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Abstract
The wide spread of gene exchange and loss in the prokaryotic world has
prompted the concept of ‘lateral genomics’ to the point of an outright denial of
the relevance of phylogenetic trees for evolution. However, the pronounced
coherence congruence of the topologies of numerous gene trees, particularly
those for (nearly) universal genes, translates into the notion of a statistical tree
of life (STOL), which reflects a central trend of vertical evolution. The STOL can
be employed as a framework for reconstruction of the evolutionary processes in
the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT)
dominates microbial evolution, with the rate of gene gain and loss being
comparable to the rate of point mutations and much greater than the duplication
rate. Theoretical models of evolution suggest that HGT is essential for the
survival of microbial populations that otherwise deteriorate due to the Muller’s
ratchet effect. Apparently, at least some bacteria and archaea evolved
dedicated vehicles for gene transfer that evolved from selfish elements such as
plasmids and viruses. Recent phylogenomic analyses suggest that episodes of
massive HGT were pivotal for the emergence of major groups of organisms
such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear
to indicate that, in addition to donating hundreds of genes to the emerging
eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT.
These results shed new light on the routes of evolutionary transitions, but
caution is due given the inherent uncertainty of deep phylogenies.
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Pervasive horizontal gene transfer in microbial 
evolution and the statistical tree of life
As soon as several complete bacterial and archaeal genomes were 
sequenced in the mid to late 1990s, comparative and phyloge-
nomic analyses have revealed a surprising complexity of microbial  
genome evolution1–6. These observations can be broadly summarized  
in the form of three major trends: i) bacterial and archaeal genomes 
have dramatically different gene compositions, with only a small set 
of core genes being universally conserved; ii) unexpected patterns 
of gene sharing have been detected, in particular many genes shared 
between hyperthermophilic archaea and bacteria; and iii) topolo-
gies of the phylogenetic trees for many bacterial genes were rarely  
fully compatible between each other or with the 16S ribosomal 
RNA (rRNA) tree, although at least some of these trees were highly 
reliable, indicating that the discrepancies could not be caused by  
methodological artifacts alone. Taken together, these findings 
appeared impossible to explain without invoking widespread hori-
zontal gene transfer (HGT), prompting the concept of ‘lateral genom-
ics’, which posits that the dominant process in microbial evolution 
is gene exchange between organisms rather than vertical descent 
along a tree4,7–10. In its extreme form, lateral genomics denies the 
relevance of tree-like evolution and “tree thinking” in biology  
altogether11,12. This concept triggered an intense debate that contin-
ued for over a decade, with the entire spectrum of positions expressed 
forcefully, from complete dismissal of HGT as a consequential 
aspect of microbial evolution to an equally adamant denial of the 
importance of trees13. A characteristic episode that might epitomize 
this entire extended discussion occurred in 2006. A computational 
pipeline that automatically produced a comprehensive ‘Tree of 
Life’ (TOL) from a concatenated sequence alignment of 31 uni-
versal proteins was hailed as a major advance of phylogenomics14, 
only to be immediately debunked as a “tree of 1%”, i.e. one that 
(at best) accurately reflects the evolutionary history of only a small  
fraction of microbial genes15.

Now, exactly 20 years after the comparison of complete microbial 
genomes became possible, where do we stand on the status of trees 
and HGT in microbial evolution? Not only phylogenies of individ-
ual genes but also the microbial TOL are clearly alive and appar-
ently rather well. A remarkable testimony to the staying power of 
trees is the recent amendment to the microbial TOL, which now 
includes a major new branch discovered through metagenomics16. 
However, the status of the TOL has changed irrevocably. Given the 
overwhelming evidence that the topologies of the phylogenetic trees 
of individual genes are rarely identical, the phylogeny of universal 
genes (let it be one gene, such as 16S rRNA, or multiple genes, 
such as those of ribosomal proteins) hardly can be considered an 
accurate representation of organismal evolution. The key question, 
then, is: does a tree of a universal gene reflect solely its own history 
or does it contain information on the evolution of other genes and, if 
so, how many genes and how much information? A phylogenomic 
study designed to address this question has revealed considerable 
orderliness among the topologies of several thousand trees in the 
microbial “phylogenetic forest”17,18. Specifically, the tree topologies 
of the (nearly) universal genes, which encode primarily translation 
system components (roughly, the notorious 1% of all analyzed 
trees), are highly consistent not only among themselves but also 
with trees of numerous other genes. The consensus topology of the 

