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Simple Summary: In solid tumors, proliferation of cancer cells typically outpaces the growth of
functional vessels. The net result is often an obstructed blood circulation and areas of deprived
oxygen (hypoxia). To overcome this acute stress, hypoxia inducible factors (HIFs) stimulate the
expression of numerous proteins that will support adaptation to this situation and stimulate further
growth, differentiation, and even dissemination. The HIF-response is closely controlled by a class of
enzymes known as the HIF prolyl hydroxylases (PHDs). They are true oxygen sensors and directly
regulate the activity of HIFs. Although many studies are currently focusing on inhibiting the activity
of HIFs in tumors, the role of hypoxia signaling is complex and regulating PHDs in a number of
tumor settings might be beneficial. This review gives an overview of the literature on the nature of
PHDs in tumor-associated cells and discusses available PHD inhibitors and their potential use as an
anti-tumor therapy.

Abstract: Solid tumors are typically associated with unbridled proliferation of malignant cells,
accompanied by an immature and dysfunctional tumor-associated vascular network. Consequent
impairment in transport of nutrients and oxygen eventually leads to a hypoxic environment wherein
cells must adapt to survive and overcome these stresses. Hypoxia inducible factors (HIFs) are central
transcription factors in the hypoxia response and drive the expression of a vast number of survival
genes in cancer cells and in cells in the tumor microenvironment. HIFs are tightly controlled by a class
of oxygen sensors, the HIF-prolyl hydroxylase domain proteins (PHDs), which hydroxylate HIFs,
thereby marking them for proteasomal degradation. Remarkable and intense research during the
past decade has revealed that, contrary to expectations, PHDs are often overexpressed in many tumor
types, and that inhibition of PHDs can lead to decreased tumor growth, impaired metastasis, and
diminished tumor-associated immune-tolerance. Therefore, PHDs represent an attractive therapeutic
target in cancer research. Multiple PHD inhibitors have been developed that were either recently
accepted in China as erythropoiesis stimulating agents (ESA) or are currently in phase III trials. We
review here the function of HIFs and PHDs in cancer and related therapeutic opportunities.
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1. Introduction

An expanding tumor mass is characterized by a hypoxic tumor microenvironment
because oxygen levels drop as the tumor outgrows the supply capabilities of the surround-
ing blood vessels. Therefore, hypoxia is a major hallmark of solid tumors. Several studies
have shown that tumor biology is significantly affected by cancer-related hypoxia, which
includes formation of a dysfunctional and disordered vasculature that is typically seen
in fast-growing tumors [1]. Additionally, although extreme hypoxia classically results
in cell death in normal cells, this stress can induce changes that enable tumor cells to
adapt to and survive in a hypoxic microenvironment. Such a response to deprived oxygen
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comprises both genomic and transcriptomic changes that may lead to genetic instability,
cell cycle arrest, cell death, and differentiation [2]. Eventually, persistent hypoxia exerts a
selection pressure that results in the survival of certain tumor cell subpopulations that are
capable of growth, invasion, and even metastasis [3–5]. This efficient cellular adaptation to
variations in oxygen levels is tightly regulated by the hypoxia-inducible factor (HIF) family
of transcription factors, which are heterodimeric proteins composed of an oxygen-sensitive
alpha subunit (mainly HIF-1α and HIF-2α) and a constitutively expressed beta subunit
(HIFβ/ARNT).

Although HIF-1α and HIF-2α share overlapping target genes, both also regulate a set
of unique targets that are implicated in unrelated processes, and interestingly, they may
display even opposite effects, as recently shown in endothelial cells [6]. Notably, these
hypoxia-dependent, HIF-1α- and HIF-2α-induced genes play important roles in regulating
different aspects of tumor biology, such as angiogenesis [7], survival [8], proliferation [9],
immune system resistance [10], tumor cell plasticity [11], invasion and metastasis [12],
chemo- and radio-resistance [13,14], pH regulation and metabolism [15], and maintenance
of cancer stem cells (CSCs) [16]. Normoxic conditions do not require HIF activity and
they are marked for degradation when the HIFα subunits are hydroxylated at two specific
proline residues by specific enzymes, i.e., the prolyl-4-hydroxylase domain (PHD) pro-
teins. PHDs can hydroxylate these proline residues on the oxygen-dependent degradation
domain (ODDD) at N- or C-termini (NODDD and CODDD, respectively) of HIF-1α and
HIF-2α, which then serves as a signal for HIFα degradation by the oxygen-dependent von
Hippel-Lindau (VHL) via the 26S proteasome proteolytic pathway [17,18].

