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Abstract

Introduction: Cold allodynia is often seen in the acute phase of oxaliplatin treatment,

but the underlying pathophysiology remains unclear.

Methods: Patients scheduled for adjuvant oxaliplatin for colorectal cancer

were examined with quantitative sensory testing and nerve excitability tests at

baseline and after the second or third oxaliplatin cycle at different skin

temperatures.

Results: Seven patients were eligible for examination. All patients felt evoked pain

and tingling when touching something cold after oxaliplatin infusion. Oxaliplatin

decreased motor nerve superexcitability (P < .001), increased relative refractory

period (P = .011), and caused neuromyotonia-like after-activity. Cooling exacerbated

these changes and prolonged the accommodation half-time.

Discussion: The findings suggest that a combined effect of oxaliplatin and cooling

facilitates nerve excitability changes and neuromyotonia-like after-activity in periph-

eral nerve axons. A possible mechanism is the slowing in gating of voltage-dependent

fast sodium and slow potassium channels, which results in symptoms of cold

allodynia.

Abbreviations: CAPOX, capecitabine and oxaliplatin; CDT, cold detection threshold; CMAP, compound muscle action potential; CPT, cold pain threshold; HPT, heat pain threshold; NRS,

numerical rating scale; OXP, oxaliplatin; RC, recovery cycle; SDTC, strength-duration time constant; TE, threshold electrotonus; VDT, vibration detection threshold; WDT, warm detection

threshold.
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1 | INTRODUCTION

Oxaliplatin used in the treatment of several types of gastrointes-

tinal cancer may cause an acute, partly reversible neuropathy

characterized by distal and perioral tingling, muscle stiffness, and

a striking cold allodynia characterized by pricking dysesthesia

and pain upon touching something cold.1-4 The pathophysiology

underlying this cold hypersensitivity is not well understood.5,6

Oxaliplatin has been shown to slow the inactivation of voltage-

dependent Na+ channels.5 This effect may be enhanced by cooling,

which has been shown to prolong the refractoriness in peripheral

axons.7-9 In addition, cooling slows the kinetics in the activation

of axonal slow K+ (Kv7) channels that regulate accommodation in

excitability.7-10 Cooling also results in membrane depolarization of

axons.8,9

Electrophysiological effects of cooling on these parameters in

oxaliplatin-treated patients have not been described. The aim of this

study was to use nerve excitability testing11 to examine changes in

nerve excitability and repetitive activity in motor axons from baseline

to after oxaliplatin treatment and the effect of cold on these changes.

2 | METHODS

2.1 | Ethics approval

This study was approved by the Central Denmark Region Committees

on Health Research Ethics (No. 1-10-72-154-16) and the Danish Data

Protection Agency (No. 1-16-02-89-16). The study was carried out in

accordance with the Declaration of Helsinki. All subjects signed a

written informed consent.

2.2 | Study protocol

Patients with high-risk colon cancer (stage II or stage III) scheduled to

receive adjuvant combination chemotherapy with oxaliplatin and

capecitabine (CAPOX) at the Department of Oncology, Aarhus Univer-

sity Hospital, Denmark, were invited to participate in this prospective

clinical study in 2017-2018. The patients were excluded if they had

metastatic disease, previous systemic chemotherapy, alcohol or medi-

cine abuse, a severe psychiatric disorder, known diabetes, spinal steno-

sis, peripheral vascular disease, polyneuropathy, or chronic pain with an

intensity of at least 3 on the 0 to 10 numerical rating scale (NRS).

Patients were examined before chemotherapy (baseline) and

second or third day after the second or third cycle of oxaliplatin

(follow-up). There was a 3-week interval between cycles if hematology

parameters allowed. They underwent interviews regarding symptoms

and filled out questionnaires about oxaliplatin-related symptoms.12

Quantitative sensory testing was performed according to the Ger-

man Research Network of Neuropathic Pain protocol.13 Vibration

(VDT), cold (CDT), and warm (WDT) detection thresholds and cold

pain (CPT) and heat pain (HPT) thresholds were assessed at the cheek,

the thenar eminence of the hand, and the dorsal lateral side of the

foot. Thermal stimuli were applied using a thermal sensory analyzer

(Medoc, Ramat Yishai, Israel) and VDT was assessed with a Rydel-

Seiffer graded tuning fork (conventional 68 Hz, 8/8 scale). Cold-

evoked pain and dysesthesia were also assessed by asking the patient

to hold a cold (~6�C) custom-made metal cylinder (Ventzel, Aarhus,

Denmark) for 10 seconds and to rate the intensity of pain and

unpleasantness on the NRS.14

Nerve excitability testing was recorded from the median nerve

using the automated TRONDOLM (motor) and TRONDOLS (sensory)

protocols (Institute of Neurology, London, UK).15 Multiple excitability

parameters were assessed including the stimulus-response curve,

strength-duration time constant (SDTC), threshold electrotonus (TE),

and recovery cycle (RC). Electrodes were placed as described in previ-

ous studies.5,16 Examinations were performed at a skin temperature

above 32�C at baseline and a skin temperature above 32�C, as well as

with the wrist cooled during the protocol with packed ice to skin tem-

perature below 27�C (mean 25.6�C) at follow-up.11 The ice was only

removed when measuring the temperature, or if the patients felt that

it was very unpleasant.

