
(MAS) program,which comprises community-dwelling, non-demented
individuals recruited randomly through electoral roll from two elector-
ates of East Sydney, Australia. Please refer to Brodaty et al. (2013) and
Sachdev et al. (2010) for complete details about this study. To be eligi-
ble, participants needed to be aged between 70 and 90 years old, suffi-
ciently fluent in English to complete the psychometric assessment and
were able to consent to participate. Participants were excluded if they
had a previous diagnosis of dementia, psychotic symptoms or a diag-
nosis of schizophrenia or bipolar disorder, multiple sclerosis, motor
neuron disease, developmental disability, progressive malignancy
(active cancer or receiving treatment for cancer, other than prostate
non-metastasized, and skin cancer), or if they had medical or psy-
chological conditions that may have prevented them from complet-
ing assessments. Participants were excluded if they had a Mini-
Mental Statement Examination (MMSE; Anderson et al. (2007),
Folstein et al. (1975)) score of less than 24 adjusted for age, educa-
tion and non-English speaking background at study entry, or if they
received a diagnosis of dementia after comprehensive assessment.
The study was approved by the Ethics Committee of the University
of New South Wales. The demographics for the current study sample
are listed in Table 1.
2.2. MAS subsample and cognitive assessments

Participants received a comprehensive neuropsychological assess-
ment examining the cognitive domains of memory, language, attention/
processing speed, visuo-spatial function and executive functions (see
Table 2 for listing of test measures). Participants were classified as having
MCI according to the latest international consensus diagnostic criteria and
if all of the following criteria were met — a cognitive complaint from the
participant or a knowledgeable informant, cognitive impairment on ob-
jective testing, absence of dementia, and normal function or minimal im-
pairment in instrumental activities of daily living. Cognitive impairment
was defined as a test performance of 1.5 standard deviations (SDs) or
more below published normative values (demographically adjusted
where possible— Table 2). Participantswere considered impaired in a do-
main if at least one measure in the domain was impaired. In this study,
only amnestic type of MCI is included. If the impairment was restricted
to the memory domain, it was classified as single-domain amnestic MCI
(sd-aMCI). If an additional cognitive domain was impaired, it was classi-
fied as multiple-domain amnestic MCI (md-aMCI). Participants from
non-English speaking background were excluded from the MCI groups
because of the questionable validity of applying standard normative
data to establish cognitive impairment in non-native English speakers
(Kochan et al., 2010). We additionally excluded subjects whose cortical
parcellation did not meet our quality control. Within the quality con-
trolled subset, we randomly selected a subset of controls that matched
in age and size with aMCI. The final selection consisted of 38 sd-aMCI,
32 md-aMCI and 42 age-matched NC.



Table 2
Neuropsychological tests used for MCI classifications.

Cognitive domain Test Normative data source and demographic adjustments

Premorbid intelligence National adult reading test (NART) No adjustments
Attention/processing speed Digit symbol-coding Age

Trail making test A Age and education
Memory Logical memory story A delayed recall Education

RAVLT Age
RAVLT total learning, trials 1 to 5
RAVLT short-term delayed recall; trial 6
RAVLT long-term delayed recall; trial 7
Benton visual retention test recognition Age and education

Language Boston naming test Ñ 30 items Age
Semantic fluency (animals) Age and education

Visuospatial Block design Age
Executive function Controlled oral word association test (FAS) Age and education

Trail making test B Age and education

Please refer to Sachdev et al. (2010) for complete details on normative data sources and related references.
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2.3. Image acquisition

The participants were scanned using a 3 T Intera Quasar scanner
initially, followed by a 3 T Achieva Quasar Dual scanner, both
manufactured by Philips Medical Systems, Best, The Netherlands.
There was no alteration in acquisition parameters for T1-weighted
sequences for both the scanners: TR = 6.39 ms, TE = 2.9 ms, flip
angle = 8°, matrix size = 256 × 256, FOV = 256 × 256 × 190, and
slice thickness = 1 mmwith no gap between; yielding 1 × 1 × 1 mm3

isotropic voxels.
The use of different scanners was due to reasons beyond

investigator's control and any systematic bias arising from the scanner
change is unlikely given that participant recruitment was random.
There were no significant differences found between the two scanners
in cortical features extracted from five healthy subjects in the Sydney
MAS cohort scanned on both scanners (Liu et al., 2010). Even though
there were some cohort differences across the two scanners (at age
scan: scanner 1 = 77.9, scanner 2 = 79.0, p = 0.003; years of educa-
tion: scanner 1 = 11.4, scanner 2 = 12.2, p = 0.013; male/female
ratio: scanner 1 = 125/160, scanner 2 = 120/137, p = ns; the final se-
lection of subjects in Section 2.2 is part of this larger cohort), previous
studies have suggested that when vendor, field strength, and acquisi-
tion parameters remained unchanged, data collected during scanner
upgrades could be pooled (Stonnington et al., 2008). Moreover, in the
subset being studied, the number of subjects in each diagnostic group
belonging to the two scanners is evenly distributed across the two scan-
ners (see Table 3), indicating that the chances of biases are reduced.

