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Abstract
Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high
throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and
precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in
medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics
into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of
IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of
phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contri-
butions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core
phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-
based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better
using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand
the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.

Keywords Biochemical phenotypes .Metabolic phenotypes .Clinical informatics . Text-basedphenomics .Datamining . Inborn
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Introduction

Patient phenotyping marks the beginning of the fundamental
process of clinical genetics: uncovering the genetic etiology of
the disease. The rate of genetic discovery has been accelerated
by the adoption of genome-wide sequencing, and continues to
generate an explosive amount of compiled phenotypic and
genetic information (Chong et al 2015; Amberger et al
2011). Such abundance is motivating increasingly sophisticat-
ed efforts to (i) define a new phenotype and (ii) distinguish a
novel phenotype from an existing one (Biesecker 2004;
Amberger et al 2011). Therefore, both the scientific and clin-
ical communities have focused on the acquisition of precise
and comprehensive phenotypic data, or Bphenomics^
(Brunner and van Driel 2004; Houle et al 2010; Hennekam
and Biesecker 2012; Robinson 2012; Deans et al 2015).

Scientifically, the word Bphenome^ refers to the entirety of
observable traits from all levels of the biological hierarchy:
from metabolites to organisms (Houle et al 2010). Clinically,
the word refers to a collection of morphological,
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physiological, and behavioral characteristics observed in a
patient (Robinson 2012). In either context, the field has seen
numerous developments of large-scale projects (Houle et al
2010; Amberger et al 2015; Mungall et al 2017; Blake et al
2017). A successful example of such is the widely used
Human Phenotype Ontology (HPO), which provides a stan-
dardized vocabulary of abnormal phenotypes observed in hu-
man diseases (Köhler et al 2017). HPO illustrates the value
and motivation behind phenomics: (i) it enables accurate and
consistent description of phenotypes, and (ii) it enables com-
putational assessment of similarity between phenotypes
(Köhler et al 2017). Based on the two attributes, HPO has
become a foundation for computational methods that collect
(Girdea et al 2013), catalog (Mungall et al 2017), share
(Gottlieb et al 2015; Philippakis et al 2015), and analyze
(Köhler et al 2009) phenotypic data. Furthermore, it has been
demonstrated that precise, comprehensive profiling and anal-
ysis of phenotypes using HPO can augment clinical exome/
genome sequencing data interpretation (Bone et al 2016;
Sifrim et al 2013; Smedley and Robinson 2015).

However, phenomics has not yet been fully exploited in
some domains of rare genetic diseases (Boycott et al 2017;
Köhler et al 2017). Inborn errors of metabolism (IEM)
exemplify one such domain (Köhler et al 2017). Caused
by genetic defects in metabolism, IEM represent the largest
group of monogenetic defects that are amenable to targeted
treatments (Tarailo-Graovac et al 2016). They present dis-
tinct biochemical phenotypes and a heterogeneous array of
clinical symptoms (Burton 1998). This characteristic has
motivated the IEM clinical and research community to
document both clinical and biochemical aspects of IEM
(Lee et al 2017). Meanwhile, recent developments in
phenomics have focused primarily on clinical aspects
(Köhler et al 2017), resulting in an underrepresentation of
biochemical phenotypes that may have slowed the uptake
of phenomics by the IEM community. Moreover, deep phe-
notyping has become increasingly important for IEM as
genome-wide sequencing identifies a growing number of
cases with two distinct genetic diseases that present blend-
ed phenotypes (Tarailo-Graovac et al 2016). To address
this gap, we created IEMbase, an expert-curated
knowledgebase of IEM and their phenotypes (Lee et al
2017). However, our efforts only partially fill the gap,
and the need for concurrent curation of IEM phenotypes
in core phenomics projects remains.

Thus, we assessed the curation status of IEM phenotypes in
HPO in comparison with IEMbase.We then extracted disease-
characterizing phenotypic data from IEMbase and demon-
strated their utility in diagnostic applications of phenomics
using a text-based method that prioritizes compatible genetic
diagnoses. We hope the findings presented herein catalyze
community-wide participation to accelerate the cataloging of
IEM phenotypes in IEMbase and HPO.

