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Abstract: High flows of road traffic noise in urban agglomerations can negatively affect the livability
of squares and parks located at the neighborhood, district and city levels, therefore pushing anyone
who wants to enjoy calmer, quieter areas to move to non-urban parks. Due to the distances between
these areas, it is not possible to go as regularly as would be necessary to satisfy any needs. Even if
cities are densely populated, the presence of a sea or riverfront offers the possibility of large restorative
places, or at least with potential features for being the natural core of an urban nucleus after a renewal
intervention. This study evaluates the soundscape of the Naples waterfront, presenting an overview
of the most significant visual, acoustic and spatial factors related to the pedestrian areas, as well
as areas open to road traffic and others where the road traffic is limited. The factors were chosen
with feature selection methods and artificial neural networks. The results show how certain factors,
such as the perimeter between the water and promenade, the visibility of the sea or the density of
green areas, can affect the perception of the soundscape quality in the areas with road traffic. In the
pedestrian areas, acoustic factors, such as loudness or the A-weighted sound level exceeded for 10%
of the measurement duration (LA10), influence the perceived quality of the soundscape.
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1. Introduction

National and international legislations consider road traffic noise as a major environmental
problem of modern-day society [1]. Multiple control measures have been suggested to reduce it
and, consequently, increase the quality of life of residents, such as “land use planning, engineering
systems for traffic, traffic planning and abatement by sound insulation measures and noise control
at sources” [2]. Further actions considered by European legislation for “preventing or reducing of
environmental noise levels that may negatively affect human health” [2], include the addition or
adjustment of quiet areas in the agglomerations. Regarding the definition of the European Noise
Directive (END), “A quiet area in an agglomeration shall mean an area, delimited by a competent
authority, for instance, which is not exposed to an A-weighted equivalent sound pressure level
(measured over the 24 h period, with a 10 dB penalty added to the levels between 23:00 and 07:00 h
and a 5 dB penalty added to the levels between 19:00 and 23:00 h), representative over one year (Lden)
or another appropriate noise indicator greater than a certain value set by the Member State, from any
noise source” [3]. However, the guidelines of “Good Practice in Quiet Areas” highlight that noise
levels cannot be the only parameter for characterizing a quiet area, and that “an area where noise is
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absent or at least not dominant” would be a better definition. It also remarks that “the designation
‘calm area’ or ‘tranquil area’ would fit more closely to what the public experiences” [1].

In recent years, the structure and type of use of urban waterfronts has changed substantially,
with it generally being due to their intensive use in various fields, such as residential, leisure or
sport. This has often led to abusive practices during periods of economic growth and abandonment of
entire areas during negative ones. The regeneration of these areas is associated not only to an urban
improvement of empty, decommissioned or abandoned places but also to collective social, political,
environmental or legislative demands. The competent authorities should make an effort to either
promote existing calm areas or adapt new ones within or near urban centers in order to facilitate the
frequent and full enjoyment of their benefits. In cities with a waterfront, this wide open space offers
multiple possibilities for the design and implementation of restorative areas that can improve the
quality of life of people in general.

However, the positive effects associated to waterfronts can be cancelled by the vehicular traffic
that runs through the adjacent streets. The perceptual differences between waterfront areas with and
without road traffic were pointed out in the users’ “appraisals of the soundscape quality” in a previous
study [4].

As stated by ISO 12913-1 [5], the soundscape appraisal is affected not only by the sound, but
also by the context in which the individual is immersed. Although the perception of noise depends
on the physical properties of sound, such as amplitude and frequencies, several studies support
the idea established by ISO and defend that the visual factors may, in general, also influence the
perception of noise and its evaluation (e.g., [6–9]). In particular, they may affect the perception of
the traffic noise and other sound sources significantly [10,11], especially in areas with water as a
predominant visual element [12]. In order to evaluate the soundscape assessment, several studies
have considered mathematical models (e.g., linear regression, ordinal regression or artificial neural
networks) to characterize its acoustic features (e.g., [13–15]).

The aim of this study was to compare the visual, acoustic and spatial factors that may affect the
soundscape perception of three types of areas (area with limited road traffic, areas open to road traffic
and pedestrian area). A mixed methodology based on artificial neural networks was used. The seafront
of Naples was chosen as a case study, since this area has a high potential to be converted into the
healthy core of the city.

Characterization of Outdoor Urban Sound

Acousticians have primarily relied on so-called acoustic indicators to characterize outdoor urban
sounds. A wide variety of indicators has been used, ranging from simple verbal ones that express
the feelings of the subjective characteristics of the sounds, to more complex indicators based on field
measurements. Some of these indicators are percentiles, defined as the A-weighted sound pressure
levels exceeded “n”% of a time interval (LAn). The most frequently used indicators are the A-weighted
equivalent sound pressure level in dBA, measured over a period of time T (LAeq,T), the background
levels (LA90 or LA95), and descriptors expressing the variance of the sound spectrum [16]. However,
there is agreement that a single approach cannot be appropriate when evaluating the perception of the
sound quality and annoyance produced by noise.