2.3 | Statistical analysis

Nerve excitability testing data were analyzed with QtracP software

and other analyses were performed with STATA version 14.2

(StataCorp, College Station, Texas) and Equista version 1.3.5. Data are

presented as mean and standard deviation (SD). Normally distributed

paired data were analyzed with t tests, and otherwise with Wilcoxon

signed rank tests. The significance level was set at P < .05. We did not

correct for multiple testing.

3 | RESULTS

Ten patients were included at baseline, and 7 were eligible for follow-

up after CAPOX (Table S1). Three patients dropped out because the

oxaliplatin treatment had been terminated early due to persistent neu-

ropathy and hematological suppression.
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At follow-up, all 7 patients felt tingling and pain or discomfort in

the hands when touching something cold (Table S2). One patient had

involuntary twitches of the thumb. Six patients felt pain with a mean

intensity of 7.5 when holding the cold Ventzel cylinder (Table S2).

For the hands and cheek, CPT was significantly closer to baseline tem-

peratures, indicating increased sensitivity and VDT was significantly

further from baseline thresholds showing decreased sensitivity

(Figure S1).

There were no significant differences in the sensory recordings

from baseline to after oxaliplatin. After cooling, recordings were missing

in five of the seven patients due to neuromyotonia-like afterpotentials

and discomfort, and therefore sensory results are not shown.

The results for motor nerve excitability testing are shown in

Table 1 and Figure 1. Recordings at baseline, follow-up, and follow-up

with cooling revealed statistically significant changes in several param-

eters (Table 1). There was a decrease from baseline to follow-up in

superexcitability (P < .001), an increase in subexcitability (P = .003),

and slowing of the relative refractory period (RRP) (P = .011)

(Figure 1C). There were no consistent changes in the stimulus-

response properties, SDTC, or rheobase. Also, TE parameters were

not changed (Table 1).

During cooling, there was a strong prolongation of the RRP and a

complete loss of superexcitability. The amplitude of the late sub-

excitability remained constant, although it increased in duration.

Cooling resulted in a significant change in the accommodation half-

time (P = .001), which is also revealed by the increase in excitability

seen during long depolarizing current pulses (TEd 40 to 60 millisec-

onds) (P = .002) (Figure 1B). None of the participants felt any discom-

fort in the hands with cooling.

Oxaliplatin and cooling caused no consistent changes in SDTC

and rheobase (Figure 1A).

There were no neuromyotonia-like afterpotentials at baseline

(Figure 2). At follow-up, the number of afterpotentials with a voltage

amplitude of more than 2% of maximal compound muscle action potential

TABLE 1 Motor nerve excitability testing

Baseline (n = 7)
Follow-up
(n = 7)

Baseline vs
follow-up (P value) Cooling (n = 7)

Follow-up vs
cooling (P value)