Methods

Themethods presented herein require a distinction between bio-
chemical and clinical phenotypes of IEM. We define biochem-
ical phenotypes as biochemical abnormalities that are observable
by laboratory investigations. We define clinical phenotypes as
morphological, (patho-)physiological, developmental, and be-
havioral abnormalities observable by clinical examinations.

Assessment of biochemical phenotype
curation in HPO and IEMbase

We previously compiled the clinical aspect of IEM and ex-
plored their representation within HPO (Lee et al 2017).
Therefore, only the biochemical aspect of IEM was the focus
of this effort. In the aforementioned study, we were not able to
map biochemical phenotypes in IEMbase to HPO due to the
stringent criteria requiring exact character-by-character
matches. Based on this knowledge, the comparison presented
herein used relaxed criteria.

For this assessment, a complete list of phenotypes in HPO
was downloaded from the HPO website (http://human-
phenotype-ontology.github.io) in OBO format (version:
2017–06-30 release). Using the ontologyIndex R package
(Greene et al 2017) (R version 3.4.0), the OBO file was
parsed, and all phenotypes and their synonyms pertaining to
Bphenotypic abnormality (HP:0000118)^ were extracted (n =
37,732). In parallel, a complete list of phenotypes in IEMbase
was downloaded from the IEMbase server (version: 1.1.0) in
CSV format. The downloaded list contained 1151 biochemi-
cal phenotypes and 1231 clinical phenotypes. Only the bio-
chemical phenotypes were extracted for the assessment.
Before comparing the two, differences in alphabetic case,
singular/plural variants, punctuation, stop words, and word
order were removed using the Norm program in the
SPECIALIST Lexical Tools (Browne et al 2003). The HPO
phenotypes were then compared against the IEMbase pheno-
types using a custom script written in Ruby programming
language. A match was declared only if the name of a HPO
phenotype had an exact match or it completely contained the
name of an IEMbase phenotype. As an example of the latter,
the HPO phenotype Belevated urinary homovanillic acid (HP:
0011977)^ was considered a match for the IEMbase pheno-
type Bhomovanillic acid^ since the HPO phenotype contained
both the word Bhomovanillic^ and the word Bacid^. After the
computational comparison, the phenotype matches were
reviewed manually. The mappings were then grouped by their
membership in the 26 subclasses of the HPO class
Bphenotypic abnormality (HP:0000118)^. A detailed list of
the 26 subclasses is provided in Fig. 1. Finally, the grouped
mappings were visualized in a Circos plot using the circlize R
package (Gu et al 2014).
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Text-based phenotype analysis
for prioritization of causal genes

Figure 2 illustrates the analysis procedure. Five hundred sixty-
three disease-gene pairings (or Bpairs^) and their phenotypic
descriptions (or Bprofiles^) were downloaded from the
IEMbase server (version: 1.1.0). An example disease-gene
pair and its phenotypic profile are provided in Table 1. In order
to apply the text-based phenotype analysis described in the
next paragraph, the phenotypes in each profile were equated
to the corresponding terms in the Unified Medical Language
System (UMLS) (https://www.nlm.nih.gov/research/umls)
using the UMLS REST API (https://documentation.uts.nlm.
nih.gov/rest/home.html). For clarity, the mapping between
IEMbase and HPO from the earlier section does not relate to
the mapping exercise described herein.

Each phenotypic profile was analyzed using a text-based
method that was originally developed for variant prioritization
in clinical exome interpretation (Gottlieb 2017). Briefly, the
method accepts a set of phenotype terms and returns a ranked
list of genes. The ranking was calculated based on information
reported by a text analysis system (Lever et al 2017). For our
analysis, the procedure was performed as follows. A disease-
gene pair d was selected from the set of all IEMbase disease-
gene pairs D = {d1, d2,…, dn}. Within IEMbase d was
coupled to a phenotypic profile P, which contained a set of
phenotypes {p1, p2,…, pr} as illustrated in Table 1. The

method then predicted associated genes for P from the ge-
nome G = {g1, g2,…, gm} which was defined as all genes
pertaining to the UMLS semantic type Bgene or genome
(T028)^. For each g ∈G, the strength of its association with
P (denoted by sg, P) was determined as a sum of individual
association scores between g and pi. The individual associa-
tion score was calculated as the ratio of the number of
sentences where g and pi appeared together over the total
number of sentences where g and pi appeared individually
(where these values were obtained from the text analysis tool
(Lever et al 2017)). Each gene g was ranked according to sg, P
and the top 100 phenotype P-associated genes were retained
before the method continued on to the next disease d ∈D.

