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Abstract
COVID-19 is one of the largest spreading pandemic diseases faced in the documented history of mankind. Human to
human interaction is the most prolific method of transmission of this virus. Nations all across the globe started to issue stay
at home orders and mandating to wear masks or a form of face-covering in public to minimize the transmission by reducing
contact between majority of the populace. The epidemiological models used in the literature have considerable drawbacks
in the assumption of homogeneous mixing among the populace. Moreover, the effect of mitigation strategies such as mask
mandate and stay at home orders cannot be efficiently accounted for in these models. In this work, we propose a novel
data driven approach using LSTM (Long Short Term Memory) neural network model to form a functional mapping of daily
new confirmed cases with mobility data which has been quantified from cell phone traffic information and mask mandate
information. With this approach no pre-defined equations are used to predict the spread, no homogeneous mixing assumption
is made, and the effect of mitigation strategies can be accounted for. The model learns the spread of the virus based on
factual data from verified resources. A study of the number of cases for the state of New York (NY) and state of Florida (FL)
in the USA are performed using the model. The model correctly predicts that with higher mobility the cases would increase
and vice-versa. It further predicts the rate of new cases would see a decline if a mask mandate is administered. Both these
predictions are in agreement with the opinions of leading medical and immunological experts. The model also predicts that
with the mask mandate option even a higher mobility would reduce the daily cases than lower mobility without masks. We
additionally generate results and provide RMSE (Root Mean Square Error) comparison with ARIMA based model of other
published work for Italy, Turkey, Australia, Brazil, Canada, Egypt, Japan, and the UK. Our model reports lower RMSE
than the ARIMA based work for all eight countries which were tested. The proposed model would provide administrations
with a quantifiable basis of how mobility, mask mandates are related to new confirmed cases; so far no epidemiological
models provide that information. It gives fast and relatively accurate prediction of the number of cases and would enable the
administrations to make informed decisions and make plans for mitigation strategies and changes in hospital resources.

Keywords COVID-19 · Covid-spread · Prediction · Mobility · Mask mandate · Data-driven · Machine learning · LSTM

This article belongs to the Topical Collection: Artificial Intelli-
gence Applications for COVID-19, Detection, Control, Prediction,
and Diagnosis

� Yongsheng Lian
yongsheng.lian@louisville.edu

Sandipan Banerjee
sandipan.banerjee@louisville.edu

1 Department of Mechanical Engineering, University
of Louisville, Louisville, KY 40292, USA

1 Introduction

The Corona-virus pandemic has infected more than 12.5
million people across the world, of which more than 3.2
million are in the United States. The number of deaths
across the globe is more than 559000, of which more than
136000 deaths were in the United States. These values
are as of July 10th, 2020 from the website worldometer.
info/coronavirus [2]. It can be clearly seen that the United
States bear a major brunt of the COVID-19 pandemic. For
prediction purposes, the daily new cases is a significant
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parameter especially if we consider a correlation with
mobility. The daily new cases in the US is shown in Fig. 1
along with a 7-day moving average.

Administrations provided guidelines to stay at home,
which resulted in remote work for many people, remote
learning for school and college students, cancella-
tion/postponement of many events, and commercial flights.
Social distancing guidelines between the population were
also delineated across multiple websites, social media and,
news media to make people aware of mitigation steps like
maintaining a 6ft distance with another being, wearing a
form of face covering or masks to limit the virus spread from
infected to non-infected people. Closure of non-essential
facilities and business were also mandated by multiple
nations while keeping only essential services open. All these
mitigation strategies resulted in a reduction of cases, how-
ever there is a delay attached to the decrease. This delay will
be discussed later in the paper. Since the number of cases
were successfully reduced by social distancing measures
and a mask mandate from the administrations, it is impera-
tive to have a correlation between the overall new confirmed
cases each day to the amount of mobility that people exhibit
and the mask mandate information. This could lead to a
prediction of the daily new confirmed cases based on the
mobility and mask mandate information.