nearly universal trees explains nearly 40% of the variance in the 
tree topologies across the “phylogenetic forest”19. This tree-like sig-
nal of vertical inheritance is by far the strongest trend in microbial 
evolution because the remaining variance in tree topologies reflects 
the largely random gene exchange. Thus, the “tree of 1%” seems 
not to be a failed evolutionary hypothesis20,21 but rather an appro-
priate representation of the central current of microbial genome 
evolution, or a “statistical tree of life” (STOL)22. The STOL pro-
vides the standard against which HGT can be identified—indeed, 
the very notion of horizontal gene flow becomes meaningless in 
the absence of such vertical standard—and, more generally, the 
framework for reconstruction of microbial genome evolution via  
gene gain and loss.

A more sophisticated argument against “tree thinking” has been 
that biased HGT, such that there exists a gradient of HGT rates 
from closely related to distant microbes, could mimic a tree pattern 
of evolutionary divergence23. Subsequent simulation analyses dif-
fered with respect to whether this explanation was plausible24–26 or 
not19 under realistic parameters of the evolutionary process. Testing 
this proposition depends on the subtleties of evolution modeling 
and is not easy.

Rapid dynamics of microbial evolution
Numerous comparisons of microbial genomes show that even 
genomes of organisms that are closely related in terms of the 
sequence similarity between universal genes (e.g. identical  
16S rRNA sequences) often substantially differ in the gene  
repertoires27,28. Thus, information on the evolutionary dynamics 
of microbial genomes can be extracted from the patterns of gene  
presence-absence29. The prominence of the vertical evolution  
trend in the “forest of life” (see above) justifies the use of phyloge-
netic trees of universal genes (species tree, for short) as a scaffold 
for evolutionary reconstruction. Briefly, all the genes in the pang-
enome of a species or another group of microbes (i.e. the entirety 
of the genes represented in the available isolates of the given 
group30) are mapped to the leaves of the species tree. This mapping 
is used to reconstruct the evolutionary scenario for the pangenome,  
i.e. the history of gene gains, losses, and duplications. Initially, the 
reconstruction was performed using simple, intuitive maximum 
parsimony methods which identify the scenario with the minimum 
number of events31–33. At present, the approaches of choice are 
based on more sophisticated maximum likelihood algorithms that  
employ evolutionary birth-and-death models to derive statistical 
estimates for the number of different genomic events associated with  
each branch of the species tree34–37.

Application of the maximum likelihood approach to the reconstruc-
tion of evolution for diverse groups of closely related bacteria and 
archaea has revealed a striking picture of genomes in turmoil38. 
Although the rates of gene gain, loss, and duplication greatly differ 
across the bacterial diversity, in the most dynamic groups, several 
gene gains and losses occur during the time the genome accumu-
lates, on average, one nucleotide substitution per gene. Strikingly, 
the most common process of genome dynamics is actually loss of 
genes: for most (although not all) groups of microbes, evolutionary 
reconstructions indicate a twofold to threefold excess of losses over 
gains per nucleotide substitution. In the long term, excess of gene 
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losses obviously would lead to genome degradation and eventually 
extinction, and indeed such is the fate of many groups of microbes, 
in particular parasites and symbionts39,40. In general, however, the 
gradual gene loss appears to be offset by episodic, massive gene 
gain that might accompany the emergence of major groups of 
prokaryotes41 (see more below on such putative bursts of innova-
tion). The same reconstructions indicate that in all analyzed groups 
of microbes, the rate of gene gain exceeds the gene duplication rate 
by at least an order of magnitude38,42. The primary source of gene 
gain is HGT, which accordingly is the principal route of evolution-
ary innovation in bacteria and archaea.