2.4. Thickness measurement and processing

Initial cortical reconstruction and volumetric segmentation of the
whole brain were performed with the Freesurfer image analysis suite
(Dale et al., 1999; Fischl et al., 1999) to obtain pial andWM/GMsurfaces.
The resulting cortical parcellations were quality controlled whenever
possible — see Appendix A for more details. In the space between
these surfaces, a discrete approximation of Laplace's equation was
solved (Gibson et al., 2009; Yezzi, 2003) using the tools developed by
Table 3
Number of subjects per scanner per diagnostic class.

Class S1 S2

NC 20 22
sd-aMCI 18 20
md-aMCI 15 17
our group. Streamlines of this harmonic function define corresponding
points on the surfaces, and the Euclidean distance between these points
defines the cortical thickness. In order to perform group-wise-analysis,
we registered the surface of each subject in the study to the surface of
a common atlas (derived from averaging over 80 healthy subjects)
using the tools from Fischl et al. (2004). This atlas was not involved in
the thickness measurement step, but was only used for group-wise
registration. Registration to a commonatlas establishes vertex-wise cor-
respondence and enables group-wise analysis of the differences in
thickness. Finally, cortical thickness was smoothed with a 10-mm full
width at half height Gaussian kernel to improve the signal-to-noise
ratio and statistical power for subsequent analysis (Lerch and Evans,
2005).
2.5. Novel dimensionality reduction

Each cortex surface contained 327,684 vertices in the whole brain
and we have a limited number of subjects. To avoid the curse of dimen-
sionality, we partitioned each cortical label (such as posterior cingulate
etc. from the 68 Freesurfer-derived cortical labels) containing thou-
sands of vertices into a small number (say 10) of partitions by clustering
vertices, within each label, using k-means clustering of vertex coordi-
nates. The thickness feature for each sub-partition is defined as the av-
erage thickness across vertices in that partition. This novel approach
not only reduces the dimensionality of the features but also does it in
anatomicallymeaningfulway, as opposed to other dimensionality reduc-
tion methods (such as PCA) which transform the features to an entirely
different space which may lack physical meaning and anatomical rele-
vance. Note that clustering is done within each Freesurfer label, which
prohibits linking vertices across different labels. Moreover, the vertex
density of Freesurfer parcellation is sufficiently even and high to satisfy
the k-means assumptions (Lee et al., 2006), and visual verification of
partitioning confirmed the desired outcome. Visualization of such a sub-
division of the cortex into 680 partitions is shown in Fig. 1. As they are
all registered to a common atlas, this subdivision of the cortex is propa-
gated into the cortical surface of each subject to establish correspon-
dence for our analysis.

It is worth noting that certain trade-offs exist in deciding the total
number of partitions (TNP) for this method. When we choose to aver-
age across the entire Freesurfer label (which can be quite large covering
many gyri and sulci), wemay lose the discriminatory signal. In contrary,
when the TNP is excessively large e.g. over 5000, we risk the curse of di-
mensionality as well as making the method overly sensitive to noise.
Hence we study the performance of this method for different values of
TNP = 340, 680, 1020, 1360 and 1700, to avoid making an arbitrary
choice.



(a) Partition visualization (Lateral) (b) Partition visualization (Medial)

Fig. 1. Visualization of the partitions on the atlas surface in the medial view (a) and lateral view (b), when TNP= 680.
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2.6. Thickness network (ThickNet) features

Once the pial surface is partitioned into large number of small sub-
partitions (thought of as nodes), a network (graph) is constructed by es-
tablishing a link between two nodes if the absolute difference in mean
thicknesses is below a specified threshold. The term network is used
here in the abstract sense to mean a mathematical graph and not a
functional/structural network connected by physical fiber tracts or con-
nections. From this binary undirected graph,we compute thickness net-
work measures – we term them ThickNet features – such as nodal
degree, betweenness centrality and clustering coefficient to represent
each individual brain. ThickNet measures are intrinsic to each subject
and offer insight into regional correlations in cortical thinning. The ex-
traction of ThickNet features is illustrated in the form of a flowchart in
Fig. 2, which is described in detail in the rest of this section.