There are three known PHD isoforms— PHD1, PHD2, and PHD3, which are encoded
by EGLN2, EGLN1, and EGLN3, respectively, and they have been shown to selectively
hydroxylate HIFα subunits. Under normoxic conditions, PHD1 and PHD2 preferentially
target HIF-2α and HIF-1α, respectively, while HIF-2α is the preferred substrate of PHD3
under hypoxic conditions [19,20]. Due to its association with various physiological and
pathological processes, PHD2 is thought to be the main regulator of this hypoxia pathway
(previously reviewed by our group in [21]). Mechanistically, when pO2 decreases to levels
that inactivate PHDs, HIF-1α, and HIF-2α can no longer be hydroxylated, resulting in their
accumulation in the cytosol. Subsequent nuclear mobilization enables their dimerization
with the HIFβ subunit and transcription initiation [22,23]. Importantly, regulation of HIF-
1/2α by PHDs has been linked to contrasting tumor outcomes (http://www.cbioportal.
org/, accessed on 1 April 2020). Another important HIFα regulator is factor inhibiting HIF
(FIH), which specifically hydroxylates the asparagine 803 in both HIF-1α and HIF-2α [24,25].
This post-translational modification results in failure of association between HIFα with
the adaptor protein p300, crucial for nuclear translocation. Although FIH and PHDs share
enzymatic features in HIFα regulation [26], in this review, we will focus on the impact of
PHDs and HIFs in cancer and discuss current and potential therapeutic approaches.

2. PHDs as Central Regulators of Tumor Development

Our group has previously reported a clear pattern of pro- and anti-tumor effects of
PHDs among human cancer types [21,27]. These differences point to the presence of a
case-by-case scenario, where the individual PHDs can be either beneficial or detrimental to
tumor growth, and thus, potentially define future therapy decisions. Interestingly, more
cases have been reported that show over-expressing of PHDs in tumor tissue versus healthy
neighboring tissue, with few exceptions [21].

The function of PHD1 during tumor initiation and development has not been exten-
sively studied. This might also suggest that modulation of its expression has only limited
impact. Indeed, apart from the substantial amount of cases demonstrating differential
expression of PHD2 and PHD3 in human cancers, PHD1 expression in cancer tissue is more
unchanged versus healthy tissue (Table 2 in [21]). Nevertheless, PHD1 has been suggested
to operate as an oncogene in triple negative breast carcinoma [28] and prostate cancer [29].
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In colorectal cancer (CRC), PHD2 has been associated with a protective role. Through
its regulatory subunit B55α, PP2A dephosphorylates PHD2 at Ser125, rendering it non-
functional, and consequent accumulation of HIF-1α leads to CRC cell survival in hypoxia
through autophagy. Targeting B55α impairs CRC neoplastic growth in vitro and in mice in
a PHD2-dependent manner [30]. Similarly, another study in breast carcinoma xenografts
reported that, when subjected to a glycolysis inhibitor 2-DG (2-deoxy-glucose) to mimic
glucose starvation, tumors that lacked PHD2 showed greater resistance to treatment com-
pared to controls, strongly suggesting that PHD2-mediated B55α degradation facilitates
breast cancer cell death in response to chronic glucose deprivation [31]. Alongside the
evidence that PHD2 overexpression can be favorable in restricting tumor development,
contrastingly, silencing of PHD2 reduces tumor growth and survival in many studies. As
shown previously by our group, ablation of PHD2 in different murine tumor cell lines such
as Lewis lung carcinoma (LLC) model, B16 melanoma, and LM8 osteosarcoma, led to a sig-
nificant increase in tumor vasculature, followed by a significant reduction in tumor growth
due to enhanced MMP activity and TGF-β release within the tumor microenvironment
(TME) [27,32]. Another study showed that PHD2 knockdown in MDA-MB-231 xenografts
resulted in significantly lower epidermal growth factor receptor (EGFR) expression levels
compared to controls. Nonetheless, the authors claimed that EGFR downregulation was
independent of the influence of HIF-1α or HIF-2α [33]. The pro-oncogenic adaptor protein,
CIN85 has been recently identified as an indirect regulator of PHD2 activity. Kozlova and
colleagues have shown that disruption of the CIN85/PHD2 interaction using CRISPR/Cas9
editing not only led to lower levels of HIF-1α and HIF-2α, but also to significantly im-
paired tumor growth and migration in a breast carcinoma model (MDA-MB-231) [34]. The
group of Vidimar explored the redox properties of a ruthenium organometallic compound
(RDC11) that directly interacts with PHD2 and showed that RDC11 reduced HIF-1α protein
level and function by promoting the enzymatic activity of PHD2. Upon RDC11 adminis-
tration in human colorectal adenocarcinoma (HCT116 cell line) in vivo, levels of HIF-1α
were significantly reduced and, consequently, VEGF levels and angiogenesis, leading to
a reduction in tumor size [35]. Using a human LM2 xenograft model, Koyama et al. [36]
investigated subsequent tumor vessel normalization after PHD inhibition using DMOG
and showed that tumor vessel normalization was accompanied by angiogenesis, which
rescued sensitivity to chemotherapy [36].