For each d, the top 100 associated gene predictions were
obtained using the method outlined above, and the rank of d’s
causal gene gd in the top 100 predictions was determined. To
assess the performance of the text-based method, the ranking
of all causal genes Gd ¼ gd1 ; gd2 ;…; gdn

� �
was compared

against the baseline ranking of Gd. The baseline ranking was
defined as the median ranking of each gd ∈Gd, which was
determined by taking the median of gd’s ranks in the predic-
tions for d ∈D that gd did not have a causal relationship with.

Furthermore, the effect of the number of phenotypes spec-
ified for each d ∈D on its causal gene prediction was evaluat-
ed by testing their correlation. This test was restricted to only
d ∈D whose causal gene gd was ranked within the top 100
predictions.

Fig. 1 An overview of HPO to IEMbase mapping. 287 biochemical
phenotypes in IEMbase had 852 associations with 475 unique HPO
phenotypes. The figure illustrates such mappings with respect to 26
subclasses of the HPO class Bphenotypic abnormality (HP:0000118)^.
BMultiple subclasses^ refer to HPO phenotypes that belong to multiple
subclasses, consisting of: abnormality of metabolism/homeostasis

(HP:0001939), abnormality of the genitourinary system (HP:0000119),
abnormality of the endocrine system (HP:0000818), abnormality of the
nervous system (HP:0000707), abnormality of blood and blood-forming
tissues (HP:0001871), abnormality of the immune system (HP:0002715),
and abnormality of the digestive system (HP:0025031)
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In addition, we assessed the impact of biochemical pheno-
types for the disease gene prediction compared with clinical
phenotypes. For this, the set of phenotypes P for each d ∈D
was divided into biochemical and clinical subsets, and each
subset was then analyzed using the aforementioned text-based
method to predict the top 100 associated genes. Finally, a
comparison was made between the ranks of causal genes de-
termined using biochemical phenotypes and the ranks deter-
mined using clinical phenotypes.

Results

Comparison of curated biochemical phenotypes
between HPO and IEMbase

The curated IEMbase (v. 1.1.0) provides a total of 1151 bio-
chemical phenotypes, of which only 287 could be mapped
onto HPO. These 287 IEMbase biochemical phenotypes had
852 associations with 475 unique HPO phenotypes, indicating
a one-to-many relationship between IEMbase and HPO.

Figure 1 provides a visual overview of these mappings, which
highlights the IEMbase biochemical phenotypes that map
most commonly onto the HPO metabolism category
(HP:0001939) (420 mappings to 219 unique phenotypes). A
survey of 864 unmapped IEMbase biochemical phenotypes
revealed that the majority were complex names, such as B7-
alpha-hydroxy-3-oxo-cholenoic acids^. These unmapped
phenotypes will be submitted to HPO for consideration for
future inclusion.

Evaluation of phenotype-associated gene predictions
by text-based phenotype analysis

Using all phenotypes (biochemical and clinical), the text-based
phenotype analysis prioritized correct genetic diagnoses for
120 out of 563 disease-gene pairs within the top ten predictions
and 173 out of 563 disease-gene pairs within the top 20 predic-
tions (Table 2). This performance was statistically assessed by
comparing the causal gene ranking against the baseline ranking
using the McNemar’s test (mcnemar.exact implemented by
exact2x2 R package; Fay 2010) with the Bonferroni correction.
A dichotomous trait for the McNemar’s test was defined as (1)
disease-gene pairs whose causal genes ranked within the top N
predictions or (2) disease-gene pairs whose causal genes did
not rank within the top N predictions where N = 1, 5, 10, 20,
100. This assessment confirmed that the method placed causal
genes within the top N predictions significantly more often than
the baseline (Table 2). However, the method’s performance
appeared to be limited as diagnoses for 255 disease-gene pairs
were not found within the top 100 predictions (Table 2). This
may be due to the inconsistent depth of literature on genes
limiting the performance of the recommendation system aswell
as the lack of semantic representation in sentence-level co-oc-
currence. As an example of the latter, if a sentence in a publi-
cation described that Bmutations in the gene PAH cause elevat-
ed blood phenylalanine^, then the phenotype-gene association