Skin temperature (�C) 33.7 (1.0) 34.3 (1.3) .31a 25.6 (2.7) <.001

Latency (ms) 7.0 (1.2) 6.8 (0.8) .16a 7.1 (0.9) <.016*

Stimulus-response and strength-duration properties

Stimulus (mA): 50% max CMAP 6.6 (2.2) 7.8 (2.9) .24 6.4 (1.9) .015

SDTC (ms) 0.5 (0.1) 0.4 (0.1) .051 0.5 (0.2) .50

Rheobase (mA) 4.3 (1.7) 5.3 (2.2) .16 4.7 (1.8) .29

Threshold electrotonus

TEd (10-20 ms) 68.1 (4.1) 68.1 (5.0) .92 64.6 (4.6) .021

TEd (peak) 66.4 (3.5) 66.4 (4.6) .89 64.5 (4.1) .12

TEd (40-60 ms) 47.8 (3.5) 48.5 (3.4) .45 54.8 (3.3) .002

TEd (90-100 ms) 43.4 (3.5) 44.5 (4.1) .099 42.7 (5.8) .35

S2 accommodation 23.1 (3.2) 21.8 (3.3) .099 21.8 (5.5) .94

TEd20 (10-20 ms) 37.4 (2.8) 37.0 (3.1) .64 32.4 (3.3) .003*

TEd20 (peak) 38.4 (2.7) 38.6 (3.4) .84 34.8 (3.7) .019

TEd40 (accomodation) 23.5 (2.7) 22.1 (3.1) .066 20.7 (5.2) .56

TEh (10-20 ms) −80.1 (8.4) −79.6 (7.0) .70 −74.8 (10.6) .086

TEh (20-40 ms) −101.5 (12.3) −99.6 (11.9) .40 −88.4 (15.9) .016

TEh (90-100 ms) −138.9 (21.9) −135.4 (21.5) .31 −110.1 (24.1) .014

TEh (peak, -70%) −290.0 (40.9) −279.8 (39.4) .007 −246.5 (47.1) .006

Accommodation half-time (ms) 36.5 (4.0) 35.9 (2.8) .36 54.2 (8.2) .001

Recovery cycle

Relative refractory period (ms) 2.9 (0.3) 3.6 (0.3) .011 5.8 (1.9) ―

Superexcitability (%) −19.2 (3.1) −5.7 (7.0) <.001 −2.7 (5.0) .044

Subexcitability (%) 17.2 (5.4) 23.3 (6.9) .003 20.8 (8.9) .23

Refractoriness at 2.5 ms (%) 16.7 (12.6) 37.5 (16.0) .003 ― ―

Note: Values are presented as mean (standard deviation). All significant P values are indicated in bold.

Abbreviations: CMAP, compound motor action potential; max, maximal; SDTC, strength-duration time constant; TEd/TEh, threshold electrotonus

depolarization/hyperpolarization.
aCalculated using the Wilcoxon signed rank test, otherwise paired t test was used.
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(CMAP) in the time interval from maximal CMAP until 35 to 40 millisec-

onds ranged from one to three (median of two) at normal skin tempera-

ture and from two to five (median of four) after cooling (P = .0083).

Representative examples of such recordings are shown in Figure 2.

4 | DISCUSSION

In this study we have confirmed previously shown nerve excitability

changes in motor nerve fibers5 and further showed that cooling

increases refractoriness and enhanced poststimulus repetitive muscle

action potential activity. We did not see such an effect in sensory nerve

fibers due to baseline noise when cooling the wrist, but cold aggravated

oxaliplatin-induced afterpotential has been demonstrated in an isolated

mouse skin-nerve preparation.17

One likely candidate, as suggested by animal models,18 for the nerve

excitability changes is the voltage-dependent sodium channel Nav1.6,

which is present in both motor and sensory axons.19 A proposed mecha-

nistic explanation for the neuromyotonia-like afterpotentials is an

increase in the Nav1.6-induced resurgent and persistent current due to

the slowing of the inactivation rate constant of the channel.17,20 Cooling

in the presence of oxaliplatin further increased the time constant of the

inactivation of Nav1.6, which may produce more resurgent Na+ currents

and neuromyotonia-like after-activity.17 In another study, Nav1.6-related

burst activity lasted up to 50 milliseconds after peak of sensory nerve

action potential in mouse sural nerve,17 which is within the same time

scale observed in the current study. Slowing of the inactivation of

sodium channels has also been shown in oxaliplatin-treated patients.5

This is the most likely reason for cold-induced changes in the RC of

oxaliplatin-treated patients in the current study,7,8 which have been

shown to be reversible.5

Another candidate for abnormal excitability produced by cooling

of oxaliplatin-treated patients is slow nodal potassium (Kv7) chan-

nels.21,22 The present data reveal slowing of accommodation seen in

TE recordings, suggesting that cooling reduced the rate constant acti-

vation in Kv7 channels. Such an effect of cooling in recordings of TE

in probands has been described.7,8 Inhibition of Kv7 channels facili-

tates repetitive firing of axons and nerve terminals.10,22 Conversely,

activation of Kv7 channels reduces this type of neuromyotonia-like

after-activity.23

A third possibility is that cooling results in depolarization of axons.

Effects of cold on the TE in the form of “fanning-in” have been

F IGURE 2 Afterpotentials after

maximum CMAP at baseline, follow-up,
and follow-up with cooling. The number
of afterpotentials increased with cooling.
Only six of the seven patients are shown
due to excess voluntary activity in one
patient. CMAP, compound muscle action
potential; OXP, oxaliplatin
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described in healthy probands.8 We observed neither fanning-in nor

changes in SDTC that could suggest depolarization, but we also did

not reach the same low tissue temperatures (less than 20�C).8

A limitation of this study is that we assessed motor fibers in the

nerve trunk as a surrogate method and did not directly evaluate the

small sensory afferents distally. Furthermore, cooling at the wrist did

not cause symptoms. Because capecitabine was used concurrently,

we cannot exclude its possible involvement. In addition, we could not

examine the association between pharmacokinetic aspects and ion

channel kinetics due to the limited number of subjects.

Taken together, our data indicate that oxaliplatin and cold addi-

tively affect ion channels present in the axonal membrane of axons

and/or terminals in motor nerve fibers. The most likely candidates are

voltage-gated fast sodium and slow potassium channels.
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