On the basis of the validity of statistical levels, the range of LA50 and LA95 has been proven
to predict the perception of quietness better than conventional LAeq or LA10 [13,14]. Similarly the
indicators LA10, LA50 and LA95 were chosen as predictors of the “good quality” of the soundscape in
parks [17]. However, it is still not clear which indicators are the most appropriate for characterizing
the sound quality of urban areas and, more specifically, the soundscape of waterfronts.

In recent years, a great deal of soundscape research has focused on the influence of visual factors.
Current literature on audio-visual interactions has shown that visual factors can influence the loudness
perception of traffic noise (e.g., [9,18–20]). The influence of the motion on the perception of traffic noise
was tested in an experiment in which a video of a moving car was displayed, obtaining the result
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that the participants’ assessments on noise were influenced not only by the sonic stimulus but also
by the visual stimulus [21]. Colors have been also considered on the loudness and noise annoyance
perception caused by traffic noise; the effect on the loudness perception of images of differently colored
sports cars displayed simultaneously to car sounds [22,23], the influence of color and brightness on the
assessment of the traffic noise annoyance through colored images [24], or the visualization of indoor
scenes [25] are several significant examples. Other studies have considered factors related to the visual
components and the spatial relationship between the different elements that make up an environment
(e.g., [8,26–28]).

As previously mentioned, acoustic and visual parameters can affect the sonic perception in
different urban open spaces. The relationship between these parameters and the soundscape can
be defined through several mathematical models. Logistic regressions models have been used to
study the association between the objective acoustic parameters of different urban environments
and the appraisals on the soundscape [29]. Linear regression models have been also developed to
evaluate specific case studies in urban open spaces using different subjective parameters, such as
verbal descriptors or generic quality factors (e.g., cleanliness, expectation), showing a good correlation
with the soundscape (e.g., [4,30]). Additional studies have focused on the categorization of outdoor
soundscapes, using statistical techniques, such as “fuzzy ant” models. The applicability of the fuzzy
concept has been proved in the analysis of ordinal appraisal responses (e.g., “a little”, “quite a bit”,
“a lot”), that are difficult to be quantified numerically [31,32]. Other studies have used artificial neural
networks to characterize the soundscape [15], predict urban noise [33] as well as elaborate soundscape
quality maps [34]. Their performance has been proved to be generally better than traditional methods
such as linear regression (e.g., [15,33]).

2. Materials and Methods

2.1. Area of Study

Naples is an example of an overcrowded city with a reduced number of open spaces: the
waterfront being of the few exceptions. The general interest in providing calm areas is shown in
some of the initiatives undertaken by citizens and private professional organizations to improve
the quality of certain zones of the city, including the seafront, through urban renewal proposal
competitions [35]. The authorities are also aware of the problem and are implementing some actions,
including pedestrianizing several streets.

The study was carried out along the stretch of the Naples waterfront between “Mergellina” and
“Ferdinando Acton”. The different places were grouped according to three conditions of road traffic
flows; pedestrian, open to road traffic and limited traffic areas (see Figure 1).
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2.2. Materials

Acoustic, visual and perceptual data, collected during two field surveys conducted in winter
and summer 2014 along the Naples seafront (see areas under study in Figure 2), were used. Face to
face interviews were carried out on weekdays and weekends from 10:00 h to 17:00 h. The three
groups of areas have a homogeneous distribution of participants, from a total of 254 randomly selected
interviewees (limited traffic areas: 33%, open to road traffic areas; 24%, pedestrian areas: 41.3%).
Among them, 27.7% were tourists (34.6% from South Italy, 36.5% from North Italy and from other
countries: South Europe 9.6%, North Europe 17.3%, South America 1.9%). Age, gender and occupation
were distributed in the sample as shown in Table 1. More information on the methodology and data
acquired can be found in [4,36]. All the data used in this study comes from on-site interviews and the
post processing of sound recordings, 360◦ photographs and aerial photographs.
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Table 1. Characteristics of the population sample.

Characteristic Value Limited Traffic (%) Road Traffic (%) Pedestrian (%)

Gender
Male 51.2 51.7 53.0

Female 48.8 48.2 49.4

Age

18–24 28.0 32.9 27.7
25–29 22.1 15.3 13.3
30–39 28.0 23.5 33.7
40–49 9.3 9.4 16.9
50–59 5.8 12.9 7.2
≥60 7.0 5.9 1.2

Occupation

Student 32.6 32.9 31.3
Housewife 2.3 12.9 10.8

Retired 3.5 3.5 1.2
Employed 32.6 25.9 30.1

Self-employed/freelance 22.1 18.8 21.7
Unemployed 7.0 5.9 4.8

Among the data from the surveys, the subjective appraisals on the soundscape quality and
objective acoustic parameters namely equivalent sound pressure level (Leq), A-weighted equivalent
sound pressure level (LAeq), percentiles LA5, LA10, LA50, LA90, LA95, Loudness (N5), Sharpness (S),
Roughness (R) and Fluctuation Strength (F) were used.

