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Abstract
In recent years, smart materials have piqued the interest of scientists and physicians in the biomedical community owing to 
their ability to modify their properties in response to an external stimulation or changes in their surroundings. Biocompatible 
piezoelectric materials are an interesting group of smart materials due to their ability to produce electrical charges without an 
external power source. Electric signals produced by piezoelectric scaffolds can renew and regenerate tissues through special 
pathways like that found in the extracellular matrix. This review summarizes the piezoelectric phenomenon, piezoelectric 
effects generated within biological tissues, piezoelectric biomaterials, and their applications in tissue engineering and their 
use as biosensors.
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Introduction

For many decades, a major focus of the research in biomate-
rial field has been concerned with designing biocompatible 
materials capable of interacting with the biological system—
so-called bioactive materials (Enderle 2005). Nowadays, 
bio-smart materials which are able to respond to external 
triggers and mimicking the natural biological tissue have 
attracted remarkable attention (Binyamin et al. 2006, Höcker 
and Klee 1996). Bio-smart materials (also called reactive, 
responsive materials or intelligent functional materials) 
(Ebara et al.  2014) designate a special quality in which the 
material plays an active role with the “smartness” deter-
mined by its inherent ability to sense, diagnose, and respond 
to outside stimuli (Roy et al. 2010; Gao et al.  2019). Exam-
ples of such external stimuli include changes in temperature 
(Fairman and Åkerfeldt 2005), pH, specific chemicals, and 
electric or magnetic fields (Anju et al. 2021) with all of these 
stimuli able to induce some particular change in the charac-
teristics of the smart material in a controlled manner (Jacob 

et al.  2018). Because of the various possibilities for using 
smart materials as candidates for producing the next genera-
tion of biomedical devices, temporary implants, and drug 
delivery vehicles, smart materials have piqued the curiosity 
of both scientists and clinicians (Fernandes et al. 2019).

A range of different types of smart materials are currently 
available (Wadley 1996; Tzou et al.  2004), with new ones 
being developed on a daily basis (Akhras 2000; Nerkar et al. 
2022). Notable among these new developments are piezoe-
lectric materials (Vijaya 2012), pyroelectric materials (Tzou 
et al.  2004), shape memory materials (Otsuka and Way-
man 1999), chromoactive materials (García Huete 2017), 
magneto-rheological materials (Ahamed et al. 2018), photo-
active materials (Marshall and Dimova-Malinovska, 2002), 
and ferroelectric materials (Cordero‐Edwards et al.  2017).

Some applications of smart materials in regenerative 
medicine include tissue engineering (Wang 2017b 2016), 
drug delivery (Sponchioni et al.  2019), diagnosis (Guo et al. 
2020), biomedical devices like artificial muscles (Shahin-
poor et al. 2007), super-elastic self-expanding nitinol stents 
(Duerig et al.  2003), clippers and nitinol staples (Chaudhari 
et al. 2021), materials used in orthodontics (McCabe et al. 
2011), the Simon filter used in treatment of cardiovascular 
disease (Petrini and Migliavacca 2011), and special materi-
als used to create shape memory staples for orthopedics (Seil 
and Webster 2008).
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Piezoelectric phenomenon

Piezoelectricity, also called pressing electricity or the pie-
zoelectric effect, is an unusual property of some dielectric 
materials that leads them to respond to mechanical stimulus 
by creating an electrical charge (Fig. 1) (Smith and Kar-
Narayan 2022; Arnau and Soares 2009). This process is 
reversible, which means that the materials can be induced 
to mechanically deform (leading to a change in their dimen-
sions) by applying an electric field (Ciofani and Menciassi 
2012). Bio-piezoelectricity refers to the widespread exist-
ence of piezoelectric phenomena within a variety of bio-
logical systems and molecules (Stapleton et al. 2016)(Lay 
et al. 2021).