Taken together, the reconstructions of the dynamics of microbial 
genome evolution show that, in the microbial world, evolution pri-
marily occurs not via the classic Darwinian process adopted by the 
Modern Synthesis of Evolutionary Biology, i.e. gradual accumula-
tion of numerous, “infinitesimally small” changes (mutations)43,44, 
but rather by much bigger, at least gene-sized, leaps. In a sharp con-
trast to eukaryotes, in bacteria and archaea, the dominant feature of 
genome evolution is not gene duplication45–47 but rather evolution 
by extensive gene loss and gene gain via HGT.

Essentiality and evolvability of horizontal gene 
transfer in bacteria and archaea
Can microbes evolve without substantial HGT, simply via the 
competition of clonal populations? Apparently not, as population 
genetic modeling indicates that this evolutionary regime is unsus-
tainable in the long term48. Clonal populations typically deteriorate 
due to the action of the evolutionary mechanism known as Muller’s 
ratchet, i.e. gradual loss of fitness and eventual extinction caused by 
accumulation of slightly deleterious mutations via genetic drift49,50. 
Demise caused by Muller’s ratchet appears to be the typical fate of 
bacteria that are confined to intracellular parasitism or symbiosis, 
although the ratchet can be slowed down by lowering the muta-
tion rate51. However, such mechanisms cannot stop the ratchet 
altogether. The only route of actual escape from Muller’s ratchet 
appears to be gene acquisition via HGT resulting in either displace-
ment of a mutated gene by a functional copy or gain of new genes 
that offsets the deleterious effects of accumulating mutations48. 
Notably, the model shows that, thanks to the stochastic nature of the 
mutation process, protection from the ratchet is achievable despite 
the fact that environmental DNA that comes from dead microbes 
on average has a higher mutational load than the DNA of living 
recipient cells48. Thus, in prokaryotes, HGT plays the same role of 
preventing mutational meltdown that in eukaryotes is played by 
meiotic sex52.

Escape from Muller’s ratchet can be considered the most funda-
mental benefit of HGT in microbial evolution but it certainly is 
not the only one. Acquisition of new genes and whole operons 
appears to be the principal route of metabolic network expansion 
in microbes42,53. As the network grows, gain of a single enzyme is 
increasingly likely to provide access to a new nutrient leading to 
increased fitness54.

Given the indispensability of HGT for the survival of microbial 
populations, a plausible hypothesis seems to be that HGT is evolv-
able, i.e. is an adaptive, selectable trait. However, whether or not 

this is the case is not an easy question because HGT might be 
considered a by-product of the presence of substantial amounts of 
DNA in the environment combined with genetic processes such 
as transformation and bacteriophage infection that leads to gene  
transduction55. Diverse bacteria and archaea are competent for 
natural transformation that is mediated by dedicated DNA intake 
pumps56. These pumps can be legitimately considered devices 
for utilization of environmental DNA as a source of nucleotides 
(simply put, food), with HGT being a fringe benefit. However, the  
demonstration that at least in some bacteria the ingested DNA is 
protected against degradation, thus preventing its use as a nucleotide 
source and conversely facilitating HGT, implies that, at least in part, 
natural competence evolved as a gene transfer mechanism57. The 
long-known existence of DNA uptake signal sequences and proteins 
that bind them, which jointly comprise a discrimination mechanism 
allowing bacteria to preferentially take up DNA from closely related 
organisms, is another piece of evidence in support of the view of 
transformation as an evolved route of gene transfer, apart from  
the nutritional value of DNA58,59.

Bacterial and archaeal conjugation (prokaryotic sex) is a mecha-
nism of genetic material transfer between microbial cells that 
combines features of selfish genetic elements and devices for gene 
transfer. Conjugative plasmids encode proteins required for autono-
mous replication, whereas integrative and conjugative elements  
(ICEs, or conjugative transposons) typically replicate while 
integrated into the host chromosome but have the ability to excise 
and form plasmid-like molecules60,61. Both types of elements are 
transferred by the conjugation molecular machinery (type IV 
secretion systems) and typically carry ‘cargo’ genes unrelated to 
the transposon life cycle. Thus, these selfish elements are at the 
same time vehicles for HGT that mediate microbial adaptation by 
introducing new genes into the recipient genomes62.