Prediction of confirmed cases of COVID-19 has been
studied by using mathematical-epidemiological models.
Typically, these models are named ‘SEIR’ or in some cases
‘SIR’ [9, 19, 20]. The abbreviations arise from the fact that
the models divide the entire population into ‘Susceptible’,
‘Exposed’, ‘Infected’ and ‘Recovered’ categories. The

model consists of equations that govern the rate at which
the values of these categories change over time. Mostly
the rate of change for these sub-divisions are estimated
from available data of either the same disease or data
from previous similar diseases like SARS or MERS [27].
Although in some cases these models provide reasonable
approximations, there are some drawbacks. These models
assume that the disease would spread in a certain way
which is defined by three or four 1st degree equations
depending on whether SEIR or SIR model is used. The
models assume homogeneous mixing among the populace,
some predictions claim that up to 90% of the population
could eventually become infected unless the contact rate
is minimized by social distancing measures [24]. Most
models use reported case numbers as the input values for the
equations, but this may not be accurate as testing rates vary
across places, and delay in testing results could be observed
in multiple cases. This would erroneously estimate an
under-reported contact rate. Estimating an accurate contact
rate parameter in the model is a challenge. The incubation
rate could also be a source of erroneous prediction for
these models unless accurate estimation is provided. For
this strain of virus, the incubation period could be in the
range of 2-14 days as per the Centers of Disease Control and
Prevention website [1].

It has been shown that Machine Learning models have
been effective in their predictive capabilities across multiple
fields. Computer Vision [26], Natural Language Processing
[28], Software Engineering [12], Direct Numerical Simu-
lation (DNS) of Turbulence [21] (This is significant since
DNS is computationally very expensive specifically for

Fig. 1 Daily new confirmed
cases in US as a function of time
along with seven day moving
average
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turbulent flows [8]). Some hybrid SEIR-Data driven models
have also been reported in the literature and online pre-
prints [23, 27] for COVID spread prediction. One of the
models tries to estimate the contact rate in the ‘SEIR’ model
from mobility data [23]. However, the base drawbacks of
a ‘SEIR’ based model still persists in these models too.
Further, none of the models consider the effect of mask
mandate which our results predict to have a large impact on
the spread of the virus. Data driven prediction of the spread
of COVID-19 have also been reported. [25] used LSTM for
predicting the number of cases in India, but they did not
include the effect of social distancing measures by consid-
ering the actual mobility of the population, neither did they
consider the effect of mask mandate on the spread of the
virus.

In this paper, we report a completely data driven
approach to predict the daily new confirmed cases based
on the actual mobility of the population and actual mask
mandate information. Unlike the SEIR based models, no
prior assumption is used to account for the spread of this
work. The number of new confirmed cases on a certain
day is considered to be dependent on: (a) the mobility
data from a few days before, (b) the mask mandate
information, and (c) the confirmed cases from previous few
days. We use a LSTM neural network model to predict
the number of new confirmed cases up to 75 days in
the future. The mobility data is gathered from cell-traffic
information provided by Google LLC [3]. The confirmed
cases information is gathered from Johns Hopkins Center
for Systems Science and Engineering [4, 5]. The remainder
of the paper is divided into the following sections: A
description of the method, data analysis, and the model is
provided in Sections 2, 3, and 4. Results and discussion are
provided in Section 5, followed by a conclusion in Section 6.

2Method

We use LSTM neural networks to predict the 7-day average
daily new confirmed cases based on mobility data from cell
phone traffic information and mask mandate information. In
this section, we provide a brief explanation of a LSTM cell.

LSTM is a type of Recurrent Neural Network (RNN)
capable of learning long term temporal dependencies in a
time-series. This neural network was introduced by [17].
LSTMs have an advantage over regular RNNs as it does not
exhibit the vanishing gradient and exploding gradient issues
which are typical drawbacks associated with RNNs.

In an LSTM cell, there are three types of gates, each
performing a specific task.