History of piezoelectricity

Piezoelectricity was first discovered in 1880 by the broth-
ers Jacques and Pierre Curie (Koptsik and Rez 1981). The 
brothers found that, when stress was applied to some crys-
tals, such as quartz, Rochelle salt, tourmaline, topaz, and 
sugar cane, electrical charges were generated at their surface 
and the voltage was found to be equivalent to the applied 
stress (Thomas et al.  2018). Lippmann (1881) made an 
important contribution to piezoelectricity by predicting the 
converse piezoelectric effect on the basis of the arguments 
made using basic thermodynamic principles (Erhart and 
Přívratská 2010), a prediction which was later confirmed 
experimentally by the Curie brothers (Gautschi 2002).

For the next few decades, piezoelectricity remained a labo-
ratory curiosity, something to be tested as more research was 
done to uncover the piezoelectric effect’s enormous potential. 
The launch of the first practical application for piezoelectric 
devices, the sonar device, coincided with the outbreak of 
World War II (Szabo 2004). The early application of piezo-
electricity in sonar sparked a renewed worldwide interest in 
piezoelectric devices and new piezoelectric materials and 

applications for those materials were studied and developed 
throughout the next few decades (Main et al. 1995).

Mechanism of piezoelectricity

Piezoelectricity is an interaction between electrical and 
mechanical systems within a non-centrosymmetric struc-
tural arrangement (Covaci and Gontean 2020). The piezo-
electric effect, as depicted in Fig. 2, involves the generation 
of an electric dipole in a material as a result of an applied 
force. Before applying an external force to the material, the 
net dipole effected by the structural unit is zero (which can 
be thought of as the equal positive and negative aspects of 
a dipole overlapping) resulting in an electrically neutral 
arrangement (Park et al. 2020). However, if an external 
mechanical stress is applied, the basic structural arrange-
ment deforms, producing a net dipole, i.e., the separation of 
the molecule’s positive and negative centers. As a result, the 
electrons within the material re-equilibrate and fixed charges 
emerge on opposing surfaces of the material with the mate-
rial becoming electrically polarized (Starr and Wang 2015).

Piezoelectric materials and their characteristic 
parameters

Piezoelectrics are officially defined as a category of dielec-
tric materials that can be polarized under the influence of 
an electric field and also mechanical stress (Dineva et al. 
2014; Ye 2008). Piezoelectricity is a linear electromechani-
cal interaction between the electrical and the mechanical 
states. The piezoelectric coefficient d is the constant for such 
a linearly proportional relation. Piezoelectric coefficient d 
is a third-rank tensor coupling the first rank tensor (electric 
displacement or field) and the second rank tensor (stress or 
strain). Therefore, the piezoelectric equations may be writ-
ten in the form

(1)Dk = dkijTij

Fig. 1  Piezoelectric effect. A 
schematic diagram represents 
a the direct piezoelectric effect 
generating of an electric charge 
as a response for the applied 
mechanical stress, and b the 
converse piezoelectric effect in 
which a strain generated under 
an applied electric field
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where Dk is the electric displacement (C/m2), and Tij is the 
stress component (N/m2). Sij is the strain component, Ei is the 
electric field component (V/m), and dkij or dkij* is the component 
of the piezoelectric charge or strain constant, (i, j, k = 1, 2, 3).

From the above tensor description of the coupled strain 
charge relations, we place our focus on the following use-
ful parameters when evaluating the performance of piezo-
electric materials.

(i) Piezoelectric coefficient (dxy), which represents the 
charge generated per unit of applied force or the deflection 
per unit of electrical voltage applied (Tichý et al.  2010). 
Due to its intrinsic vectorial nature, the piezoelectric coef-
ficient is usually written as dxy, with x and y indicating the 
direction of the electric field and stress or strain, respec-
tively (Soin et al.  2016). In the literature, the longitudinal 
piezoelectric coefficient (d33), the transverse piezoelectric 
coefficient (d31), and the tangential piezoelectric coeffi-
cient (d15) are commonly reported (Miao and Li 2015).

(ii) The electromechanical coupling coefficient (K), 
which represents the ratio of electrical and mechanical 
energies associated with carrying out the piezoelectric 
transformation (Eq. 3):

(iii) Mechanical quality factor: The mechanical Qm is 
the ratio of the reactance to the resistance in the series 
equivalent circuit representing the piezoelectric resona-
tor, which is related to the sharpness of the resonance 

(2)Sij = dkij ∗ Ek

(3)

k =

√

mechanical energy output

electical energy input
=

√

electical energy output

mechanical energy input

frequency (Li 2020; Kim 2013). The mechanical Qm can 
be calculated using the equation:

where f r is the resonance frequency, and f1 and f2 are fre-
quencies at 3 dB of the maximum admittance.