Perhaps the most striking showcase for dedicated vehicles of HGT 
are the gene transfer agents (GTAs), defective prophages that form 
virus particles in which they package apparently random fragments 
of the bacterial chromosome rather than the phage genome63,64. 
The GTAs then infect other bacteria or archaea, and the transferred 
DNA integrates into the recipient genome. In marine bacterial com-
munities, the rate of GTA-mediated gene transfer appears to be 
quite high and often involves distantly related organisms65. Notably, 
the GTAs confer on their carriers the ability to donate rather than 
acquire genetic material. Such a capacity could be adaptive in the 
context of utilization of “public goods” by microbial communities. 
The wide spread of GTAs appears to present strong evidence of 
evolvability of HGT.

These examples highlight the apparent major route of evolution of 
HGT vehicles, through stepwise domestication and “enslavement” 
of selfish genetic elements, such as plasmids and viruses, whereby 
the hosts exploit the inherent ability of such elements to transfer 
genetic material (Figure 1).

Horizontal gene transfer and evolutionary transitions
Several large-scale reconstructions of microbial genome evolu-
tion suggest that gene loss occurs in a roughly clock-like manner 
whereas gene gain tends to be episodic, occurring in bursts that 
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involve acquisition of many genes over a short time31,38,66. These 
observations prompted the hypothesis that emergence of new major 
groups of organisms often, perhaps typically, involves massive  
gene gain via HGT (in microbes) or extensive, in some cases, 
whole genome duplication (in eukaryotes) followed by gradual 
genome streamlining via gene loss in each of the lineages41. The 
importance of massive HGT in at least two major evolutionary 
transitions, namely the origin of eukaryotes and the origin of the 
eukaryotic supergroup Archaeplastida (algae and plants), is beyond 
doubt67. In these special cases, the sources of the hundreds if not 
thousands of transferred genes were mitochondria and chloroplasts, 
respectively, i.e. bacterial endosymbionts on the path to becom-
ing eukaryotic organelles68–70. Can the model of punctuated gene 
gain be validated in a more general context? Comprehensive search 
of archaeal genomes for acquired bacterial genes has led to the 
conclusion that the origin of most, if not all, major archaeal 
clades was associated with and possibly caused by acquisition of  
hundreds or even thousands of bacterial genes71,72. The largest influx 
of bacterial genes was detected in mesophilic archaeal groups 
such as Halobacteria and Methanobacteria and apparently led 
to fundamental innovation, i.e. adaptation to new lifestyles and  
ecological niches. The conclusion on the acquisition of numerous 
bacterial genes at the roots of the major archaeal clades, as opposed 
to more uniform gain along the respective evolutionary lineages, 

has been reached by Nelson-Sathi and colleagues using an original 
statistical procedure for topological comparison of the phylogenetic 
tree of the (candidate) acquired bacterial genes and resident genes 
in the recipient group of archaea72. A re-evaluation of these results 
using more traditional methods for reconstruction of gene gain and 
loss yielded results that were better compatible with piecemeal 
gene acquisition73. Nevertheless, a more biologically oriented anal-
ysis seems to suggest that, at least for the origin of several groups 
of mesophilic archaea, acquisition of multiple bacterial genes has 
been the trigger of the lifestyle transition74. Clearly, additional and 
probably extensive research with different methods is required to 
resolve this conundrum.