– Forget Gate: Forget gate decides which information
the network should keep and which it should forget

or remove. The equation solved by the forget gate
is:

ft = σ
(
Wf · [

ht−1, xt

] + bf

)
(1)

where Wf are the weight values, and bf are the bias
values. xt corresponds to the inputs at time t , and ht

corresponds to the output.
– Input Gate: Input gate decides what new information

the network should add to the cell state. Once that is
done, the old cell state is updated with the new values.
The calculation for the input gate and the consequent
updating of the cell state is done by:

it = σ
(
Wi · [

ht−1, xt

] + bi

)
(2)

C̃t = tanh
(
WC · [

ht−1, xt

] + bC

)
(3)

and,

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

– Output Gate: Output gate decides what should be the
output of the cell, the output depends on both the input
and cell state values. The calculations are performed by:

ot = σ
(
Wo · [

ht−1, xt

] + bo

)
(5)

ht = ot ∗ tanh (Ct ) (6)

3 Data analysis

Three sets of time-series data are used in the model. First
is the average mobility data which is calculated from cell-
phone traffic information of five different categories of
public areas. The areas are Retail and Recreation, Grocery
and Pharmacy, Parks, Transit Station, and Workplaces. The
data from Google reports a percentage change from pre-
COVID time cell-traffic for each day. As a first step, the
mean percentage change is calculated between all five
categories. Next, the mean percentage change is converted
to an actual value.

v = 1.0 + pc/100.0 (7)

where v represents the final calculated value, and pc

represents the percentage change from pre-COVID times.
Next, a seven day average of the mobility information is
calculated to smooth the data. Then the 7-day averaged data
is scaled so that all values lie between 0 and 1 as this helps
the model to learn faster. Similar conversion has also been
applied by [23]. The second set of time-series data used for
training is the 7-day average daily new confirmed cases for
the previous few days. The reason for using the previous
data of cases is a that there is a time-dependent trend in the
daily new cases which can be shown by a stationarity test.
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3.1 Stationarity test: augmented dickey fuller test

In order to check the time-dependence of the daily new
cases data, we perform a stationarity analysis by using the
well-known “Augmented Dickey Fuller (ADF) test”. As per
the test, if the p-value of a time-series is less than 0.05,
then the data is stationary, and if the p-value is greater than
0.05 then the time-series is non-stationary. Stationary time-
series means there is no time-dependent trend in the data,
and non-stationary means there is a time-dependent trend.
Typically for stationary time-series conventional machine
learning regression algorithms like ARIMA, ARIMAX are
used. LSTMs are generally favorable for non-stationary data
[22]. We applied the ADF test to the daily new cases time-
series and found the p-value to be 0.1 which concludes that
the time-series is non-stationary, hence shows that there is a
time-dependent trend. This can be considered as the reason
for using LSTM network as well as the reason for using the
previous few days of daily new cases as inputs along with
mobility data in order to predict the daily new cases for the
next day.

Finally, the mask mandate information is provided as a
binary option. 0 is set for dates when no mask mandate was
applicable, and 1 is set for dates when mask mandate was
applicable in that state. This is the third and final time-series
of input data provided to the model for training purposes.

3.2 Problem formulation and training data-set

From the available data, it is evident that a reduction in
mobility would result in fewer interactions between people,
which would lead to reduced transmission resulting in fewer
new cases and vice-versa. However, the response in the
change of cases due to change in mobility is expected to
exhibit a lag or delay. Once awareness about the rising
number of cases increases among the populace, along
with mitigation procedures enacted by administrations, the
mobility starts to reduce sharply. The lag could be attributed
to a combination of two main reasons: the virus incubation
period (about 2-14 days as per [1]) and a delay in testing
and reporting of cases (about 25 days). Since the virus
incubation period is 2-14 days, the symptoms can show any
time in that time window, so we chose 15 days of data
prior to the 25 days of lag for the model to be trained on
in reference to the mobility and immediate prior 15 days in
terms of the cases.