These extraordinary characteristics are exhibited by only 
a few dielectric materials and indeed piezoelectric materials 
can be classified into four general classes: crystals, piezo-
electric polymers, piezoelectric composites, piezoelectric 
ceramics (Fig. 3).

Piezoelectric crystals

Crystals are defined as a form of matter in which the atoms, 
molecules, or ions are arranged in a highly ordered three-
dimensional lattice (Guinier 1994). Twenty-one of the 32 
crystal classes are non-centrosymmetric, meaning they lack 
a center of symmetry and can consequently show piezo-
electric effects (Wang and Liu 2012). Crystals were the 
first substance used in the early piezoelectricity research; 
Rochelle salt crystal was originally produced in 1655 (Cross 
and Newnham 1987), but it was Valasek who established its 
ferroelectricity and consequent piezoelectric nature demon-
strating a substantial piezoelectric effect (Zhang et al. 2018). 
The piezoelectric effect was later identified and measured 
in crystals of potassium dihydrogen phosphate (KDP) and 
ammonium dihydrogen phosphate (ADP) in the early 1940s 
(Mason 1946). The ADP crystals were then utilized in high-
power acoustic transducers (Zhang et al. 2018).

(4)Qm =

fr

f
2
− f

1

Fig. 2  Piezoelectric material. The figure represents a 2D lattice. A 
unit cell is shown outlined with dashed lines. At the left figure, with-
out any external stress, the centroid of positive and negative charges 
coincide and marked by a black dot. When the material is compressed 
(right figure), the distance between the atoms remains the same, 

which is only possible by expanding the material horizontally. This 
in turn moves the positive and negative charges denoted by a star (*) 
apart, and their centroid no longer coincide, but are shown by blue 
and red dots, creating an electric dipole.  Source: Adapted from 
Onscale (2022)
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Perfect crystals featuring a regularly and consistently 
arranged single asymmetric unit such as  SiO2,  LiTaO3, 
 LiNbO3, and  La3Ga5SiO14 yield a stable and consistent 
piezoelectric effect (Gonzalez 2016). However, less regu-
larly arranged crystal structures known as polycrystals, such 
as  BaTiO3, Pb[Zr.Ti]O3, and  PbTiO3, yield a diverse piezo-
electric response (Kholkin et al. 2008). Due to this reason, 
highly regular artificial crystals have an advantage over their 
naturally sourced equivalents (Uchino 2017) and due to this 
reason nearly all modern piezoelectric devices now are made 
from artificial crystals—with artificial quartz crystals being 
the most commonly employed (Saigusa2017; Tanaka 1982).

Piezoelectric polymers (piezopolymers)

Polymers are a class of natural or synthetic substances com-
posed of very large molecules, called macromolecules, that 
are multiples of simpler chemical units called monomers 
(Tauer 2007). Piezoelectric polymers represent attractive 
biomaterials because of the low dielectric constant, great 
mechanical flexibility, light weight, and simplicity of man-
ufacturing (Thuau et al.  2016, Sappati and Bhadra 2018). 
The industrial processing parameters of such piezopolymers 
can be adjusted to achieve a desired level of electromechani-
cal coupling efficiency and optical transparency (Dong et al. 

2020). Most piezoelectric polymers are biocompatible and 
exhibit little to no toxicity (Maiti et al. 2019) while some are 
also biodegradable (Curry et al. 2018). These advantages 
make these polymers auspicious candidates for the manu-
facturing of medical devices (Xu et al. 2021b). Examples of 
piezoelectric polymers used in industry and research include 
polyvinyl chloride, polyacrylonitrile, poly-3-hydroxybutyrate-
3-hydroxyvalerate, poly-β-hydroxybutyrate, poly-l-lactic 
acid, poly-β-hydroxybutyrate, and odd-numbered nylon (e.g., 
nylon-11) (Murayama and Obara 1983; Xu et al.  2021a).