In order to evaluate the visual influence on the soundscape quality perception, spatial metrics
(calculated from the aerial photographs by the software Fragstats (University of Massachusetts,
Amherst) [37,38], as well as the percentages of the landscape elements that can be seen in situ (calculated
from the 360◦ photographs by the image editing software Perfect Effects (OnOne Software, Portland,
OR, USA) were obtained. Spatial metrics are objective indicators of the spatial and visual variability of
the different landscape uses defined along the areas under study, with them having been widely used
in urbanism [39,40] and more recently also in acoustics to evaluate the soundscape of urban [8,27,41]
and rural areas [42].



Int. J. Environ. Res. Public Health 2016, 13, 934 5 of 19

The spatial metrics considered in this study were the “percentage of landscape” (PLAND), “large
patch index” (LPI), “contiguity” (CONTIG_MN), “shape” (SHAPE_MN), “proximity” (PROX_MN),
“connect” (CONNECT), “normalized landscape shape” (NLSI) and “split” (SPLIT).

PLAND is one of the most important measurements of landscape composition, and indicates
which part of the landscape is comprised by a particular use. The LPI is another measurement of
the landscape composition that refers to the percentage of a landscape use comprised by the largest
patch [37,38]. CONTIG and SHAPE are shape metrics that describe the complexity of the geometry
of the landscape use. The isolation metrics PROX and CONNECT describe the relationship with
the spatial context of the individual patches [37,43]. SPLIT and NLSI are measurements that give an
idea of the aggregation or division of the patches. The formulas and detailed meanings of the spatial
metrics used in this paper are in the documentation of the Fragstats software [37,38]. Ten land uses
were defined, namely sea, garden, tree, fountain, generic building, singular building, food services,
construction site, pedestrian path and vehicles path. According to the criteria of various studies on
the sonic environment that used spatial metrics [8,27,41,42], the variables have been calculated within
an area with 175 m radius. From now on, the spatial variables will be cited in the text as the name of
the spatial metric followed by the land use, i.e., PLAND_Pedestrian_path will stand for percentage of
landscape metric calculated for the land use “pedestrian path”, PROX_Sea will stand for proximity
metric calculated for the land use “sea”.

The “class percentages in the panoramic photographs” (CP), i.e., sky (CP_Sky), sea (CP_Sea),
vegetation (CP_Vegetation), generic buildings (within three distances “less than 100 m”, “100–175 m”
and “beyond 175 m”), singular buildings (CP_Singular), food services activities (CP_Food services),
pedestrian paths (CP_Pedestrian path) and vehicles paths (CP_Vehicles path) were also calculated
(see Figure 2).

2.3. Methods

Statistical analysis was performed to compare the three types of areas under study, as well as to
define the most relevant acoustic and visual factors that may influence the soundscape perception
(among the evaluated ones). The factors obtained can give an idea of the weak points/potentialities
of these areas in order to improve their soundscape quality and, subsequently, their livability.
The comparison was carried out using a methodology based on the “minimum redundancy and
maximum relevance features selection method” (mRMR), “artificial neural networks” (ANN) and
the “relative importance of the variables” [39]. The analysis was performed using the open-source
software, R [44]. To reduce the large number of variables, the mRMR method was applied to each
group of areas. Subsequently, three artificial neural networks were proposed with the selected input
variables. The relative importance of each variable [45] was evaluated for the three models obtained so
as to take into account the acoustic and visual singularities of the places.

3. Results

3.1. Statistical Analysis

The nature of the perceived sound sources plays an important role on the positive or negative
appraisal of the soundscape. To study the responses on the soundscape quality, the sound sources
heard, and recognized as predominant, were analysed. Figures 3 and 4 report the percentage of people
that perceived a certain sound source in each type of area and the percentage of the most perceived
sound sources, respectively.
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Figure 4. Percentage of subjects that recognized a certain sound source as the predominant one within
the three types of areas a priori classified as pedestrian areas, open to road traffic areas and limited
traffic areas.

The predominant sound source recognized by the interviewees is different between the three types
of areas under study (see Figure 4). While a high number of people recognize the traffic as the
predominant source in the road traffic (71.2%) and limited areas (48.7%), in the pedestrian areas, the
predominant sound source is the water, with a smaller percentage (27.7%) compared to the percentage
of the predominant sound source in other areas. Water is also recognized as predominant by a high
percentage of subjects in the open to road traffic areas.

Voices and steps were chosen as predominant by a higher percentage of subjects in the pedestrian
and limited areas (22.7% and 17.5%, respectively) than in the road traffic areas (6.8%).