The daily new case prediction is treated as a supervised
learning problem. It is considered that the number of new
cases averaged over 7 days for each particular day would
depend on the number of new cases in the past 15 days, the
mobility information from 15 days prior to the number of
lag days, and the mask mandate information. The problem
for the neural network model is formulated as: Given the

mobility and mask mandate at day = t − (15+nlagdays), t −
(14 + nlagdays), · · · , t − (1 + nlagdays , and the number of
new cases at (t − 15), (t − 14), · · · , (t − 1), predict the
number of new cases at day = t . This would make the total
number of features to be (15 days mobility + 15 days case
count +15 days mask mandate = 45) on which prediction of
one day’s case count would depend on. The neural network
model would assign weights to each of these features
and would learn from the data. The functional mapping
between the provided input and the estimated output would
be approximated by changing the weight values and then
comparing the estimated output to the actual output of daily
number of cases. The goal is to keep the mean squared error
or MSE between the model estimation of the number of
cases at day = t (also called prediction), to the actual value
(also called label), to be minimum. MSE is the loss function
used in this model. Their are two versions of the model
implemented. For Version 1, the model is trained on 129
days (Feb 15th - June 24th), and validation forecast is made
for the next twenty days (June 25th-13th July). Prediction
is made for each day of the twenty days using the non-
cascading option where the actual data of the previous days
are used as input. Version 1 is only for validation purposes.
The only difference between Version 1 and Version 2 is that
all 149 days (Feb 15th-July 13th) are used as training sample
for Version 2, and prediction for 75 days into the future is
made (14th July-25th Sep).

4Model architecture and parameters

An overview of the neural network model used in this work
is provided in Fig. 2.

Although the first layer is shown to be an LSTM layer,
in reality there is a zeroth layer as well. A masking layer
is applied before the LSTM layer, but it not shown on the
architecture as the masking layer does not perform any
learning. Since data from 15 prior days is used for training,
that information is not available in the data-set for the initial
few training samples. For this the conventional approach of
padding those unavailable data has been used. The padded
values are typically selected such that they do not occur
anywhere on the actual training set. Since the training data
was scaled to be between 0 and 1, a padding value of -1 was
chosen. The benefit is that the masking layer prohibits the
model to learn or train on those samples which have values
of -1. Thus, both the input shape requirement of the data for
the LSTM is maintained, and training on padded values is
also prohibited.

The first layer in the model is an LSTM layer with 100
units, followed by another LSTM layer with 50 units. Both
LSTM layers have been applied with a recurrent dropout of
0.5 to prevent over-fitting. The next layer in the model is a
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Fig. 2 Architecture of network

Dense layer with 50 units. Dense layer is the conventional
‘MLP’ or Multi Layer Perceptron. The final layer consists
of another dense layer with one unit corresponding to
the output of each sample. Since the training data-set is
relatively small, only one batch is used for all the samples.
The well-known ‘Adam’ optimizer has been used with an
initial learning rate of 0.001, and a decay of 1e-6 has
been applied. Adam was introduced by [18]. As mentioned
earlier, mean squared error loss function has been employed
for the model. Hyper-parameter tuning was performed to
check for optimum performance. Both larger and smaller
learning rates did not seem to produce a significant change
in prediction. The above mentioned settings for the hyper-
parameters produced the most optimum performance. The
model has been created in Python using Tensorflow [7] and
Keras [13] framework.

5 Results and discussion

In this section we report the results predicted by our
model. The results for NY and FL are provided in
Section 5.1. Prediction using our model and comparison
of our results with other models such as ARIMA-based
model of [16] is provided in Section 5.2 for Italy and
Turkey.

5.1 Results for NY and FL

We start with the case for state of NY. Once the model is
trained on samples from 129 days, prediction is made for the
next twenty days for the 7-d average case count on each day.
The prediction for the twenty days along with the actual NY
data are shown in Fig. 3.
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Fig. 3 Validation Forecast for NY

1973Data driven covid-19 spread prediction based...