Suppose N is the set of all nodes in the network (the number of
nodes n = 68·NPP, NPP = number of partitions per Freesurfer label
in each of the 68 Freesurfer labels) and L is the set of all links in the net-
work (l= number of links). Note N equals TNP, which is the total num-
ber of partitions in each subject's cortical surface. Let (i,j) be a link
between nodes i and j (i, j ∈ N) and aij is the link status between i and
j: aij = 1 when link (i,j) exists; aij = 0 otherwise. A link is defined be-
tween i and j, if |MTi − MTj| b = α, where MTx represents the mean
thickness in the node x, x ∈ N. Here α is the threshold to establish a
link. A lenient threshold (α N 0.5 mm) allows large number of links in
the cortex,whereas a stringent threshold (α≤ 0.5mm) allows relatively
few links. It is important to note that spatial (or topographic) distance or
adjacency is not part of the linking criteria, as the method searches all
possible pairwise links between all cortical sub-partitions.
Fig. 2. Flow chart describing the steps involved in the extraction of ThickNet features. Once the p
of the atlas surface into a fixed number of partitions (or patches). This subdivision is propagated
for all the patches in every subject. Based on the similarity in thickness, links are defined betwe
TheBoolean link status between all thepairwise connections forms the adjacencymatrix of the g
a detailed description.
We chose to utilize nodal degree (measure of how connected each
node is), betweenness centrality (measure of centrality) and clustering
coefficient (measure of segregation) from thebinary graphas properties
to describe the network (Rubinov and Sporns, 2010). In brief, for a given
node i, these are defined as

nodal degree ki ¼
X
j∈N

aij ð1Þ

betweenness centrality bi ¼
1

n−1ð Þ n−2ð Þ
X

h; j∈N;h≠ j;h≠i; j≠i

ρhj ið Þ
ρhj

ð2Þ

clustering coefficient Ci ¼
1
n

X
i∈N

2ti
ki ki−1ð Þ ð3Þ

where ti ¼ 1
2 ∑
j;h∈N

aijaihajh is the number of triangles around node i; ρhj is

the number of shortest paths between h and j and ρhj(i) is the number of
shortest paths between h and j that pass through i. Please note that ki in
Eq. (3) is the nodal degree defined in Eq. (1).

Intuitively, the degree of an individual node is equal to the number of
links connected to that node, which therefore reflects the level of inter-
action of that node in the network. It is hypothesized that there are cen-
tral nodeswhich participate in many short paths in the brain network.
Betweenness centrality measures the fraction of all shortest paths in
the network that pass through a given node. It is also known that
human brain segregates specialized processing into interconnected
ial surfaces from all the subjects are registered to a common atlas, we subdivide the cortex
into cortical surface of each subject andmean thicknesswithin each partition is computed
en various pairs of partitions with difference inmean thickness below a certain threshold.
raph. From this graph,we compute various ThickNet features. Please refer to Section 2.6 for

image of Fig.�1
image of Fig.�2
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groups of brain regions (clusters) — clustering coefficient measures the
clustering connectivity around a given node.

The ThickNet features for the NC andmd-aMCI classes, in the form of
group-differences i.e. mean(NC)–mean(md-aMCI) at each partition, are
visualized in Fig. 3.

3. Evaluation of predictive utility

The ThickNet features reveal different properties of the regional
links in thickness in the human brain. In order to maximize their utility
for the early detection of AD, these features can be fused to form a com-
posite set of features. Multiple kernel learning (MKL) is a natural choice
for such a fusion of different features for the classification task. The pro-
cedure to evaluate the predictive utility is described in the following
sections, and also summarized using a flowchart in Fig. 4.
NC compared to m

(a) Group Difference in Nodal Degree (Lateral)

(d) Group Difference in Betweenness (Lateral)

(f) Group Difference in Clustering Coefficient (Lateral) (g

Fig. 3. Visualization of the differences in groupmeans, i.e. mean(NC)–mean(md-aMCI) at each p
themedial viewand the right columnpresents the lateral view, of the group differences in each f
across features. These values do not have any applicable units. Note that these visualizations ar
poses only, and may not be indicative of their predictive performance.
3.1. Probabilistic multiple kernel learning