The acoustic, spatial and visual parameters were analysed in comparison with the appraisals on
the soundscape quality in the three groups (see Figure 5, Tables 2 and 3). The pedestrian areas are
the ones with more positive appraisals of the soundscape quality, with a median value of 5, and a
mean value of 5.2 (see Figure 5). This group has the smallest range of answers, with scores from 2 to
7 that also indicate less negative scores. The road traffic areas have a negative median value (3) and
mean score (3.3), being, as expected, the group with the worst appraisals. Most of the appraisals on the
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soundscape quality of this group are between 2 and 5 (first and third quartile), being the group with
the most spread answers. The mean levels of LAeq are quite high even in the pedestrian areas. This is
due to the dense and loud anthropogenic activities at the Naples waterfront.

Analysis of the panoramic photograph parameters shows that the percentages of each category
among the three types of areas are within a small range of values (Table 2). The CP_Sky is the most
present element in the panoramic photographs, with a percentage higher than 50% in all the groups.
It is followed by the percentages of buildings (CP_Building 100), areas with traffic (CP_Traffic), and
pedestrian areas (CP_Pedestrian_path). The road traffic areas are the ones with the lowest percentage
of buildings in a distance of 100 m (CP_Building 100) due to being near (in two of the three road traffic
sites) green areas.

Figure 5. Boxplot of the appraisals of the soundscape quality, (rated in a 7 points Likert scale from
1 (very low) till 7 (excellent)), in the three types of areas a priori classified as pedestrian areas, open to
road traffic areas and limited traffic areas (bottom horizontal axis).

Table 2. Mean values of the percentages in the panoramic photographs (CP) of all the classes in the
three types of area.

CP_Class
Area

Limited Traffic Pedestrian Road Traffic

CP_Sky 54.9 55.1 51.4
CP_Sea 3.1 2.7 2.3

CP_Pedestrian_path 8.0 11.6 8.6
CP_Vehicles_path 9.1 4.8 9.7

CP_Singular 0.9 0.8 0.2
CP_Building > 175 0.5 0.6 0.7

CP_Building 100–175 0.9 1.1 0.5
CP_Building 100 15.6 14.0 7.1
CP_Vegetation 1.4 1.1 9.7

CP_Food_services 0.0 0.1 0.2

CP of the classes “sky” (CP_Sky), “sea” (CP_Sea), “pedestrian paths” (CP_Pedestrian path), “vehicles path”
(CP_Vehicles path), “singular buildings” (CP_Singular), generic buildings within three distances: “less than
100 m” (CP_Building 100), “100–175 m” (CP_Building 100–175) and “beyond 175 m” (CP_Building > 175),
“vegetation” (CP_Vegetation) and “food services” (CP_Food services).

Table 3 shows the mean values of the PLAND. PLAND_Sea is the spatial metric with the highest
percentage of landscape compared with the rest of the land uses. The second and third metrics
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with high percentages are PLAND_Pedestrian_path and PLAND_Vehicles_path, respectively, and the
percentages vary considerably in areas with and without traffic. The reason why the areas with traffic
have a high metric PLAND_Pedestrian_path value is again due to the nearby park “Villa Comunale”,
since the paths between the gardens are considered as pedestrian. The fourth is the percentage of
buildings within a distance of 175 m of the interviewee. As in the previous plot, the (PLAND_Building)
is lower in the road traffic areas than in the other types.

Table 3. Mean values of the spatial metric percentage of landscape (PLAND) of all the land uses in the
three types of area.

PLAND_Land Use
Area

Limited Traffic Pedestrian Road Traffic

PLAND_Building 14.9 14.1 6.1
PLAND_Singular 0.1 0.6 0.0

PLAND_Food_services 2.5 4.1 0.6
PLAND_Sea 42.0 38.3 32.8

PLAND_Fountain 0.1 0.0 0.1
PLAND_Construction 0.2 0.1 0.6

PLAND_Garden 3.8 3.8 5.0
PLAND_Tree 2.1 1.8 4.1

PLAND_Pedestrian_path 15.9 17.3 21.1
PLAND_Vehicles_path 12.9 14.3 9.2

PLAND of the land uses “generic buildings” (PLAND_Building), “singular buildings” (PLAND_Singular),
“food services” (PLAND_Food_services), “sea” (PLAND_Sea), “fountain” (PLAND_Fountain), “construction
sites” (PLAND_Construction), “gardens” (PLAND_Garden), “trees” (PLAND_Trees), “pedestrian paths”
(PLAND_Pedestrian path) and “vehicles paths” (PLAND_Vehicles path).

3.2. mRMR, ANN and Relative Importance of the Variables

The mRMR selection method was applied to 91 variables resulting from all the acoustic parameters,
spatial metrics and percentages of the visual elements contained in the panoramic photographs.

The mRMR method avoids the repeated information that can be found in models composed by
highly correlated variables. Another advantage of the mRMR method is that it avoids a subjective
selection of the variables that will compose the model, providing a group of factors obtained from
mathematical algorithms. The mRMR method was applied to each type of area (pedestrian, road traffic
and limited traffic areas).

Neural network models were also calculated for each type. The database of each type of area was
divided into train (70%), test (15%) and validation sets (15%). The 10 best performing models among
the 1000 computed for each type were selected. The interpretation of the relative importance of the
variables [45,46] was considered in the selection of the best performing models, in order to choose the
ones that best explain the sonic environment of each group of areas.