Remarkably, although PHD3 also displays pro-tumoral activity, a number of human-
and mouse-associated tumors show reduced amounts of PHD3 compared to adjacent
healthy tissue. In a lung carcinoma model, PHD3 also exerted tumor-suppressive activity,
apart from regulating epithelial-to-mesenchymal transition (EMT), metastasis, and resis-
tance to therapy. PHD3 knockdown in other cell lines (A549 and H1299 cells) enhanced
pulmonary metastasis in a HIF-dependent manner that involved upregulation of TGFα, an
EGFR ligand [37]. In gastric cancer, cell migration and invasion were significantly higher
in PHD3-silenced tumor cells than controls, and both HIF-1 and VEGF showed greater
expression [38]. In mouse LM8 osteosarcoma, we showed that PHD3 is a tumor suppressor
as silencing of this oxygen sensor led to enhanced tumor growth and dramatically changed
vessel morphology that was directly related to significantly activated platelet-derived
growth factor (PDGF)-C signaling in the vasculature of PHD3 knockdown tumors [39].
Thus, the impact of the PHDs in tumor progression is diverse and cell-dependent, i.e.,
tumor cell vs. TME. Therefore, an effective therapeutic approach will require genomic
profiling of tumors to identify the correct treatment needs for each patient [40].

3. Hypoxia Signaling in the Tumor Microenvironment

The tumor microenvironment (TME) is an ensemble of cancer cells, cancer-associated
fibroblasts (CAFs), and immune cells, including pro-tumoral regulatory T (Treg) cells and
tumor associated myeloid cells. The development of a dysfunctional tumor vasculature
features the TEM as a hypoxic environment. This lack of oxygen dampens PHD-dependent
negative regulation of HIFs, and its consequent stabilization launching an array of processes
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that facilitate cell survival (Figure 1). Within the TME, cell adaptation and selective
pressures, such as hypoxia, acidosis [41], competition for space and nutrients [42,43],
cooperation, and predation by the immune system [44,45] result in the “survival of the
fittest”, wherein those tumor cells that are capable of adapting to such harsh conditions
maintain their proliferation and can even disseminate [46,47]. Furthermore, in solid tumors,
the dysfunctional sprouting of new vessels [48] and inefficient vascular mimicry [49] favor
tumor progression, tumor cell motility, invasion, and metastasis [50,51]. Of all these
aforementioned processes, hypoxia remains a central mechanism that aids tumorigenesis,
progression, and resistance to chemo- and radiotherapy [52–55]. Moreover, it is well
established that vascular disarray represents a major hurdle in cancer treatment as it
impairs delivery of drugs [56–58]. Considering this, several authors focused their studies
on the role hypoxia pathway proteins might play in tumor-associated vasculature. A
decade ago, Loinard and colleagues showed that PDH silencing promotes therapeutic
revascularization via VEGF-A and eNOS in a HIF-1α-dependent manner [59]. Accordingly,
a more recent study revealed that pharmacological PHD inhibition (using roxadustat)
(described in detail later in this review) led to HIF-1α-dependent VEGF activation, and
consequent enhancement of vascular coverage [60].
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Recently, MacLauchlan and colleagues showed that PHD inhibition by dimethy-
loxaloylglycine (DMOG) in NIH3T3 cells decreases thrombospondin-2 (TSP2), a potent
inhibitor of angiogenesis, in a HIF-1α-dependent manner [61]. Although hypoxia decreases
TSP2 transcription levels, a direct regulation by HIF-1α was not reported. Seemingly,
TSP2 reduced expression relies on its NO-sensitivity and, therefore, on HIF-1α stabiliza-
tion [62,63], which has been shown to be dependent on a NO feedback loop [64].

Interestingly, Mazzone et al. showed that heterozygous expression of PHD2 lead
to normalization of tumor-associated vasculature, which improved perfusion and oxy-
genation. Although growth of primary tumor was not affected, normalization factors
produced by of endothelial cells (EC), such as VEGF and Flt1 prevent tumor dissemination
and metastasis [65]. The same group addressed the use of targeting PHD2 as a potential
approach to improve the response to chemotherapy. This study showed that reduction
of PHD2 improves vessel perfusion and cisplatin delivery [66]. In line with this, a more
recent study showed that superoxide dismutase (SOD3) dependent HIF-2α stabilization
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(due to decreased PHD2 expression) and perivascular NO accumulation led to enhanced
expression of vascular endothelial cadherin (VEC). The subsequent decreased in vessel
leakage improved drug delivery of doxorubicin to the tumor site and effectiveness of
treatment of primary CRC tumors [67]. Interestingly, this SOD3-HIF-2α-dependent effect
also led to increased EC LAMA4α expression (via the Wnt pathway), which resulted in
improved effective adoptive transfer of tumor specific CD8 T cells in CRC [68]. In summary,
specific targeting of PHDs in vascular endothelial cells appears as promising means to
improve the efficacy of chemo- and immunotherapy.