Fig. 2 An illustration of the text-based phenotype analysis procedure.
Numbered boxes (in orange) represent the main steps of the text-based
phenotype analysis. First, 563 disease-gene pairings were extracted from
IEMbase (v. 1.1.0). Each pair contained the disorder name and gene
name, and the pair was coupled to a phenotypic profile (i.e., disease
symptoms and biomarkers). Second, using the phenotypic profile P, as-
sociated genes were identified using a text-analysis tool by Lever et al.

The association strength between P and g was defined as the ratio of the
number of sentences in the PubMed literature where P and g appeared
together over the total number of sentences where P and g appeared
individually. Third, the identified genes were ranked by the strength of
their association with P before a list of top 100 associated genes was
determined. Finally, the causal gene gd was identified based on the
disease-gene pair connected to P. The rank of gd was recorded

Table 1 An example disease-gene pair and its phenotypic profile ex-
tracted from IEMbase

Disease name Dopamine beta-hydroxylase deficiency

Associated gene DBH

Phenotypes* Exercise intolerance

Hypoglycemia

Hypotension, orthostatic

Dopamine (plasma)

Epinephrine (plasma)

Homovanillic acid, HVA (cerebrospinal fluid)

Vanillinmandelic acid, VMA (urine)

*Only select phenotypes are listed for brevity
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was established based only on the co-occurrence of the words
BPAH^ and Bphenylalanine^ and not based on the fact that
Bphenylalanine^ was Belevated^ due to a defect in BPAH^.

Meanwhile, there was no significant effect on the caus-
al gene predictions made by the number of phenotypes
specified for the disease-gene pairs (p = 0.15; cor. test on
Spearman’s correlation in R; Fig. S1 in Supplemental
material).

In the evaluation of the impact on gene predictions by
biochemical phenotypes versus clinical phenotypes, signifi-
cantly more causal genes were predicted within the top N
predictions (N = 1, 5, 10, 20, 100) using biochemical pheno-
types than clinical phenotypes (Table 3; McNemar’s test with
Bonferroni correction). This result may suggest that the asso-
ciation between biochemical phenotypes and IEM genes are
likely more represented in the current literature than clinical
phenotypes and IEM genes. Figure 3 illustrates the difference
in gene prediction performance between the two subsets of
phenotypes.

Discussion

In this report, we explored and extended the utility of curated
disease annotations for IEM for the emerging age of
phenomics analysis. We assessed the overlap between bio-
chemical phenotypes compiled by curators of IEMbase and
all phenotypes within the HPO, noting limited coverage. We
demonstrated that the use of biochemical phenotypes can sig-
nificantly improve the prediction of gene-disease relationships
for IEM, compared to clinical phenotypes, using text-based
phenotype analysis.

The comparison of curated biochemical phenotypes be-
tween IEMbase and HPO revealed that only 25% of the bio-
chemical phenotypes in IEMbase could be mapped to HPO.
Incomplete mapping could arise for a number of reasons. For
instance, (1) a HPO phenotype may not share the exact word-
ing of the synonymous IEMbase phenotypes or (2) a more
general HPO phenotype may refer to one or more specific
IEMbase phenotypes. This suggests that future curation could

Table 2 A summary of text-
based phenotype analysis
performance

N Top 1 Top 5 Top 10 Top 20 Top 100

Number of disease-gene pairs ranked
within top N predictions

(% success at N)a

31

(5.5)

90

(16.0)

120

(21.3)

173

(30.7)

308

(54.7)