Table 4 shows the correlation coefficients of the train, test and validation sets of the three calculated
models. The model for the limited traffic areas is the best performing one, with a correlation coefficient
of the train set of rLimited_Test = 0.96. The test and validation sets have also very high correlation
coefficients, with a rLimited_Val = 0.798. The worst performing model is the one of the road traffic
areas, with a rTraffic_Test = 0.86. Even though the coefficient of correlation is low for the validation set,
the model is still satisfactory (rTraffic_Val = 0.55, RMSE Traffic_Val = 1.159).

Table 4. Correlation coefficient and root mean square error for the train (RMSE), test and validation
sets of the best performing model in each group of areas.

Areas Correlation Coefficient RMSE

Group Train Test Validation Train Test Validation
Limited 0.960 0.953 0.798 0.653 0.720 1.485
Traffic 0.855 0.734 0.551 0.356 0.665 1.159

Pedestrian 0.872 0.908 0.705 0.235 1.117 1.179



Int. J. Environ. Res. Public Health 2016, 13, 934 9 of 19

3.2.1. Limited Traffic Areas

The network topology obtained from the application of the mRMR method to the limited road
traffic areas is shown in Figure 6. In order to evaluate “the probability of concordance between
predicted and observed responses” [47] of the results of the mRMR, the mean concordance index
C was calculated [48]. Values higher than 0.5 indicate the existence of a predictive discrimination
power. The mean concordance index obtained among the variables selected in the limited traffic areas
is C = 0.64; then, the set of variables can be accepted.

For this group, the LAeq was the only acoustic parameter selected by the mRMR algorithm.
It seems that other acoustic parameters do not add significant improvements to the information
contained in the chosen set of variables. Visual parameters related to the sea, the pedestrian areas and
the food services areas were also included in the selection.Int. J. Environ. Res. Public Health 2016, 13, 934  10 of 20 
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Figure 6. Inferred mRMR network topology of the soundscape quality (SQQ) for the limited road
traffic areas. The variables selected were “percentage of generic buildings in the aerial photograph
within a distance of 100 m” (CP_Building_100), spatial metric “proximity” calculated for the land
use “food services” (PROX_MN_Food_services), spatial metric “contiguity” calculated for the land
use “pedestrian path” (CONTIG_MN_Pedestrian_path), spatial metric “percentage of land use”
calculated for the land use “sea” (PLAND_Sea), spatial metric “shape” calculated for the land use “sea”
(SHAPE_MN_Sea) and A-weighted equivalent sound pressure level (LAeq).

Due to the morphology of the streets network, in the limited traffic areas the vehicles flow was
not equal along all of “Via Nazario Sauro”. It decreases near the pedestrian areas (“Castel dell’Ovo”),
and increases near “Via Acton” (see Figure 2). Near the pedestrian areas, there are lower traffic noise
levels, and therefore, a different perception of the soundscape quality. This could explain the selection
of the spatial metric CONTIG_MN_Pedestrian. Another parameter selected by the mRMR method
was SHAPE_Sea. The spatial metric SHAPE reveals how complex the shape of the perimeter of the
land use is. Even if the perimeter of the sea limit with the promenade within a radius of 175 m can be
considered quite similar, it is not so. There are places where the perimeter is not straight.

The relative importance of the variables that appear in the model of the limited road traffic areas is
shown in Figure 7. The PLAND_Sea is the metric with highest influence on the soundscape perception
in the areas with limited traffic (39.6%). The area with a higher PLAND_Sea is the one nearest to the
pedestrian area, in which the noise levels are lower due to the configuration of the streets network and
the traffic flows.
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Figure 7. Percentage of relative importance of the predictors on the results calculated with the
Olden et al. method for the limited traffic areas. Values higher than zero mean a positive relative
effect, and lower than zero a negative relative effect. The input variables are from top to bottom
spatial metric “percentage of land use” calculated for the land use “sea” (PLAND_Sea), spatial metric
“contiguity” calculated for the land use “pedestrian path” (CONTIG_MN_Pedestrian_path), spatial
metric “proximity” calculated for the land use “food services” (PROX_MN_Food_services), spatial
metric “shape” calculated for the land use “sea” (SHAPE_MN_Sea), “percentage of generic buildings
in the aerial photograph within a distance of 100 m” (CP_Building_100) and A-weighted equivalent
sound pressure level (LAeq).

The SHAPE_MN_Sea has also a positive influence on the conformation of the model, and therefore,
the more irregular the perimeter between the sea and promenade is (within a radius of 175 m),
the higher the soundscape appraisal.

The land use “pedestrian path” has higher contiguity (CONTIG_MN_Pedestrian_path) near to
the pedestrian areas, and since they have less traffic noise, have more positive scores on the soundscape
quality than any other parts of this land use. The only negatively correlated parameter is the LAeq,
as expected. The proximity of food services areas is also a positive factor on the soundscape appraisal.
Current literature reports how this kind of anthropogenic activity has either a positive or neutral
influence on the sonic perception regarding the environment assessment [13,49–51]. In this case,
they have a positive influence.