One such method is the variational Bayes probabilistic MKL
(VBpMKL) which has been successfully applied to protein fold recogni-
tion (Damoulas and Girolami, 2008). This method combines multiple
feature spaces, allowing a different kernel (e.g. gaussian, polynomial)
for each feature space to embed them in a high-dimensional similarity
space, using a variational Bayes approximation to form a composite ker-
nel. This composite kernel is fed to a multi-class model which applies
Bayes theorem to learn the significance of each feature, as well as the
kernel weights and kernel parameters automatically, without resorting
to ad hoc parameter tuning. VBpMKL outputs probability estimates of
membership to each class for each test subject, fromwhichwe can com-
pute performance metrics (such as accuracy) as well as construct re-
ceiver operating characteristic (ROC).
d-aMCI

(b) Group Difference in Nodal Degree (Medial)

(e) Group Difference in Betweenness (Medial)

) Group Difference in Clustering Coefficient (Medial)

artition, of the ThickNet featureswhen TNP=340 andα= 0.20. The left columnpresents
eature. The values of each feature in (a) to (g) are normalized to [0,1] to enable comparison
e obtained from a fixed partial view of the cortex, and presented here for illustration pur-

image of Fig.�3


Fig. 4. Flowchart illustrating the performance evaluation procedure utilized in this study. The training set is stratified in the sense that there is no class-imbalance (all the classes are equal
in size), to limit any bias towards one particular class. Please note that this procedure is repeated 100 times. In each repetition, the performance metrics are computed based on the pre-
dictions from the corresponding test set only. In otherwords,we donot pool predictions across different repetitions—whichmay invalidate the computation of AUC. Thatwould be invalid
because the prediction scores in different repetitions are obtained from different classifiers, which may not be comparable or calibrated.

Fig. 5. Comparison of AUC obtained from RHsT method for each combination of NPP and α. The combination with the best performance (highest AUC) in each experiment is highlighted
with a black oval.
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Table 4
Best performance (highest AUC) of the ThickNet fusion method for each experiment, in
various classification metrics (with their std. deviation from the 100 repetitions of RHsT)
describing the performance. The optimal TNP and threshold (α) are noted for each exper-
iment. The optimal values for TNP and α are different because we exhaustively analyzed
the performance of the method for various parameter choices in order to find the best
model, to avoid making an arbitrary choice.

Experiment AUC (SD) ACC (SD) SENS (SD) SPEC (SD) TNP α

NC vs sd-aMCI 0.61 (0.28) 0.56 (0.22) 0.75 (0.44) 0.52 (0.24) 1020 0.20
NC vs md-aMCI 0.74 (0.27) 0.62 (0.13) 0.71 (0.46) 0.61 (0.14) 340 0.20
sd- vs md-aMCI 0.67 (0.31) 0.58 (0.17) 0.64 (0.48) 0.57 (0.19) 1360 0.20

Fig. 6. Comparison of ROC curves corresponding to the best performance of ThickNet fu-
sion method in each experiment.
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3.2. Feature selection

Prior to fusion, further feature selection is done (within each feature
set separately), by ranking each partition by its two-sample t-statistic
computed from the training set alone. All the partitions are ranked by
their t-statistic and the top K partitions are selected for training the clas-
sifier. We computed t-statistic with the alternative hypothesis that
means are not equal assuming the variances are not equal, using the fol-
lowing formulae:

t ¼ X1−X2

sX1−X2

; sX1−X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
: ð4Þ

Here s2 is an unbiased estimator of the variance of the two samples
X1 and X2. Xi and ni are the mean and the number of participants in
each sample i = 1,2 respectively.

3.3. Largest reduced dimensionality to avoid over fitting

We propose a novel approach derived from analytical results to set
the largest dimensionality. There is an empirical relationship between
the number of features (K) used to train the classifier and theminimum
size of the training sample needed to avoid the curse of dimensionality,
which is that for K number of features and small probability of error
p(e), the minimum sample size required Nmin≥ K

2p eð Þ (Fitzpatrick and
Sonka, 2000). If one would like to keep p(e) below 5% with K features,
we need at least Nmin = K/(2 ∗ 0.05) = K ∗ 10 subjects for training.
We use this relation to determine the maximum number of features
that can be used to train the classifier with an Ntrain number of samples
in the training set i.e. Kmax=Ntrain/10. This would give a Kmax=8, 7 and
7 for the three pairs NC vs. sd-aMCI, NC vs. md-aMCI and sd-aMCI vs.
md-aMCI respectively, when using the evaluation method to be de-
scribed below in Section 3.4. We propose to use this novel approach to
set the largest dimensionality to avoid the possibility of over-fitting.