Figure 3 shows that prediction is in good general
agreement with the actual prediction. This shows that the
functional mapping performed by the model is accurate.
It should be noted that the prediction for the validation is
performed with Version 1. Next, in order to perform forecast
of next 75 days, model is trained for all 149 days (Version
2). Prediction for different mobility values of 0.25 and 1.0
are made with both with mask (value=1) and without mask
(value=0) options. Here 1.0 mobility corresponds to pre-
COVID mobility. 75 day forecast results for 7-d average
daily new cases are shown in Fig. 4a. Total number of cases
prediction are shown in Fig. 4b.
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Fig. 4 Forecast for 7-d averaged new cases for 75 days a and Forecast
for total cases for 75 days b for different mobility values and mask
options for NY

The results are in agreement with leading epidemiolo-
gists, that with decrease in mobility, the virus spread will
decrease. It should be noted that the initial similar prediction
for all different cases is due to the number of lag days. The
change in mobility will show in the change in cases after
the lag period, the initial similar prediction corresponds to
this lag. The model also accurately predicts that using masks
reduces the spread, as can be seen from Fig. 4a & b, that
for the same mobility, wearing masks produces much less
cases. However, the most significant conclusion that can be
drawn from the projections is that the spread is lower for
mobility of 1.0 with mask than for mobility of 0.25 without
mask. This means that if there is mask mandate, the spread
will be lower even with a certain degree of mobility, which
would enable the economy to be opened to a significantly
higher extent with out a significant rise in cases.

The model which has been pre-trained on the NY data
is then used to further train on the data for state of FL.
However, since FL has no mask mandate option at the
time of writing this paper, the mask mandate option cannot
be used for FL, due to lack of training data. For FL, the
correlation with the mobility is provided. Similar to the NY
model, first the FL model is trained on 129 days of training
data which ranges for the same dates as in the NY model.
The validation prediction of the FL model along with actual
FL data is provided in Fig. 5. It can be observed that the
model makes accurate prediction of the cases to rise sharply
for the twenty days.

Similar to the NYmodel, Version 2 is used for forecast of
FL. Data from all 149 days for FL is used to train the model,
and forecast is made for 75 days in future for mobility rates
of 0.25 and 1.0. The 75 day forecast results for 7-d average
daily new cases are shown in Fig. 6a. Total number of cases
prediction are shown in Fig. 6b.
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Fig. 6 Forecast for 7-d averaged new cases for 75 days a and Forecast
for total cases for 75 days b for different mobility values and mask
options for FL

As seen in the NY model, the FL model projection
shown in Fig. 6 also reports initial similar prediction for
both mobility values due to the lag period for the cases
to reflect the change in mobility. The model is in general
agreement that higher mobility will cause more cases, and
lower mobility will cause less. The important factor that

Table 1 RMSE and average percent difference for NY and FL

State RMSE Average Percent Difference

NY 2554.16 0.5

FL 10528.56 5.17
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Fig. 7 Validation forecast for Turkey

needs to be considered here is that since there is no mask
mandate in FL, the drop in cases due to lower mobility is not
very sharp. This has been verified by the NY projections.
Next, we include the RMSE (Root Mean Square Error) and
percent differences for NY and FL. Here RMSE and percent
difference are calculated based on the total confirmed cases
calculated from the prediction by the model and the ground
truth data of confirmed cases. RMSE is calculated as:

RMSE =
√√√√

n∑

i=1

(ŷi − yi)2

n
(8)

where ŷ is the predicted value, y is the actual value, and n is
the number of samples. The results for RMSE and percent
difference for NY and FL are reported in Table 1.

RMSE for FL is higher than NY as the prediction dates
for the FL observed a sharp increase in the actual data.
This can be observed in Fig. 5. The model does a good job
with predicting a sudden increase with a percent difference
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Fig. 8 Validation forecast for Italy
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Table 2 RMSE comparison of our model with [16] for Italy and
Turkey

Method RMSE–Turkey RMSE–Italy

Our model (LSTM) 710.5 229.4

Hernandez et al. (ARIMA based) 1892.3 566.8

of about 5%. The RMSE for NY data results in a percent
difference of 0.5%.