3.2.2. Road Traffic Areas

The network topology obtained from the application of the mRMR method to the road traffic
areas is shown in Figure 8. The mean concordance index calculated from the variables selected in the
road traffic areas is C = 0.55 (C > 0.5). Therefore, the set of variables obtained from the mRMR method
can be accepted.

In the road traffic areas, the mRMR algorithm has selected only spatial metrics as visual factors
(NLSI_Garden, LPI_Food, Pland_Sea and Shape_MN_Traffic), and two acoustic parameters, namely
LA95 and LA50, as the only acoustic variables selected (see Figure 8).

The visual parameters selected are related to the sea, the green areas, the food services and the
road traffic areas. The sea is hardly heard in the road traffic areas, only when the morphological
configuration of the frontier between the waterfront promenade and the sea allows it. However, traffic
noise is heard nearly all the time. Therefore, it seems reasonable that visual parameters have a positive
influence on the positive appraisals of the sonic environment.
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Figure 8. Inferred mRMR network topology of the soundscape quality (SQQ) for the road traffic
areas. The variables selected were the spatial metric “normalized landscape shape” calculated
for the land use “garden” (NLSI_Garden), spatial metric “large patch index” calculated for the
land use “food service” (LPI_Food), spatial metric “percentage of land use” calculated for the
land use “sea” (PLAND_Sea), spatial metric shape calculated for the land use “vehicles path”
(SHAPE_MN_Vehicles_Path), A-weighted sound pressure level exceeded 50% of time (LA50) and
A-weighted sound pressure level exceeded 95% of time (LA95).

Figure 9 shows the relative importance of the variables that compose the model of the road traffic
areas. The spatial metric NLSI_Garden gives an idea of the relationship between the minimum and
maximum perimeter of the green areas near each subject (to whom the interview was carried out).
Since the influence of the NLSI_Garden on the soundscape appraisal is positive (23.9%), the higher the
dispersion of the green areas is, the more negative the appraisal on the soundscape quality is.

The percentage of sea has also a significant positive influence on the soundscape quality appraisals.
The areas near “Mergellina” have low PLAND_Sea values due to the presence of jetties and yachting
port, with the assessments on the sonic environment being more negative than in the other road traffic
sites. There are also visual obstacles (small metallic or wooden constructions and billboards and
metallic fences) that do not allow a proper vision of the sea. Thus, the results confirm the positive
relationship between the vision of the sea and the soundscape quality.

As expected, higher levels of background noise (LA95) lead to a negative appraisal of the sonic
environment. The same trend is observed for LA50.

The spatial metric SHAPE_MN_Vehicles_path is negatively related to the soundscape quality
appraisal. This metric depends on the perimeter and the square root area; therefore, the more irregular
and complex the shape of the street network is, the lower the values of the soundscape quality are.
This fact is confirmed in the places with road intersections (near “Mergellina”) with more negative
appraisals than the area near the “Villa Comunale” park, which is mainly straight. There is a mean
difference of 3 dB in both areas, so other acoustic factors associated to the intersections include
tyre noise.

In the road traffic areas, the food services present include kiosks and a bar near the intersection
of “Via Mergellina”. The LPI metric relates the surface of the total area (around the interviewee) to
the surface of the largest element of a specific land use. Since they have a positive relationship with
the soundscape, this may mean that the large food services areas (bars and restaurants) have a more
positive relationship with the soundscape appraisal than the smaller ones (small kiosks).
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Figure 9. Percentage of relative importance of the predictors on the results calculated with the
Olden et al. method for the road traffic areas. Values higher than zero mean a positive relative
effect, and lower than zero, a negative relative effect. The input variables are from top to bottom
spatial metric “normalized landscape shape” calculated for the land use “garden” (NLSI_Garden),
spatial metric “percentage of land use” calculated for the land use “sea” (PLAND_Sea), spatial metric
“large patch index” calculated for the land use “food service” (LPI_Food), A-weighted sound pressure
level exceeded 95% of time (LA95), spatial metric shape calculated for the land use “vehicles path”
(SHAPE_MN_Vehicles_Path) and A-weighted sound pressure level exceeded 50% of time (LA50).

3.2.3. Pedestrian Areas

Figure 10 shows the variables selected by the mRMR method for the pedestrian areas. The mean
concordance index calculated from the variables selected in the pedestrian areas is C = 0.56 (C > 0.5).
Therefore, the set of variables selected can be accepted.

Five acoustic parameters were selected in the pedestrian areas, namely LAeq, R, LA50, LA10 and
N5. The visual parameters selected are related to the buildings within a radius of 100 m (from the
panoramic photo), the food services (PROX_MN_Food) and the singular buildings (SPLIT_Singular).
The pedestrian areas contain a high number of bars and restaurants with tables and chairs outside.
The variable PROX_MN_Food may have been chosen because the sounds produced by these activities
are noticeable outside, and the perception of the sonic environment can be different in their proximities.
The selection of a variable related to singular buildings is interesting. Site 4, where “Castel dell’Ovo”
is, has a particular behaviour in relation to the soundscape quality and the LAeq in comparison with
other pedestrian areas. The presence of this historical building can make the difference in perception
due to its historic richness, beauty or cultural heritage.