Two more recent, complementary studies have further addressed  
the question of episodic vs. continuous acquisition of genes 
via HGT in the context of symbiogenesis and early evolution of 
eukaryotes. One of these employed comprehensive comparison of 
the topologies of phylogenetic trees of eukaryotic genes of appar-
ent bacterial and archaeal origin and arrived to the conclusion that 
eukaryotes acquired the majority of bacterial genes in the two major 
bursts associated with the origin of mitochondria and chloroplasts 
whereas subsequent, continuous acquisition of bacterial genes was 
limited in extent75. The other analysis makes an attempt to go even 
further by directly comparing the phylogenetic distances from the 

Figure 1. Domestication of selfish genetic elements en route to dedicated vehicles for horizontal gene transfer. The figure depicts the 
hypothetical stages of the evolutionary paths from a lytic phage to a gene transfer agent and from a small, high copy number plasmid to an 
integrative and conjugative element. Abbreviations: GTA, gene transfer agent; ICE, integrative and conjugative element.
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closest bacterial homologs for the genes of apparent  
α-proteobacterial origin encoding proteins localized to the  
mitochondria and genes apparently derived from other bacteria76.  
The conclusion is that the proto-mitochondrial genes are the  
closest homologs to their bacterial ancestors, hence probably the 
latest large bunch of bacterial genes acquired by eukaryotes.

The ‘mitochondria late’ conclusion superficially could be inter-
preted as an indication that the host of the proto-mitochondrion was 
an ‘archezoan’, a primitive amitochondrial eukaryote77,78. However, 
this does not appear to be a necessary implication of the actual 
observations. On the contrary, these findings seem to be fully com-
patible with the conclusions of Ku et al. on the scarcity of late, 
non-organellar HGT in eukaryotes75 and with the earlier scenarios 
of eukaryogenesis, which proposed a complex archaeon with many 
acquired bacterial genes as the host of the proto-mitochondria79,80 
(Figure 2). Under this scenario, acquisition of the mitochondria 
precipitated the series of dramatic changes in the organization 
of the chimeric cell which led to the curtailment of HGT. Thus, 
the acquisition of numerous genes from the proto-mitochondrion 
comes across as the last major burst of HGT (other than the  
acquisition of chloroplast genes at the base of the Archaeplastida), 
although numerous lineage-specific acquisitions of relatively small 
but biologically consequential groups of bacterial genes as well 

as eukaryote-to-eukaryote transfers undoubtedly occurred at later 
stages81–83.

Concluding remarks
Over a decade ago, the question has been asked whether the con-
cept of HGT would soon ‘come of age’, causing a rather tense  
discussion84,85. These days, I believe, it is clear that the field has 
matured. There is no reasonable doubt anymore that HGT is a 
dominant process in microbial evolution that generally occurs at 
a high rate. Moreover, the relevance of ‘horizontal’ as applied to 
gene flow is validated by the strong evidence of the existence of  
a central vertical, tree-like trend in genome evolution. Thus, the 
focus of research has shifted towards the ‘how’s’ and ‘why’s’ of 
HGT and, in these directions, much more remains to be done than 
has been accomplished already.

Both theoretical models and tantalizing experimental clues sug-
gest that HGT is essential for microbial survival and could be an 
evolvable, adaptive capacity mediated by dedicated vehicles origi-
nating from domesticated selfish elements. Yet this concept runs 
afoul of the distrust of ‘evolution of evolvability’ that is deeply 
ingrained among biologists. Indeed, much work remains to be 
done to make a compelling case for the evolvability of HGT.  
Somewhat similarly, albeit in a different area, there is accumulating 

Figure 2. Eukaryogenesis and horizontal gene transfer. The figure presents the ‘endosymbiotic’ model of eukaryogenesis under which 
the host of the protomitochondrial endosymbiont was a typical archaeon albeit one with a relatively complex intracellular organization and 
numerous genes captured from bacteria via HGT. Abbreviations: HGT, horizontal gene transfer.
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evidence of a major role of HGT in evolutionary transitions. Yet 
these conclusions rest on the analysis of deep phylogenies which 
are inherently error prone and recalcitrant to definitive interpreta-
tion. Much like evolution itself, extensive HGT in the microbial 
world is a fact and not a ‘theory’. However, understanding the routes, 
causes, and consequences of horizontal gene flow as well as con-
structing the actual, quantitative theoretical framework of this per-
vasive process will keep many biologists busy for decades to come.
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