4. Tumor Hypoxia Signaling and Metabolism

Rapid growth of tumor cells with concomitant ineffective vascularization lead to an
unequal distribution of both oxygen and nutrients, and this added selective pressure promotes
an evolutionary metabolic shift in malignant cells to meet the needs of tumor development.
A major determinant of cell survival in this toxic environment is the ability to switch from
an oxidative metabolism to a glycolytic one, and tolerate the resultant increase in the level of
acidosis due to lactate production (reviewed in [69]). As mentioned previously, stabilization
of HIF-1α plays a major role in the activation of genes needed to increase angiogenesis,
glycolytic metabolism, pH regulation, autophagy, migration, and invasion, and serves to
further increase resistance to radiotherapy and chemotherapy [70,71]. In malignant cells, a
metabolic shift to fulfil the demands of rapid and uncontrolled growth includes reducing
the synthesis of acetyl-CoA from glucose, downregulating fatty acid synthesis [72] and
controlling β-oxidation using adipocyte-derived lipids to reduce cell dependence on de
novo lipogenesis [73]. Moreover, the switch towards lactate generation from glucose,
even under aerobic conditions (referred to as the Warburg effect and reviewed in depth
in [74]), is an adaptation to intermittent hypoxia in pre-malignant lesions [75]. Interestingly,
accruing evidence shows that tumor cells remain heterogeneous within the same neoplastic
mass (intra-tumor heterogeneity), which also contributes to treatment resistance and
cancer progression [76,77]. Additionally, the effects of the TME are beneficial for the
neoplastic cells as they promote cooperation among tumor stroma cells to favor tumor
progression. In that respect, CAFs promote tumor growth and invasion, and they are
susceptible to a shift towards a catabolic metabolism because of the hypoxic TME [78].
Zhang et al. have demonstrated that CAFs are predisposed to switch from oxidative
phosphorylation to aerobic glycolysis in a HIF-1α-dependent manner to ensure the tumor-
promoting effects of CAFs during hypoxia. Reduced isocitrate dehydrogenase 3 complex
(IDH3a), accompanied by a decrease in α-ketoglutarate (α-KG), affects the ratio of fumarate
and succinate, resulting in HIF-1α protein destabilization through PHD2 activity [79]. In
contrast, overexpression of IDH3a impedes the fibroblasts-to-CAFs transformation [78].
Taken together, PHDs appear to play a negative role in the development of CAFs and
their recruitment by the TME. Other cell types present in the TME, such as immune cells
(Reviewed in [80]), are also susceptible to metabolic derangement to adapt to the harsh
conditions seen in the tumor.

5. Tumor Hypoxia Signaling and Recruitment/Activation of Immune Cells

The TME actively releases pro inflammatory cytokines, such as TNF, IL-1, and GM-CSF,
and cancer cells add IL-6/8 to the mix, further attracting immune cells [81]. Additionally,
hypoxia can enhance or reduce, as the case may be, the infiltration of a substantial number of
immunosuppressive cells, such as tumor-associated macrophages (TAMs), myeloid-derived
suppressor cells (MDSCs), and regulatory T-cells (Treg), as described below (Figure 2).
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TAMs have been linked to enhanced tumor vascularization, greater invasion and
metastasis, immune tolerance, and tumor chemo-resistance [82]. Lower oxygen concentra-
tions in tumors have been shown as the mechanism underlying both monocyte recruitment
and their subsequent differentiation into a pro-tumoral M2 or TAM phenotype [83,84];
in contrast to the pro-inflammatory M1 macrophages. It has also been suggested that
hypoxia can dictate the metabolic profiles associated with M1- and M2-polarised cells.
Whereas M1 macrophages produce high levels of iNOS [85], show enhanced HIF-1α activ-
ity and, thereby, favor glycolysis [86], M2 macrophages are essentially anti-inflammatory,
pro-metastatic [87], and produce high levels of Arginase I (Arg1) [85,88] associated with
HIF-2α activity [89]. Further, M2 macrophages mainly produce ATP through the oxidative
TCA cycle linked to oxidative phosphorylation (OXPHOS) and rely on fatty acid oxidation
(or β-oxidation) and glutamine metabolism, which fuels the TCA cycle [86]. For this reason,
hypoxia-induced TAMs polarization is considered a major setback in cancer therapy.