Figure 11 shows the relative importance of the variables within the model of the pedestrian areas.
The acoustic parameters are all negatively correlated with the soundscape, especially the 5th percentile
of loudness (N5) with a −43.8% of influence (considered similar to the real perception of the level
of noise). The higher the loudness is, the more unpleasant the soundscape is. The noise levels that
are exceeded 10% of the time also have a negative influence on the soundscape perception (−30.0%).
Roughness and the percentile LA50 are the factors with less influence on the soundscape appraisals.
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Figure 10. Inferred mRMR network topology of the soundscape quality (SQQ) for the pedestrian
areas. The variables selected were “percentage of generic buildings in the aerial photograph within a
distance of 100 m” (CP_Building_100), spatial metric “proximity” calculated for the land use “food
services” (PROX_MN_Food), spatial metric “split” calculated for the land use “singular buildings”
(SPLIT_Singular), sound pressure level exceeded 50% of time (LA50), A-weighted equivalent sound
pressure level (LAeq), roughness (R), loudness(N5) and sound pressure level exceeded 10% of time.

Figure 11. Percentage of relative importance of the predictors on the results calculated with the
Olden et al. method for the pedestrian areas. Values higher than zero mean a positive relative effect,
and lower than zero, a negative relative effect. The variables selected were spatial metric “split”
calculated for the land use “singular buildings” (SPLIT_Singular), spatial metric “proximity” calculated
for the land use “food services” (PROX_MN_Food), “percentage of generic buildings in the aerial
photograph within a distance of 100 m” (CP_Building_100), sound pressure level exceeded 50% of time
(LA50), roughness (R), and A-weighted equivalent sound pressure level (LAeq), sound pressure level
exceeded 10% of time and loudness (N5).



Int. J. Environ. Res. Public Health 2016, 13, 934 14 of 19

Regarding the landscape parameters, SPLIT_Singular also has a positive influence on the
perception of soundscape. The fact that there are singular buildings in the perimeter of the interviewee
(175 m) has a high influence on the perception of soundscape (19.5%).

4. Discussion

The statistical analysis reveals the influence of visual aspects on the sonic environment perception.
It is interesting to note that, even if the participants were asked to pay attention to what they were
hearing at the moment and the place of the interview, in the road traffic areas, the subjects identified
the water as a perceived sound source, and in most cases the interviewers were unable to perceive it.
Thus, it seems that there is a strong subjective component on the answer of the interviewees that can
be due to the influence of the visual stimuli and expectation on the perception of sounds [52,53].

In the pedestrian areas, since the traffic does not mask other sounds, the variety of predominant
sources identified is higher than in other areas. Voices and steps were identified as predominant
by a higher percentage of subjects in the pedestrian and limited areas than in the road traffic areas.
The predominance of these sources involves the human presence and, therefore, the places where these
sources were detected as predominant are preferred to others in terms of stay; users of the waterfront
prefer silent places where natural sources are more present than road traffic noise.

In the limited traffic areas and the areas open to road traffic, the traffic noise is able to mask the
wanted sounds (like sea sounds), that can be noticed by the subjective component of perception.

The selection of the variables that are included in the model has an important role in its
performance. A high number of variables lead to models that are difficult to interpret. Thus, a previous
selection of variables is necessary. Usually, this selection is made either according to the correlation
between variables or following subjective criteria. Several selection methods choose the top-ranking
features, based on mutual information of the variables, without considering the relationships among
them. However, these selection methods do not guarantee a good model performance and can lead
to a set of highly correlated variables, with the consequent risk of collinearity. In other fields, such
as in cancer detection or biology, the use of the mRMR method has been proved to be an efficient
way of selecting the variables in order to avoid redundant information. In this case, very good results
have been obtained through the application of this method. An approach to the explanation of the
soundscape of areas with different traffic conditions was carried out through artificial neural networks.
The ‘relative importance of the variables’ applied to the artificial neural network models give meaning
and sense to the results, providing a sign and an amount of contribution to the soundscape quality.

In the limited traffic areas, the LAeq was the only acoustic variable selected by the mRMR.
The exclusive selection of this acoustic variable, related to the human hearing range, indicates that
other acoustic variables do not add new significant information to the model. The negative relationship
between LAeq and the perceived quality of the soundscape has been previously mentioned in
different research studies [17,39,54]. It is also in agreement with the outcomes of a recent study,
in which perceived natural sounds display a negative correlation with LAeq, indicating that natural
sounds are masked in areas in which LAeq are typically high [55]. Another recent study supports
a positive association between the predominant road traffic and LAeq [56]. Because road traffic is
the predominant sound source of the area (see Figure 4), the higher the levels of LAeq are, the most
negative the soundscape appraisal is (see Figure 7). The percentages of the sea and the contiguity
of the pedestrian areas positively affect the perception of the sonic environment (33.5% and 16.9%,
respectively). The association with the first factor is due to the positive effects of the natural elements,
whereas the association with the second factor can be related to a slight reduction of the noise levels
near the pedestrian areas.