McNemar’s test at N

(causal vs baseline) b
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

a% Success at N refers to the proportion of IEMbase disease-gene pairs whose causal genes ranked within the top
N predictions
bMcNemar’s test at N refers to paired comparison between the causal ranking and the baseline ranking with a
dichotomous trait defined as (1) disease-gene pairs whose causal genes ranked within the top N predictions or (2)
disease-gene pairs whose causal genes did not rank within the top N predictions where N = 1, 5, 10, 20, 100.
Reported p-value was adjusted using the Bonferroni correction

Table 3 An overview of impact
on gene predictions by
biochemical phenotypes vs
clinical phenotypes

N Top 1 Top 5 Top 10 Top 20 Top 100

Number of disease-gene pairs ranked within
top N predictions based on biochemical
phenotypes

(% success at N)a

19

(3.4)

67

(11.9)

88

(15.6)

132

(23.4)

292

(51.9)

Number of disease-gene pairs ranked within
top N predictions based on clinical
phenotypes

(% success at N)a

2

(0.4)

12

(2.1)

22

(3.9)

37

(6.6)

132

(23.4)

McNemar’s test at N

(biochemical vs clinical) b
p = 0.0011 p < 0.001 p < 0.001 p < 0.001 p < 0.001

*Success at N refers to the proportion of IEMbase disease-gene pairs whose causal gene ranked within the top N
predictions
bMcNemar’s test at N refers to paired comparison between the biochemical ranking and the clinical rankingwith a
dichotomous trait defined as (1) genes ranked within the top N predictions or (2) genes not rankedwithin the top N
predictions where N = 1, 5, 10, 20, 100. Reported p-value was adjusted using the Bonferroni correction
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significantly improve phenotype mapping, and contributions
from the IEM clinical and research community would prove
instrumental to increasing the utility of available phenotypic
data. In addition, a collaboration between IEMbase and HPO
to include missing terms can contribute to improved coverage
of biochemical phenotypes in HPO.

The text-based phenotype analysis using all (biochemi-
cal and clinical) phenotypes revealed that genetic diagno-
ses for 31% of input disease-gene pairs could be success-
fully prioritized within the top 20 predictions. This number
is too low for immediate diagnostic utility. However, map-
ping patient phenotypes to candidate genes would normal-
ly consider a richer set of information than just phenotypic
descriptions. For example, in clinical exome/genome se-
quencing a comprehensive patient profile is constructed
based on both clinical and laboratory investigations before
prioritizing and interpreting a small set of genes containing
genetic alterations (Tarailo-Graovac et al 2016; Bone et al
2016; Smedley and Robinson 2015). Therefore, the diag-
nostic utility of phenotypic data lies in its synergy with

different investigative tools rather than its lone capacity to
assist diagnoses.

The evaluation of text-based disease gene predictions showed
better performance when incorporating biochemical phenotypes
compared to clinical phenotypes. This difference could be ex-
plained by the non-specific and heterogeneous nature of clinical
phenotypes of IEM (Leonard andMorris 2006). Such limitations
have been recognized by the IEM community and have motivat-
ed the extensive use of biochemical tests in diagnoses (Tebani
et al 2016). Given the IEM community’s emphasis on biochem-
ical phenotypes, finding ways to accelerate the compilation of
such annotations in IEMbase and to extend the inclusion of bio-
chemical phenotypes in HPO are important in the near term to
fully benefit from emerging advances in phenomics. An expand-
ed curation of phenotypes in HPO can improve recognition of
heterogeneous disease presentations and overlapping phenotypes
in text-based phenotype analyses, as the performance of such
methods are limited by the availability of curated disease anno-
tations. In the future, as HPO expands, curation efforts can pro-
vide greater granularity of biochemical phenotypes by

Fig. 3 Distribution of ranks using only biochemical phenotypes vs using
only clinical phenotypes. The x-axis represents the subset of phenotypes
(biochemical-only and clinical-only). The y-axis represents the ranks of
causal genes in the top N predictions. The distribution of ranks is shown
in a violin plot (hour-glass figure). A scatter plot version of the same

distribution (dot) is overlaid on top of the violin plot to show the position
of each data point in the distribution. The text-based method predicted
significantly more causal genes within the top N predictions (N = 1, 5, 10,
20, 100) using biochemical phenotypes than clinical phenotypes (Table 3;
McNemar’s test with Bonferroni correction)
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incorporating either continuous measurements or levels relative
to clinical decision criteria.