The involvement of PHDs in TAM accumulation, polarization and survival has been
suggested, and in a recent study, Wang et al. have demonstrated that PHD2 overexpression
in murine colon cancer xenografts (CT26 and MC38) decreased tumor burden, M2-TAM
infiltration, and levels of inflammatory cytokines, namely, TNF, G-CSF, IL-8, IL-4, IL-1β,
and IL-6 [90]. Similarly, another study that used bone marrow derived macrophages
(BMDMs) isolated from mice deficient in PHD2 in myeloid cells has shown a role for PHD2
in macrophage activity. Although HIF-1α and HIF-2α are known to modulate macrophage
polarization, in this study PHD2 knockout macrophages did not display a clear change
in polarization compared to control cells. Moreover, the O2 consumption rate (OCR) of
the BMDMs was significantly reduced, whilst showing an increased level of extracellular
acidic rate (ECAR). These observations underscore the occurrence of a metabolic shift
that resulted in lower phagocytosis and migration of the PHD2 cKO macrophages, but
not necessarily in changes in polarization [91]. Hence, the fact that these PHD2cKO
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macrophages affected phagocytosis despite being highly glycolytic might indicate that the
metabolic reprogramming itself is not essential, but rather having an active mitochondrial
program that provides enough energy for the phagocytic process [92].

Two major categories of myeloid-derived suppressor cells (MDSCs) have been identi-
fied in mice, viz., polymorphonuclear CD11b+Ly6G+Ly6Clo (PMN-MDSCs) and monocytic
CD11b+Ly6G-Ly6Chi (M-MDSCs). There is substantial functional overlap of PMN-MDSCs
with tumor-associated neutrophils (TAN)-2 promoting tumor growth [93,94], as opposed
to TAN-1 that have anti-tumor activities [95,96]. MDSCs are known to exert very funda-
mental immunosuppressive functions, such as inhibition of T cell cytotoxicity [97,98], but
tumor hypoxia plays a pivotal role in MDSC recruitment [99]. Moreover, HIFs have been
suggested to promote the expression and regulation of Arg1 and iNOS [100–102], while the
Wang and colleagues also documented an anti-inflammatory effect of PHD2, apart from
recruiting MDSCs during tumor progression [90]. Specifically, overexpression of PHD2
impaired MDSC recruitment due to a decrease in NF-κB activity that resulted in lower TNF
and G-CSF expression, which are crucial cytokines for MDSC mobilization [103,104] from
colon cancer cells [90].

Treg-mediated immunosuppression in cancer enables malignant cells to escape detec-
tion by host immune system surveillance mechanisms and several reports have confirmed
Treg accumulation within the TME [105–107] (reviewed in depth in [108]). Moreover, a
hypoxic environment increases HIF-1α-induced expression of the distinct Treg marker and
master regulator forkhead box P3 (Foxp3) [109,110]. In contrast, PHD2 has been recently re-
ported to modulate immunosuppressive capabilities of the Tregs. For example, Yamamoto
and colleagues have reported that silencing of PHD2 using doxycycline (DOX)-induced
expression of shRNAs for PHD2 stabilized HIF-2α in the hematopoietic compartment,
which resulted in the loss of immunosuppressive function in Tregs. Moreover, the Treg
population associated with a naïve phenotype (CD44loCD62Lhi) was significantly reduced,
while the effector memory cell (CD44hiCD62Llo) population was increased [111]. This clear
connection between PHD2 and Treg function warrants further studies that explore the role
of PHD2 in TME-associated immunosuppression and targeting of PHD2 could potentially
lead to loss of tumor-induced immune tolerance, and hence, more efficient immunosurveil-
lance. Additionally, PHD3 is crucial for the development of Tregs, as anti-PHD3 siRNA
downregulated Foxp3 and upregulated HIF-1α expression, leading to development of
Th17 cells [112].

6. Hypoxia Signaling in Cancer Stem Cells (CSC) and the Epithelial-to-Mesenchymal
Transition (EMT)

Of the many features of CSCs, the most fundamental are enhanced DNA-repair mech-
anisms and induction of a quiescent state [113]. As conventional therapies primarily target
highly dividing cells, quiescent CSCs represent a dangerous subpopulation that remains
undetected and, more importantly, unaffected. Furthermore, inefficient oxygen distribution
throughout the tumor allows undifferentiated cells to populate the hypoxic region and
there is evidence that CSCs can metabolically adapt to using lactate as their energy source
during metastatic colonization (Warburg effect) in a HIF-1-dependent manner [114–116].
As both HIF-1 and HIF-2 are highly expressed in CSCs [117], the use of HIF inhibitors, in
combination with current therapies, can be developed into an effective counter measure to
reduce resistance.