3.4. Repeated Hold-out, Stratified Training set (RHsT)

Using this combination i.e. t-stat feature selection followed by
VBpMKL as the classification system, we evaluate its predictive util-
ity using a novel form of repeated holdout method to handle class-
imbalance. We eliminate class-imbalance in the training set by first
selecting a fixed percentage of subjects from the smallest class, and
then selecting the same number from all the classes in the dataset. We
denote it as the Repeated Hold-out, Stratified Training set (RHsT) evalua-
tionmethod. It is stratified in the sense that each class has an equal num-
ber of subjects in the training set to eliminate any class imbalance that
may arise for typical uses of popular cross-validation methods. In each
repetition, we hold outNtrain subjects from each class for training and re-
serve the rest for testing the classifier. HereNtrain is determined by 95% of
the smallest class in the experiment. For example, in an experimentwith
42 NC subjects and 32 md-aMCI subjects, training set would consist of
Ntrain= ⌊0.95 ∗ 32⌋=30 samples fromNC andmd-aMCI. And the testing
set would have 12 NC and 2 md-aMCI subjects. In each repetition, we
compute the accuracy, sensitivity and specificity as well as area under
curve (AUC) by constructing an ROC, from the predictions generated
for the corresponding unseen test set. This method is repeated 100
times, each time creating random training/test sets, in order to avoid
the bias that can arise from a single training/test sets as in Cuingnet
et al. (2011). The mean performance metrics, and their standard devia-
tions, from the 100 repetitions are reported.

3.5. Significance testing of performance improvement

To demonstrate the added value of the proposed ThickNet features,
relative to mean thickness (MT) features alone, we performed additional
experiments testing the statistical significance of the improvement in clas-
sification performance. The classification power of mean thickness fea-
tures alone, in place of the ThickNet features, is evaluated while keeping
the rest of the evaluation procedure (RHsT) the same.We perform signif-
icance testing of improvement in AUC using ROC comparison methods
described in Witten and Frank (2005). RHsT provides us with 100 esti-
mates of AUC for each repetition of a cross-validation experiment. We
utilize these AUC samples for ThickNet andMT features and estimate
whether one is significantly better than the other, using a non-
parametric Wilcoxon rank-sum test (Hollander et al., 2013).

3.6. Validation on an independent dataset

In this study, we have employed sophisticated cross-validation tech-
niques (see Section 3) and ROC analysis, in order to obtain unbiased and
robust estimates of the predictive power of the ThickNet fusionmethod.
Cross-validation (CV) techniques, such as RHsT, is typically employed
when there is no separate test set, and CV methods provide us with
the closest estimate of the true generalization performance. However
we recognize the importance of validation and external replication
(Fletcher and Grafton, 2013). Hence, when possible, it is desirable to es-
timate theperformance of the novelmethod on an independent dataset.
Unfortunately, to the best of our knowledge, an independent dataset
with compatible diagnostic classes of single and multiple-domain sub-
types of amnestic MCI does not yet exist.

We therefore performed the validation experiments on half of the
current cohort. We have randomly split the current cohort into two
parts: training set (50%) used for optimizing the ThickNet method and
validation set (50%)which is entirely kept aside for final evaluation of re-
sults. The ThickNetmethod is optimized using cross-validation based en-
tirely on the training set only (using the same procedure as described in
Section 3) to arrive at an optimal configuration (TNP, α) for the ThickNet
method. In this way, the optimal model is trained on random half of the
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Fig. 7.Comparison of sensitivity, for different values of TNP andα, obtained fromRHsTmethod. The combinationwith the best performance (highest AUC) in each experiment is highlight-
ed with a black oval.
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study population, and its classification performance is evaluated on the
other half. The AUC on the validation set is compared to the results
based on the entire cohort in all the three experiments which are pre-
sented in Table 6.

4. Results

The evaluation method as described in Section 3, and graphically
summarized in Fig. 4, is applied to the fusion of the following four fea-
ture sets: mean thickness (MT), nodal degree (ND), betweenness cen-
trality (BE) and clustering coefficient (CL) at each partition. From our
Fig. 8. Comparison of specificity, for different values of TNP andα, obtained fromRHsTmethod. T
ed with a black oval.
previous experiments on MCI/NC classification (Raamana et al., 2013),
we observed the best performance from VBpMKL using a polynomial
kernel (3rd degree) for each feature set and thereby fixing it as the ker-
nel of choice for this study. The performance of the fusion method is
evaluated in discriminating between md-aMCI and NC. For the sake of
comparison, the performance of ThickNet classifier is also evaluated in
discriminating between sd-aMCI and NC, as well as between sd-aMCI
and md-aMCI.