5.2 Comparison with a another model for
predictions of other countries

Different models have been proposed in the literature for
predicting COVID-19 spread such as Fong et al. [14, 15],
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Fig. 9 Prediction of 7-day average of daily new cases for a Australia
and b Brazil

Hernandez et al. [16]. It should be noted that Catelli et al.
[10, 11] performed interesting studies on Italy dataset. We
compare our results for Italy and Turkey with the results
of [16], who used an ARIMA-based model. In order for
the comparison to be accurate, we use data until May 28th,
2020 which is same as used by Hernandez et al. [16].
First we provide the prediction comparison of 15 days for
each countries. It should be noted that for the dates we are
comparing (i.e. until May 28th) a mask mandate policy was
not yet active in either Italy or Turkey. Prediction for 15 days
in comparison to the ground truth for Turkey and Italy are
provided in Figs. 7 and 8.

As can be seen from Figs. 7, and 8, the model predictions
are in good agreement with the ground truth. Similar results
were also reported by Hernanzdez et al. [16], using an
ARIMA based model. We compare our model’s RMSE
values with their results in Table 2.
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Fig. 10 Prediction of 7-day average of daily new cases for a Canada
and b Egypt
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Fig. 11 Prediction of 7-day average of daily new cases for a Japan and
b UK

From Table 2, it can be observed, that our model
prediction is more accurate than [16] for both Italy and
Turkey due to considerably lower RMSE values.

Table 3 RMSE comparison of our model with [16] for different
countries

Country RMSE-Our
model (LSTM)

RMSE- Hernandez et al.
[16] (ARIMA)

Australia 148.86 637.01

Brazil 10636.22 94302.48

Canada 1641.90 8863.83

Egypt 570.07 2067.55

Japan 236.79 6543.16

UK 2198.53 24835.98

Additionally, we include prediction results of total
confirmed cases for same period of 15 days (May 12th-
May 27th), as in Hernandez et al. [16] for six other
countries, namely: Australia, Brazil, Canada, Egypt, Japan
and United Kingdom (UK). Based on [6], none of the
countries mentioned above had a mask mandate during the
range of days of training data as well as prediction data. The
prediction results for Australia and Brazil are provided in
Fig. 9.

The prediction results for Canada and Egypt are provided
in Fig. 10.

The prediction results for Japan and UK are provided in
Fig. 11.

Prediction results for all of the countries are in good
agreement with the actual data. The RMSE comparison of
our model with that of Hernandez et al. [16] is given in
Table 3.

The results in Table 3 shows that our LSTM based model
reports considerably lower RMSE for all the countries in
question. This shows that the LSTM based model learns
the temporal correlations in the data. It also shows that
mobility data is a significant input parameter for predicting
the spread of the COVID-19 irrespective of the country.

6 Conclusion

A novel data driven approach is used to predict the
spread (daily new cases) of Corona-virus using mobility
data from cell traffic information and mask mandate
information. In contrary to epidemiological models, this
data driven approach does not use any pre-defined model
specific equations for the prediction. We propose a
LSTM based model that incorporates mobility and mask
mandate information, which cannot be done by the existing
epidemiological models. The proposed model does not
assume homogeneous mixing among the populace for the
spread prediction, instead it is trained on factual data
gathered from verified resources. LSTM neural network
has been implemented to capture the long term temporal
dependencies in the data. Model predictions show that with
a mask mandate implemented, the virus spread would be
reduced, and vice-versa. Results are in agreement with
opinions from medical experts that a reduction in mobility
would reduce the spread. The model also predicts that a
mask mandate would produce lower cases for a mobility
of 1.0 (i.e. pre-COVID mobility) than the case of no
mask mandate with a lower mobility of 0.25. This would
correspond to a reduction by hundreds of cases per day
with a higher mobility (for the state of NY) depending
on the population number. Results for states of NY and
FL confirm the efficacy of the model by reporting a low
percentage difference between prediction and real data.

1977Data driven covid-19 spread prediction based...



Further comparison with an ARIMA-based model shows
that our model is more accurate for Australia, Brazil,
Canada, Egypt, Italy, Japan, Turkey, and the UK due to
lower values of RMSE.
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