Glioblastoma (GBM) is an aggressive but very common brain tumor. The fast-growing
nature of GBMs contributes to the development of an acute intratumoral hypoxic microenvi-
ronment, resulting in heterogeneity among malignant cells [118,119]. The glioma stem-like
cells (GSCs) certainly benefit from the hypoxic environment as they acquire multipotency
and self-renewal capacity, both of which are linked to treatment-resistance and tumor
recurrence [120–122]. Not surprisingly, HIF-1α expression is increased in both GSCs and
non-GSCs, and it has been reported that GSCs promote their tumorigenic capacity and
expansion in a HIF-1α–dependent manner [123]. Thus, hypoxia-mediated expansion of
GSCs has become a potential target for glioblastoma therapy. Additionally, HIF-2α activity
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has been related to GSCs and tumor progression. A compelling analysis of angiogenesis-
related factors in 50 human GBM samples concluded that there was a significant abundance
of HIF-2α over HIF-1α [124]. Furthermore, several studies have demonstrated that HIF-2α
is preferentially expressed within a tumor stem cell subpopulation, stimulated by CD44
and that it drives tumor differentiation [123,125,126]. Mechanistically, in vivo studies have
shown that the intracellular domain (ICD) of CD44 binds to and activates HIF-2α, but not
HIF-1α, in an oxygen-independent manner [125] (Figure 2).

A factor that contributes to CSC development is epithelial-to-mesenchymal transition
(EMT), which constitutes a highly coordinated program wherein epithelial cell markers are
suppressed while mesenchymal markers are upregulated. This program does not work as
a simple on/off switch; in fact, EMT markers manifest in varying degrees and cells can also
regress to a more epithelial state. Under non-pathological conditions, the EMT program is
required for tissue morphogenesis during embryonic development and is coordinated by
multiple transcription factors (EMT-TF), including Slug, Snail, Twist, Zeb1, and Zeb2/SIP1.
Each of these EMT-TFs is capable of repressing E-cadherin expression, leading to changes in
gene expression, including that of mesenchymal markers, and increasing cellular motility.
Moreover, cancer cells that have undergone EMT display CD44high/CD24low expression,
and are characterized by many of the properties seen in self-renewing stem cells. The final
outcome of these changes are related to development of resistance to anti-tumor therapies
and initiation of tumor growth in secondary organs [126–128].

The EMT program can be triggered by a variety of mechanisms, including intra-
tumoral hypoxia [129]. HIF-1α can particularly induce EMT by upregulating the expression
of EMT-TFs in several types of cancers, including lung, colorectal, and head and neck
cancers [130–134]. Besides hypoxia, adaptive changes in cancer cells following therapy
(such as the Warburg effect) [135], as well as several growth factors, can trigger EMT
programs, with the relevant factors being transforming growth factor beta (TGF-β), receptor
tyrosine kinase (RTK) ligands, epidermal growth factor (EGF), insulin growth factor (IGF),
hepatocyte growth factor (HGF), fibroblast growth factor (FGF), and platelet-derived
growth factor (PGDF) [126,127]. The hypoxia pathway regulates several of these growth
factors as well [21,136,137]. Additionally, microRNAs (miRNAs) regulate EMT and the key
candidates include the miRNA-200 family, miRNA-205, miRNA-155, let-7, and miRNA-
34a [126,138]. Like the growth factors, some miRNAs may be regulated by hypoxia and/or
affect the hypoxic response, e.g., miRNA-155, let-7, and miRNA-34a [137,138]. Increasing
expression of the microRNA-200 family and Let-7a is used therapeutically, and a MIR34a
mimic has been shown to have anti-tumor activities; however, clinical trials were terminated
due to immune-related adverse effects [139,140].

As indicated above, targeting CSCs remains challenging because cells that have
undergone at least one partial EMT program exhibit intensified resistance to apoptosis
or an ability to force out cytotoxic drugs [127]. Therapies that target EMT aim to halt
CSC production to hamper metastasis and cancer progression and have focused on three
approaches: (1) targeting EMT-inducing signals; (2) reversing EMT; and (3) killing cells
in an EMT-like state. A few clinical trials testing the efficacy of suppressing the EMT
program are underway, and while Notch or HIF-1α inhibitors have been proposed to work
by targeting stemness or the EMT, TGFβ inhibitors have been used to target tumor cells
that have activated versions of the EMT program, and the WNT/FZD pathway is targeted
for tumor dedifferentiation [127,141]. As EMT is induced by HIF-1α and therapy targets
are frequently inhibited, PHDs have not been explored as therapy targets.

7. Hypoxia Signaling in Neuro-Endocrine Tumors

The peripheral nervous system is composed of different types of cells located through-
out the body and they serve as the origin of many kinds of benign and malignant tumors.
Examples include neural crest-derived neuro-endocrine tumors (NETs), such as paragan-
gliomas (PGLs) that originate from extramedullary paraganglia, as well as pheochromo-
cytomas (PCCs), which are endocrine tumors arising from chromaffin cells located in the
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adrenal medulla [142,143]. Neuroendocrine properties of these tumors lead to excessive
production of catecholamines, such as dopamine, norepinephrine, and epinephrine [144].