Polyvinylidene fluoride (PVDF), one of the most famous 
piezoelectric polymers, was discovered by Japanese scien-
tists in 1969 (Fukada 2000). PVDF piezoelectric film exhib-
its strong piezoelectric properties (Broadhurst et al. 1978) 
and due to this reason piezoelectric PVDF film has evolved 
into a standard type of piezoelectric sensing material with 
exceptional performance (Hu et al. 2018). PVDF film pos-
sesses low acoustic impedance, high piezoelectric constant, 
high dielectric strength, and spectacular mechanical charac-
teristics (Sappati and Bhadra 2018). PVDF piezoelectric film 
sensors have a wide range of applications in biosensors and 
other domains (Shang et al. 2019). The piezoelectric effect 
also has been demonstrated in some biopolymers such as 
cellulose, collagen, chitosan, and chitin (Richter et al. 2008, 
Poillot et al. 2021). Typically piezoelectric polymers exhibit 

Fig. 3  Piezoelectric charge constants of some biomaterials. Lead 
zirconate titanate PZT: Pb(Zr,Ti)O3, Barium titanate  BT: BaTiO3, 
Lead titanate PT: PbTiO3, BN: boron nitride (BN), GaN: gal-
lium nitride, LN: LiNbO3 Lithium niobate, LNKN: Li(Na,K)NbO3 
Lithium sodium potassium niobate, KNN: (K,Na)NbO3 potassium 
sodium niobate, PMN: PbMgNbO3 lead magnesium niobate, BNT: 

(Bi,Na) TiO3 bismuth sodium titanium oxide, ZnO: zinc oxide, HA: 
hydroxyapatite, PLLA: poly(l-lactic acid), PVDF: poly(vinylidene 
fluoride), P(VDF-TrFE): poly(vinylidene fluoride-trifluoro ethylene), 
PHB: polyhydroxybutyrate, FF-PNT: diphenylalanine-based peptide 
nanotubes.  Reproduced with permission from Kapat et al. (2020)
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a low piezoelectric coefficient leading to lower charge gen-
eration (Maiti et al. 2019).

Piezoelectric composites (piezocomposites/
piezonanocomposites)

To overcome the observed problem of piezopolymers exhib-
iting low piezoelectric coefficients, they can be combined 
with high piezoelectric coefficient inorganic materials to 
form piezocomposites, also called piezonanocomposites 
(Kapat et al. 2020). Piezoelectric composites have improved 
piezoelectric characteristics in comparison to non-composite 
piezopolymers (Akdogan et al.  2005). Piezoelectric compos-
ites, as compared to individual piezoelectric constituents, can 
overcome the temperature boundaries of piezopolymers and 
the inherent brittleness of inorganic bio-piezomaterials while 
also allowing for large-area fabrication (Xu et al. 2021b).

Tang et al. prepared a novel bio-piezoelectric composite 
to be used as bone cement by incorporating barium titan-
ate (BaTiO3 [BT]) particles into the biocompatible polymer 
polymethyl methacrylate (Tang et al. 2020). Results showed 
that BaTiO3 [BT] particles improved the osteoinductivity of 
the cement. A piezoelectric coefficient comparable with that 
of human bones was obtained with low BT content cement 
by adding graphene which increases the conductivity and 
dielectric constant. Such types of bio-piezoelectric compos-
ite promoted cell proliferation with the cell count increased 
with increasing the piezoelectric coefficient.

Lee et al. fabricated a piezoelectric composite from the 
conventional piezoelectric polymers polyvinylidene fluoride 
and silk fibroin by using an electrospinning technique (Lee 
et al. 2021). The fabricated composites were shown to be 
effective in producing a bio-piezoelectric field as they can 
keep piezoelectricity while overcoming inefficient physical 
properties associated with a pure PVDF electrospun mat.

Silva et  al. studied the piezoelectric and dielectric 
properties of collagen-hydroxyapatite composites (Silva 
et al.  2002). The results revealed that the collagen com-
posites incorporated with nanocrystalline HA presented an 
improved result (d14 = 0.040 pC/N) compared to the com-
posites with the commercial HA (d14 = 0.012 pC/N).