For readers who would like to contribute to data curation,
IEMbase accepts submissions of new or expanded IEM phe-
notypes, as well as edit requests to currently curated informa-
tion, via the project website (http://iembase.org/app). HPO
accepts new term submissions via an issue tracker available
on Github (https://github.com/obophenotype/human-
phenotype-ontology/issues). To submit a term to HPO,
please consult the submission guideline (https://github.com/
obophenotype/human-phenotype-ontology/wiki/How-to-
make-a-good-term-request) and create an issue using the
BNew issue^ button on the issue tracker page.

In summary, there is synergistic utility in phenotypic
data of IEM and phenomics methods that could be
harnessed by a multitude of diagnostic methods. With
the imminent shift toward a holistic clinical investigation
using multi-omics technologies (such as metabolomics,
lipidomics, and glycomics), we believe that a comprehen-
sive knowledgebase of phenotypes will serve as the basis
upon which different layers of data are integrated. Before
realizing such a role, however, the knowledgebase must
ensure complete incorporation of HPO into its structure in
order to accommodate the complexity of the upcoming
big phenotypic data. As such, community-wide efforts
for curation of biochemical phenotype data should be rec-
ognized as a critical step toward precision medicine.

Acknowledgements We thank M. Price, X.C. Ye, and M. Voulgaris for
comments and discussion regarding the early version of the manuscript,
D. Pak for research management support, as well as M. Hatas and D.
Arenillas for system support.

Details of funding This work was supported with funding from BC
Children’s Hospital Foundation (Treatable Intellectual Disability
Endeavor in British Columbia: 1st Collaborative Area of Innovation
http://www.tidebc.org), funding from the Canadian Institutes of Health
Research, and funding from Genome Canada/Genome British Columbia/
CIHR Large Scale Applied Research Grant ABC4DE project (174CDE)
(to WWW). This work is part of the RD-CONNECT initiative and was
supported by the FP7-HEALTH-2012-INNOVATION-1 EU Grant No.
305444 (to NB). CDMvK is a recipient of the Michael Smith Foundation
for Health Research Scholar Award. JJYL is a recipient of the Jan M.
Friedman Studentship from BC Children’s Hospital Foundation. JL is a
recipient of the Vanier Canada Graduate Scholarship. JL and SJMJ would
like to thank Compute Canada for the use of computational resources.

Compliance with ethical standards

Conflict of interest J. J. Y. Lee, M. M. Gottlieb, J. Lever, S. J. M Jones,
N. Blau, C. D. M. van Karnebeek, W.W. Wasserman declare that they
have no conflict of interest.

Details of ethics approval Ethics approval was not required for this
study.

Patient consent statement This article does not contain any studies
with human or animal subjects performed by any of the authors.

Approval from the institutional Committee for Care and use of laboratory
animals This article does not contain any studies with human or animal
subjects performed by any of the authors.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

Amberger J, Bocchini C, Hamosh A (2011) A new face and new chal-
lenges for online Mendelian inheritance in man (OMIM®). Hum
Mutat 32:564–567. https://doi.org/10.1002/humu.21466

Amberger JS, Bocchini CA, Schiettecatte F et al (2015) OMIM.Org:
online Mendelian inheritance in man (OMIM®), an online catalog
of human genes and genetic disorders. Nucleic Acids Res 43:D789–
D798. https://doi.org/10.1093/nar/gku1205

Biesecker LG (2004) Phenotype matters. Nat Genet 36:323–324. https://
doi.org/10.1038/ng0404-323

Blake JA, Eppig JT, Kadin JA et al (2017) Mouse genome database
(MGD)-2017: community knowledge resource for the laboratory
mouse. Nucleic Acids Res 45:D723–D729. https://doi.org/10.
1093/nar/gkw1040

Bone WP, Washington NL, Buske OJ et al (2016) Computational evalu-
ation of exome sequence data using human and model organism
phenotypes improves diagnostic efficiency. Genet Med 18:608–
617. https://doi.org/10.1038/gim.2015.137