PCCs and PGLs are currently subdivided into two major clusters based on underlying
mutations in the predisposing genes: the pseudohypoxia-associated cluster 1 and the
kinase signaling-associated cluster 2; however, a potential third cluster associated with
WNT-signaling has also been recently described [145,146]. Cluster 1 includes tumors
associated with mutations in VHL, succinate dehydrogenase (SDHx) genes or PHD2, which
lead to stabilization of HIF proteins, especially HIF-2α, thereby creating a pseudohypoxic
state [144,147]. Additionally, gain-of-function mutations in exon 9 and 12 of HIF-2α
have been added to the list of genes associated with PCCs and PGLs [148,149]. These
mutations in HIF-2α result in defective proline residues at the hydroxylation sites, resulting
in reduced degradation, and hence, their stabilization. As mentioned before, activation
of the HIF pathway also facilitates the Warburg effect, which favors tumor growth by
overexpressing genes involved in the glucose metabolism [150]. Another important factor
that is upregulated in cluster 1 associated tumors, specifically in relation to SDH and VHL
mutations, is mir-210. Its expression is induced by HIF-1α and it is believed to regulate the
expression and function of tumor-associated genes [151].

Additionally, HIF-2α stabilization due to mutations in any of the above-mentioned
genes in cluster 1 PCCs and PGLs leads to diminished transcription of Phenylethanolamine
N-methyltransferase (PNMT), which is the central enzyme that regulates the conversion
of norepinephrine to epinephrine. Even though a majority of these tumors are benign,
15–20% metastasize; however, in the absence of markers to distinguish between the two,
development of appropriate treatment strategies is essential. As it is well established that
HIF-2α is a major driver of PCCs and PGLs, therapeutic targeting of HIF-2α is a potential
treatment strategy. However, targeting using small molecules only came to light once
the structure of the HIF-2α/HIFβ dimer was resolved by crystallography, and this led
to the identification of a large protein cavity in the HIF-2α PAS-B domain. Both in vitro
and in vivo models of these rare neuroendocrine tumors showed inhibition of tumors by
treatment with HIF-2α inhibitors [152]. Therefore, HIF-2α-specific inhibitors represent a
successful method of targeting the core of PCCs and PGLs. Nevertheless, further research
and clinical trials are necessary to establish any potential treatment strategy using HIF-2α
inhibitors in combination with other existing anti-tumor therapies [153].

CSCs have also been suggested as potential tumor therapy targets in PCC and
PGL [154], and it is not surprising that cancer cells from cluster 1 pseudohypoxia-related
tumors express CSC markers [155]. Targeting CSCs via surface markers or by inhibiting
developmental stem cell pathways has been used in the clinic for the treatment of other
tumors, such as in the lung [156], and given their promising outcome, CSC targeting might
prove useful, even in PCCs and PGLs.

8. PHD Inhibitors—Useful as an Anticancer Therapy

In recent years, PHD inhibitors (PHDi) have been developed as erythropoiesis stim-
ulating agents (ESA) for use in patients suffering from anemia that is often associated
with kidney disorders [157,158]. Pharmacological inhibition of PHDs leads to HIFα pro-
tein stabilization, including HIF-2α in erythropoietin (EPO)producing cells (EPCs), which
results in enhanced EPO production, predominantly in the kidney [159]. This hormone
then translocates into the bone marrow where it regulates survival and differentiation of
erythroid progenitors to stimulate erythrocyte production. Systemic use of these PHDi
might obviously also impact other cell lineages in a variety of different organs. Therefore,
it is of utmost importance to increase our understanding of the role of these oxygen sensors
using animal models involving conditional transgenic mouse models.

Different pharmaceutical laboratories have approached the pharmacological PHD
inhibition and its possible impact in tumor development and therapy. The major drugs
currently being studied are roxadustat (FG-4592), vadadustat, daprodustat, and molidustat
(summarized in Table 1). These compounds have been challenged in different cancer
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models, resulting in positive and negative outcomes, emphasizing the need for more
research in the local and systemic effects that the inhibition of PHDs may have.

Table 1. Prolyl hydroxylase domain protein (PHD) inhibitors in cancer-related studies in vivo.

PHDi Molecular Inhibition Selected Studies in Cancer Models

Roxadustat All HIF-PHDs interactions

- Increased erythropoiesis in MMTV-Neu but no differences in tumor
development [160].

- Tumor vessel normalization in mouse LLC tumor, reduced growth
[161,162] and sensitivity to chemotherapy [36].

Vadadustat PHD3 > PHD2 > PHD1

- No increased plasma VEGF in patients [163] and upregulates
HIF-2α > HIF-1α [164]

- Vessel normalization and reduced tumor growth, but enhanced
expression of angiogenesis markers > Rox., Dap., and Mol [161].

Daprodustat PHD1 > PHD3 > PHD2

- High doses of drugs did not show carcinogenic potential
in vivo [165].