For each experiment, there are two parameters that change the fea-
ture extraction process (of the mean thickness and the three network
features): TNP and the link threshold α. Choice of different TNPs can
he combinationwith the best performance (highest AUC) in each experiment is highlight-
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be thought of as selecting a different parcellation scheme (coarse to
finer resolution), and selecting different values for threshold α can be
thought of as selecting different types of features i.e. weak connections
(higher-order features) with lenient α (large tolerance for similarity),
and strong connections (lower-order) with stringent α (relatively low
tolerance for similarity). To avoid making an arbitrary choice for these
parameter values, we have studied the performance of our method for
different combinations of TNP and α, with TNP = 340, 680, 1020 and
1360, and α was varied from 0.1 mm to 1.5 mm, in steps of 0.1 mm.
The AUCs for all the combinations are visualized in Fig. 5.

The best performance (highest AUC) of the ThickNet fusion method
for different experiments is summarized in Table 4, with different per-
formancemetrics and the optimal ThickNet parameters TNP andα. Cor-
responding ROCs are visualized in Fig. 6, which are constructed by
averaging the 100 ROCs obtained from the 100 repetitions of the
RHsT, using the vertical averaging method as described in Fawcett
(2006).
4.1. AUC for different TNP and α

The sensitivity and specificity estimates of the ThickNet fusion clas-
sifier, similar to the AUC estimates as visualized in Fig. 5, for different
values of TNP andα are presented in Figs. 7 and 8 respectively. Thesefig-
ures show that the performance of our method, in qualitative terms, is
robust (insensitive to parameter choices) to different values of the pa-
rameters TNP and α. Moreover we notice that these metrics follow the
same trends as AUC, when the performance of ThickNet fusion method
is compared across the different experiments.
4.1.1. Individual significance of ThickNet features
For each run of RHsT,we obtain not only the prediction of the test set

subjects, but also the significance of each feature set in the fused classi-
fier, estimated by VBpMKL. This allows to gain further insight into the
contribution of different feature sets. The average weights from the
100 repetitions of RHsT for the ThickNet features are visualized in
Fig. 9, for the three classification experiments.

The results of significance testing as described in Section 3.5, of
whether the classification improvement offered by ThickNet over
mean thickness is significant or not, are shown in Fig. 10 and Table 5.
The corresponding ROCs for ThickNet and MT are compared in Fig. 6.
Table 5 shows that ThickNet outperformed MT in terms of AUC for all
the experiments except CN vs. sd-aMCI.
Fig. 9. Individual contribution of ThickNet features towards classification in the pMKL
framework. Here MT denotes mean thickness, ND denotes nodal degree, BE denotes be-
tweenness centrality and CL denotes clustering coefficient. These results show that all
the ThickNet features contributed to discrimination much more than MT, although in
varying proportions. CL exhibited the largestweight in all the experiments, demonstrating
its significance. Note that the contribution of ThickNet features increased with increasing
difficulty of the problem, such as NC vs. sd-aMCI and sd-aMCI vs. md-aMCI, which further
asserts their utility for the prognostic applications.
4.1.2. Most discriminative partitions
Besides the individual weights (Section 4.1) for the feature sets, we

can also keep an account of the selection frequency for individual parti-
tions within each feature set. We define selection frequency to be the
percentage of times each partition is retained after feature selection
(as it was found to be most discriminative) in the 100 repetitions of
RHsT. The subset of partitions, which exhibited a selection frequency
of at least 25%, is visualized in Fig. 11. As feature selection is performed
independently for each feature set (MT, ND etc.), we labeled the parti-
tions according to which feature set selected them. Those partitions
which were selected by more than one feature set, are labeledMultiple.

4.1.3. Validation on an independent dataset
The AUC on the validation set compared to the results based on the

entire cohort is presented in Table 6. These results show that the perfor-
mance of our method on validation set (random 50% split of the full co-
hort) is similar to that on the training set, which demonstrates the
robustness of the proposed novel method. Further the trends in AUC
across the three classification experiments on the validation set are sim-
ilar to those on the full cohort.

5. Discussion

In this paper, we have presented a novel ThickNet classifier for differ-
ential discrimination between aMCI subtypes and controls. Observing
the performance of the ThickNet fusion classifier (in AUC) across the
three experiments (Fig. 5), the highest performance is seen in NC vs.
md-aMCI (AUC over 0.74). We notice a slightly lower performance in
sd-aMCI vs. NC and sd- vs. md-aMCI experiments. This relatively low
performance in these two experiments could be due to limited separa-
bility i.e. overlap in their cognitive performance, or lack of sensitivity
of the proposed method in this experiments. The performance in the
two experiments NC vs. md-aMCI and sd- vs. md-aMCI is significantly
better than that of NC vs. sd-aMCI experiment (p b 0.05), whereas
they do not significantly differ from each other.