In the road traffic areas, only two acoustic parameters were selected by the mRMR algorithms:
LA50 and LA95. The relationship of quiet soundscapes and LA50 (that is not affected by single sound
events [57]) has been proposed in [13,52], and the importance of this parameter on the perception of
quietness has been supported in [58]. LA95 is traditionally the reference parameters for the background
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noise. The high background noise measured in the open to road traffic areas and the nature of the
predominant sound source (traffic) explain the negative association of the soundscape quality with
LA95. Considering that low background noise is an indicator of quietness [14] in our case, the high
values of background traffic noise may denote lack of quietness and therefore, low soundscape quality
ratings. The organization of the green areas, the percentage of the sea and the LA50 are the parameters
that have the highest association with the soundscape quality (24.0%, 23.9% and −21%, respectively).
The direction of the association is positive with the spatial parameters and negative with the LA50.

In the pedestrian areas, the number of acoustic parameters selected is greater than for the ones
with traffic (limited or open to road traffic streets). As previously mentioned, traffic noise masks other
existing sounds in the areas with vehicles, and avoids the clear perception of other sound sources.
Since the pedestrian areas have a wider variability of perceived sound sources (see Figure 3), more
acoustic parameters (LAeq, R, LA50, LA10, N5) than in the areas with traffic flows are needed in
order to characterize and describe the sonic environment. Two acoustic factors have the highest
relative importance, N5 and LA10, corresponding to the perceived loudness and the occasional peak
events. N5 has been considered in literature a good descriptor of the perceived loudness in cases
of eventful sonic areas [59,60]. The high anthropogenic activity of the pedestrian areas leads to
soundscapes characterized by unsteady sounds that may have contributed to the selection of this
parameter as a good descriptor of these areas in the waterfront of Naples. This circumstance is also
highlighted by the selection of LA10 (levels of sound that is exceeded the 10 percent of times), that
may indicate the unsteady sounds with high sound levels. The third element in order of importance is
related to the singular buildings. In fact, the area with the most positive ratings on the soundscape is
“Castel dell’Ovo”, which is one of the most important historical buildings of the city.

The models express what occurs in the area by means of the variables that compose it, as well as
through the variables that have not been selected. For instance, the selection of LAeq only in areas
with traffic indicates that other parameters do not add significant information, and that important
nuances of the sonic environment were lost due to the road traffic noise masking. The opposite trend
was observed in the pedestrian areas, where a wider range of sound sources were perceived.

This paper proposes a methodology to obtain the acoustic and visual factors capable of describing
the soundscape of a waterfront. This methodology, however, can be applied to other parts of the
city, as well as different cities. The mRMR method was used to select the variables and the ANN to
calculate the models for the soundscape perception. The multilayer perceptron neural network is a
globally generalizing network which has been proved to be very effective in function approximation,
but cannot be easily extended to incorporate prediction limits [61]. Thus, it is not wise to extend the
results to other areas, even if they have similar morphological characteristics, but it is possible to
extract some tendencies that can help to make decisions in the soundscape design process. Some of
these tendencies have been outlined above, such as the positive association of the soundscape appraisal
with the percentage of the sea or the organization of the green areas.

These kinds of models are a mathematical reduction of physical and psychological real
circumstances. Such reduction always involves loss of information. The variables selected in one area
regarding certain data can be different to the variables of a different area, even if both areas have
similarities. Thus, it is not possible to expect that considering such number of factor as in this study
(101) and restricting the outcomes to the use of 7–9 explanatory variables, the chosen factors were
always the same. Future studies should consider different morphological typologies of waterfront in
order to evaluate how these may influence the sound perception.

5. Conclusions

This work deals with the characterization and comparison of the perceived soundscape quality
of three types of area along the Naples waterfront, with reference to the type of traffic, while also
considering objective visual and acoustic data. A combined methodology of features selection method,
artificial neural network and relative importance of the variables was used. The combination of mRMR,
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ANN and the study of the “relative importance of the variables” made it possible to obtain a coherent
interpretation of the behaviour of a particular sonic environment using only the most remarkable
objective visual and sonic factors, resulting in a very good performance of the models (in this
case-study, the correlation coefficient of the ANN was rLimited_Traffic = 0.96, rRoad_Traffic = 0.86,
rPedestrian = 0.87).

The application of the methodology used in this study proposes the association of the variables and
the soundscape quality. The use of models helps decision-makers to interpret the sonic environment
in order to characterize existing scenarios for future intervention [4,15,33,34]. Even if a numerical
model cannot completely define the sonic environment and any inherent phenomena, it constitutes a
powerful approach to its evaluation.
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