- Reduced tumor growth, vascularization, and diminished hypoxic
regions [162].

Molidustat PHD2 > PHD3/PHD1

- In vitro reduced tumor viability.
- In vivo impaired tumor growth without altering angiogenesis in an

MDA-MB-231 [166], but with enhanced normalization in LLC
tumors [162]

Roxadustat (FG-4592) is a 2-OG analog and was developed as an inhibitor of HIF-
PHDs by FibroGen, AstraZeneca, and Astellas Pharma [164]. Seeley and colleagues studied
its implications in cancer progression and found that in MMTV-Neundl-YD5 (NeuYD) mice,
which are a model of spontaneous mammary tumor development that are sensitive to VEGF.
Moreover, oral administration of Roxadustat yielded no differences in tumor development
compared to vehicle-treated MMTV mice [167], confirming that, despite HIF stabilization
translating to increased erythropoiesis, the compound has no tumor promoting effects
in vivo. This result was later challenged by Koyama et al. [36], who compared DMOG
and roxadustat as PHD inhibitors in LLC tumor models, and showed clear tumor vessel
normalization and rescue of chemotherapy sensitivity in tumor-bearing mice challenged
with the compounds [36,162]. A very detrimental effect to consider when HIFs are activated
is the increase in glucose uptake and its consumption during glycolysis, which eventually
results in enhanced glycogen storage [168]. This allows cells to survive extreme hypoxic
conditions, which, during a neoplastic event, can eventually drive adaptation of malignant
cells towards cancer progression, invasion, and metastasis [169]. However, whether these
effects could potentially favor tumor progression has not yet been studied. Furthermore,
roxadustat can also inhibit tumor growth of macrophage-abundant tumors by facilitating
the phagocytic function of Ly6Clo tumor-infiltrating macrophages, which, at least in part,
contribute to vessel normalization [161].

Vadadustat [163], developed by Akebia Therapeutics, stabilizes both HIF-1α and HIF-
2α and has the potential to inhibit all PHD isoforms but with a preference for PHD3 [164].
One of the main concerns with HIF stabilization by PHDs inhibition with Vadadustat
is the risk of facilitating tumor progression due to angiogenesis, secondary to increased
VEGF expression [170]. Pergola and collaborators have tested this hypothesis and have
reported that levels of VEGF in plasma were not affected after vadadustat treatment
in a phase 2b clinical study [163]. Further, a recent study by Nishide and colleagues
confirmed this in a mouse model of cancer and showed that vadadustat induces tumor
normalization and reduces hypoxic regions within tumor tissue. However, when compared
to other PHD inhibitors tested simultaneously, these tumors showed enhanced expression
of other angiogenesis markers, such as Notch1, eNOS, and Hey1, and a mild increase in
pro-inflammatory markers [162].
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Daprodustat [171], developed by GlaxoSmithKline, preferentially inhibits PHD1 and
PHD3 [164], and both HIF-1α and HIF-2α isoforms stabilize upon treatment, attesting to
its efficacy in activating the hypoxia pathway. Importantly, no carcinogenicity potential
was detected for this compound even at high pharmacological doses [165]. Daprodustat
was also effective in a mouse LLC model as it resulted in better normalization of the
tumor vessels with enhanced pericyte coverage that was linked to diminished presence
of angiogenic factors. Moreover, tumor growth was significantly reduced compared to
untreated tumors [162].

Molidustat [172], developed by Bayer, has a preferential sensitivity for PHD2 [164].
In a report by Nishide et al., this inhibitor also diminished LLC tumor growth that was
linked to enhanced blood vessel maturation and an increase in their functionality [162].
Furthermore, Molidustat has been tested in combination with the proliferation inhibitor,
gemcitabine, in a mouse model of breast cancer (MDA-MB-231) [173]. In vitro, a dramatic
reduction in cell viability was shown in comparison to control, PHD inhibitor alone, or
gemcitabine alone. Although the authors reported an increase in VEGF, both in gene
expression and protein release into the culture media, it resulted in no significant changes
in angiogenesis, other than dramatic anticancer effects in vivo [166].

9. Conclusions

This review explored current advances in the biology of PHD enzymes and their
association with cancer progression and therapy. The involvement of PHDs in tumor
development in many cases may appear paradoxical, because, while on the one hand there
is evidence showing that PHDs can be detrimental for hypoxia adaptation and cancer
progression, the use of PHD inhibitors leads to lower tumor growth and metastasis by
diminishing immune tolerance and increasing tumor vessel normalization. Moreover,
recent evidence advocates for the use of combination therapies, including pharmacological
targeting of PHDs, to ensure proper targeting of the individual insults generated by
malignant cells. More research is required to obtain a better understanding of the complex
mechanisms underlying the effects of hypoxia pathway proteins (i.e., HIFs and PHDs) that
are involved in many different types of cancers and pathologies.
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