Table 4 summarizes the best performance in each experiment, in dif-
ferent performance metrics. We notice that the ThickNet classifier ex-
hibited an AUC of 0.74 in md-aMCI vs NC experiment, demonstrating
potential for the detection of md-aMCI. Our classifier displayed better-
than-random performance in sd-aMCI vs. NC and sd- vs. md-aMCI
experiments. Given that the aMCI is itself an unstable and heteroge-
neous construct (Brodaty et al., 2013), we do not expect perfect dis-
criminability. In light of these challenges, our results are promising.

Observing the individual weights (Fig. 9), it can be seen that the
ThickNet features are contributing to the classifier (non-zero weights),
Fig. 10. Comparison of performance of the proposed ThickNet fusionmethod with respect
to the baselines such as using mean thickness (MT) only and using hippocampal volume
(HV) only. It is immediately obvious that our ThickNet fusion method significantly im-
proved the predictive power (AUC) in detection of md-aMCI, and even higher in the NC
vs. sd-aMCI and sd- vs. md-aMCI experiments. Note that in each experiment, we are
only comparing the best performance (after their respective model selection), for HV,
MT and our ThickNet fusion method.
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Table 5
Comparison of the performance of our novel ThickNet features (shortened as TN in this table for lack of space) andmean thickness (MT) features based on the full cohort.We show that the
improvement inAUC by ThickNet is significant relative toMT at p = 0.05 significance level in all the experiments, except for the classification between CN vs. sd-aMCI. p-Value forwheth-
er the performance of ThickNet features is significantly better than the combination of MT and hippocampal volumes, as well as a random classifier are indicated in the table.68·NPP

Experiment AUC: MT AUC: MT + HV AUC: TN p(TN N MT) p(TN N MT + HV) p(TN N Random)

NC vs sd-aMCI 0.60 0.58 0.61 N0.05 N0.05 b0.01e−5
NC vs md-aMCI 0.68 0.69 0.74 b0.05 b0.05 b0.01e−5
sd- vs md-aMCI 0.57 0.57 0.67 b0.05 b0.05 b0.01e−5
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although in varying proportions. The significance of ThickNet features
(total weight N 80%) is higher than mean thickness (weight b 15%),
supporting the hypothesis that thickness alone does not have adequate
discriminatory power. Clustering coefficient is found to have contribut-
ed the largest to the discrimination in all the experiments. The contribu-
tion of ThickNet features increased with increasing difficulty of the
problem, such as NC vs. sd-aMCI and sd-aMCI vs. md-aMCI, which pro-
vides further evidence for their utility for the prognostic applications.

5.1. Baseline comparison

In order to better understand the contribution of ThickNet features in
improving the predictive power in such challenging problems, we com-
pare the performance of the proposed ThickNet fusion method w.r.t the
performance of 1) mean thickness (MT) features alone and 2) combina-
tion ofMTandhippocampal volumes— see Fig. 10 andTable 5. The results
of this comparison show that our novel ThickNet fusion method signifi-
cantly improved the predictive power (AUC) in detection of md-aMCI,
and even more so in already-challenging problems like the NC vs. sd-
aMCI and sd- vs. md-aMCI experiments. It is to be noted that different
combinations of regional thickness measures have shown potential for
the detection of full blown AD (Cuingnet et al., 2011), its performance
has been modest in the classification of MCI subtypes (Raamana et al.,
2014b).
Fig. 11.Most discriminative partitions, within each feature set, as determined by the selection f
were selected at least 25% of the time. Here MT denotes mean thickness, ND denotes nodal deg
tions which were selected by more than one feature set are labeledMultiple, and those selecte
5.2. Validation on an independent dataset

The classification performance of the ThickNet method on an inde-
pendent validation set (derived from 50% split of the current cohort)
is presented in Table 6. This table shows that the performance of our
method on the validation set is similar to the performance on the train-
ing set. This shows that performance of the method is robust to unseen
data. Compared to the performance obtained from the entire cohort
(112 subjects in total), the performance on the validation set (contain-
ing only half of the subjects) is showing similar trends across the three
experiments. However the validation set performance is lower, which is
not unexpected given the small training sample to learn from. Although
these results on the validation set demonstrate the robustness of our
method, it is always desirable to evaluate our method on an external in-
dependent dataset, should a compatible dataset become publicly avail-
able in the future.