Boycott KM, Rath A, Chong JX et al (2017) International cooperation to
enable the diagnosis of all rare genetic diseases. Am J Hum Genet
100:695–705. https://doi.org/10.1016/j.ajhg.2017.04.003

BrowneAC, Divita G, AronsonAR,McCrayAT (2003) UMLS language
and vocabulary tools. AMIA Annu Symp Proc, p 798

Brunner HG, van Driel MA (2004) From syndrome families to functional
genomics. Nat Rev Genet 5:545–551. https://doi.org/10.1038/
nrg1383

Burton BK (1998) Inborn errors of metabolism in infancy: a guide to
diagnosis. Pediatrics 102:E69

Chong JX, Buckingham KJ, Jhangiani SN et al (2015) The genetic basis
of Mendelian phenotypes: discoveries, challenges, and opportuni-
ties. Am J Hum Genet 97:199–215. https://doi.org/10.1016/j.ajhg.
2015.06.009

Deans AR, Lewis SE, Huala E et al (2015) Finding our way through
phenotypes. PLoS Biol 13:e1002033. https://doi.org/10.1371/
journal.pbio.1002033

Fay MP (2010) Two-sided exact tests and matching confidence intervals
for discrete data. R J 2:53–58

Girdea M, Dumitriu S, Fiume M et al (2013) PhenoTips: patient pheno-
typing software for clinical and research use. Hum Mutat 34:1057–
1065. https://doi.org/10.1002/humu.22347

Gottlieb M (2017) Text based methods for variant prioritization.
University of British Columbia, 9-14. Doi:https://doi.org/10.
14288/1.0340776

Gottlieb MM, Arenillas DJ, Maithripala S et al (2015) GeneYenta: a
phenotype-based rare disease case matching tool based on online
dating algorithms for the acceleration of exome interpretation.
Hum Mutat 36:432–438. https://doi.org/10.1002/humu.22772

Greene D, Richardson S, Turro E (2017) ontologyX: a suite of R pack-
ages for working with ontological data. Bioinformatics 33:1104–
1106. https://doi.org/10.1093/bioinformatics/btw763

J Inherit Metab Dis (2018) 41:555–562 561

http://iembase.org/app
https://github.com/obophenotype/human-phenotype-ontology/issues
https://github.com/obophenotype/human-phenotype-ontology/issues
https://github.com/obophenotype/human-phenotype-ontology/wiki/How-to-make-a-good-term-request
https://github.com/obophenotype/human-phenotype-ontology/wiki/How-to-make-a-good-term-request
https://github.com/obophenotype/human-phenotype-ontology/wiki/How-to-make-a-good-term-request
http://www.tidebc.org
https://doi.org/10.1002/humu.21466
https://doi.org/10.1093/nar/gku1205
https://doi.org/10.1038/ng0404-323
https://doi.org/10.1038/ng0404-323
https://doi.org/10.1093/nar/gkw1040
https://doi.org/10.1093/nar/gkw1040
https://doi.org/10.1038/gim.2015.137
https://doi.org/10.1016/j.ajhg.2017.04.003
https://doi.org/10.1038/nrg1383
https://doi.org/10.1038/nrg1383
https://doi.org/10.1016/j.ajhg.2015.06.009
https://doi.org/10.1016/j.ajhg.2015.06.009
https://doi.org/10.1371/journal.pbio.1002033
https://doi.org/10.1371/journal.pbio.1002033
https://doi.org/10.1002/humu.22347
https://doi.org/10.14288/1.0340776
https://doi.org/10.14288/1.0340776
https://doi.org/10.1002/humu.22772
https://doi.org/10.1093/bioinformatics/btw763


GuZ, Gu L, Eils R et al (2014) Circlize implements and enhances circular
visualization in R. Bioinformatics 30:2811–2812. https://doi.org/10.
1093/bioinformatics/btu393

Hennekam RCM, Biesecker LG (2012) Next-generation sequencing de-
mands next-generation phenotyping. Hum Mutat 33:884–886.
https://doi.org/10.1002/humu.22048

Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next chal-
lenge. Nat Rev Genet 11:855–866. https://doi.org/10.1038/nrg2897

Köhler S, Schulz MH, Krawitz P et al (2009) Clinical diagnostics in
human genetics with semantic similarity searches in ontologies.
Am J Hum Genet 85:457–464. https://doi.org/10.1016/j.ajhg.2009.
09.003

Köhler S, Vasilevsky NA, Engelstad M et al (2017) The human pheno-
type ontology in 2017. Nucleic Acids Res 45:D865–D876. https://
doi.org/10.1093/nar/gkw1039

Lee JJY, Wasserman WW, Hoffmann GF et al (2017) Knowledge
base and mini-expert platform for the diagnosis of inborn
errors of metabolism. Genet Med. https://doi.org/10.1038/
gim.2017.108

Leonard JV, Morris AAM (2006) Diagnosis and early management of in-
born errors of metabolism presenting around the time of birth. Acta
Paediatr 95:6–14. https://doi.org/10.1080/08035250500349413

Lever J, Gakkhar S, Gottlieb M et al (2017) A collaborative filtering
based approach to biomedical knowledge discovery.

Bioinformatics btx613. https://doi.org/10.1093/bioinformatics/
btx613

Mungall CJ, McMurry JA, Köhler S et al (2017) The monarch initiative:
an integrative data and analytic platform connecting phenotypes to
genotypes across species. Nucleic Acids Res 45:D712–D722.
https://doi.org/10.1093/nar/gkw1128

Philippakis AA, Azzariti DR, Beltran S et al (2015) The matchmaker
exchange: a platform for rare disease gene discovery. Hum Mutat
36:915–921. https://doi.org/10.1002/humu.22858

Robinson PN (2012) Deep phenotyping for precision medicine. Hum
Mutat 33:777–780. https://doi.org/10.1002/humu.22080

Sifrim A, Popovic D, Tranchevent L-C et al (2013) eXtasy: variant pri-
oritization by genomic data fusion. Nat Methods 10:1083–1084.
https://doi.org/10.1038/nmeth.2656

Smedley D, Robinson PN (2015) Phenotype-driven strategies for exome
prioritization of human Mendelian disease genes. Genome Med 7:
81. https://doi.org/10.1186/s13073-015-0199-2

Tarailo-Graovac M, Shyr C, Ross CJ et al (2016) Exome sequencing and
the management of neurometabolic disorders. N Engl J Med 374:
2246–2255. https://doi.org/10.1056/NEJMoa1515792

Tebani A, Afonso C, Marret S, Bekri S (2016) Omics-based strategies in
precision medicine: toward a paradigm shift in inborn errors of me-
tabolism investigations. Int J Mol Sci. https://doi.org/10.3390/
ijms17091555

562 J Inherit Metab Dis (2018) 41:555–562

https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1002/humu.22048
https://doi.org/10.1038/nrg2897
https://doi.org/10.1016/j.ajhg.2009.09.003
https://doi.org/10.1016/j.ajhg.2009.09.003
https://doi.org/10.1093/nar/gkw1039
https://doi.org/10.1093/nar/gkw1039
https://doi.org/10.1038/gim.2017.108
https://doi.org/10.1038/gim.2017.108
https://doi.org/10.1080/08035250500349413
https://doi.org/10.1093/bioinformatics/btx613
https://doi.org/10.1093/bioinformatics/btx613
https://doi.org/10.1093/nar/gkw1128
https://doi.org/10.1002/humu.22858
https://doi.org/10.1002/humu.22080
https://doi.org/10.1038/nmeth.2656
https://doi.org/10.1186/s13073-015-0199-2
https://doi.org/10.1056/NEJMoa1515792
https://doi.org/10.3390/ijms17091555
https://doi.org/10.3390/ijms17091555

	Text-based...
	Abstract
	Introduction
	Methods
	Assessment of biochemical phenotype curation in HPO and IEMbase
	Text-based phenotype analysis for prioritization of causal genes
	Results
	Comparison of curated biochemical phenotypes between HPO and IEMbase
	Evaluation of phenotype-associated gene predictions by text-based phenotype analysis

	Discussion
	References