5.3. Most discriminative partitions

Observing the selection frequency of various partitions in the brain
(Fig. 11), we can see that the left lateral temporal region (red region
in the top left) is identified as a discriminative region. This region is
known to be associated with semantic memory, an area of function
that is frequently found disturbed in the prodromal stage of AD and
requency from the 100 runs of RHsT. Note that we are only displaying the partitionswhich
ree, BE denotes betweenness centrality and CL denotes clustering coefficient. Those parti-
d by none of the feature sets as None.
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Table 6
Comparison of classification performance of the optimal model on the validation set (50% split), compared to that derived from the entire cohort (unsplit).

Experiment Best (TNP, α) AUC

Full cohort Split cohort Full cohort Training set (50%) Validation set

NC vs. sd-aMCI 1020, 0.20 1360, 0.60 0.61 0.62 0.53
NC vs. md-aMCI 340, 0.20 340, 0.20 0.74 0.66 0.65
sd- vs. md-aMCI 1360, 0.20 1020, 0.20 0.67 0.69 0.62
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commonly accompanies episodic memory impairment. Moreover, pos-
terior cingulate/medial precuneus region (colored blue) exhibited dis-
criminability as well; and this region is one area that is affected early,
both functionally and structurally, in AD as well as MCI. It would be
worth further investigating the link between discriminative partitions
and structure or function affected in MCI or AD.

It would also be interesting to find any links between these regions
and the findings from previous studies of regions with statistically sig-
nificant group differences. Such a simple comparison of the most dis-
criminative regions identified by our method and the regions with
group differences from previous studies reveals a few common regions
such as the precuneus and medial temporal lobe.
6. Conclusions

This study contributes to the important discussion of cross-sectional
differential discrimination of MCI subtypes. In particular, we have pro-
posed a novel ThickNet classifier to discriminate the subtypes of aMCI,
and in particular md-aMCI from NC using baseline cortical thickness
features alone. Rigorous analysis of the proposed ThickNet fusion classi-
fier is presented, demonstrating its potential. The ThickNet imaging bio-
markers, in combination with biomarkers from other modalities, may
assist in identification of patients likely to benefit from therapeutic in-
tervention, or in the future recruitment for clinical trials. A comparison
of classification experiments in NC vs. sd-aMCI and sd- vs. md-aMCI is
presented aswell, to further appreciate the challenges in building a clas-
sifier at such an early stage of AD.

Note that this analysis is based on cross-sectional data (at a single
time-point), and the diagnosis of MCI (and its subtypes) is based only
on baseline assessments, including neuropsychological performance.
This baseline clinical diagnosis of MCI is shown to have some instability
(Brodaty et al., 2013), which is a pervasive problemwith MCI diagnosis
as a construct. Hence analysis of patient data, both controls and md-
aMCI, with a stable diagnosis would be desirable. There might also be
a slight gender imbalance in controls and sd-aMCI groups, which can
also be observed in previous studies. In addition, this analysis could be
further improved by accounting for the scanner factor during the data
pooling stage. Note that there is significant room for improvement of
the ThickNet classifier e.g. by applying different (or multiple) kernels
for each feature as well as tuning the kernel parameters, as opposed to
the current results obtained with a fixed kernel (polynomial kernel,
degree = 3). Moreover ThickNet features could be computed using ad-
ditional measures of centrality, segregation and integration, as well as
constructing weighted graphs from the regional links in cortical thick-
ness as opposed to the current choice of binary and undirected graphs
in this study.

One of the advantages of this framework is that it is easily extensible
i.e. it allows for inclusion of features from other modalities such as
Positron Emission Tomography (PET), Diffusion Tensor Imaging (DTI),
as well as other morphological and neuropsychological features. Each
new feature can be tunedwith an additional kernel, which can be easily
fused with existing features. Moreover, as the classifier employed is by
designmulti-class, this method can be readily applied to differential di-
agnosis e.g. discriminating among NC, sd- and md-aMCI, as well as AD
from Frontotemporal disease, or Vascular Dementia etc.
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Appendix A. Description of quality control on the Sydney
MAS cohort

Subjects were excluded from the original MAS cohort (prior to the
selection of 112 subjects) owing to their failure in Freesurfer cortical
parcellation or in estimation of cortical thickness from our Laplacian
streamlinemethod. Our Freesurfer quality control consisted of checking
for permanent failure in Freesurfer automatic parcellation, visually ex-
amining for accurate Talairach Registration, or when the cortical sur-
faces have gross errors in following the structural boundaries. Further,
even with acceptable Freesurfer parcellation, some subjects were ex-
cluded if our thickness computationmethod based on Laplacian stream-
lines fails to estimate thickness in either the left or the right hemisphere.
Wewould like to note that none of the 112 subjects being studied in this
manuscript presented with major errors in processing, and hence none
were excluded.
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