Piezoelectric ceramics (piezoceramics)

A ceramic is an inorganic non-metallic solid made up of either 
metal or non-metal compounds that have been shaped and 
then hardened by heating to high temperatures (Nandhini et al. 
2021). Many piezoceramics materials with high piezoelectric 
coefficient are available (Panda and Sahoo 2015). The first of 
these that we will discuss is barium titanate (BaTiO3) which 
was the first piezoelectric ceramic discovered (Vijatović et al. 
2008b) and has been found suitable for many applications due 
to its exceptional piezoelectric and dielectric properties. It can 

be prepared using several methods depending on the desired 
application (Aaron et al. 2004, Vijatović et al.  2008a).

Another common piezoceramic, boron nitride nanotubes 
(BNNT), possesses a high piezoelectric response and has 
been recently utilized for PC12 neuronal-like cell stimula-
tion as nanotransducer causing improved neurite outgrowth 
(Ciofani et al.  2011). Zinc oxide (ZnO), a piezoelectric and 
semiconducting oxide, has become one of the most important 
materials in nanotechnology (Wang et al. 2004; Wang et al. 
2009). It has been utilized in a number of ceramic nanostruc-
tures such as nanowires, nanobelts, nanorings, nanosprings, 
or nanobows (Wang and Song 2006, Nour et al.  2017).

Lead zirconate titanate (PZT) has a very high piezoelec-
tric constant (200–350) pC/N (Gross et al.  2003). Nano-
structured PZT in the form of nanoribbons or nanowire form 
has been developed and applied in the construction of bio-
medical and energy harvesting devices (Qi and McAlpine 
2010). A lot of methods have been developed to prepare PZT 
ceramics, such as sol–gel techniques (Jacob et al. 2003), the 
conventional mixed oxides (Xue et al.  1999a), chemical 
coprecipitation (Goel and Yadav 2005), and mechanochemi-
cal synthesis (Xue et al. 1999b) (Branković et al. 2003). 
However, PZT ceramics have limited applications in tissue 
engineering because of their cytotoxicity. As a result, lead-
free piezoceramics have been developed to lower concerns 
about toxic environmental exposure from lead (Bell and 
Deubzer 2018). Lithium sodium potassium niobate (LNKN) 
and potassium sodium niobate (KNN) are examples recently 
developed to lower the toxicity of piezoceramics (Rödel 
et al. 2009). Figure 3 represents piezoelectric charge con-
stants of some piezoelectric biomaterials.

Piezoelectricity within human body (Table 1)

In biological systems, there is much growing evidence 
to suggest that surface charges and electrostatic interac-
tions play significant roles in regulating the functions of 

Table 1  Piezoelectric coefficient of some natural biopolymers

Natural polymer Piezoelectric coef-
ficient, d14 (PC/N)

Collagen (Zaszczynska et al. 2020) Bone 0.7
Skin 0.2
Tendon 2.0

Keratin (Zaszczynska et al. 2020) Horn 1.8
Wool 0.1

Fibrin (Ribeiro et al. 2015) DNA (100 °C) 0.07
Chitin (Fukada 1995) Crab shell 0.2
Cementum (Marino and Gross 1989) 0.027
Dentin (Marino and Gross 1989) 0.028
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cells and their individual components (Honig and Nicholls 
1995), such as in ion channels (Finazzi et al.  2015), car-
diac and muscular contraction (Iwazumi and Noble 1989), 
protein folding (Makhatadze 2017), charged biomolecule 
interaction (Leung et al.  2009), and pH-dependent pro-
cesses (Genet et al.  2000). Similarly, the piezoelectric 
effect’s electrostatic charges are thought to contribute 
in cell-extracellular matrix connections, connective tis-
sue healing during rehabilitation, and mineralization and 
remodeling of calcified tissues (da Costa Reis and Oliveira 
2020; Cerrolaza et al.  2017). Figure 4 describes some 
biological piezoelectric materials.

Phenomenon such as piezoelectricity arise from the fact 
that the charge distribution of materials can be asymmetri-
cally induced. At various levels of organization, many, if 
not all, biological materials possess a spiral/helical form 
(macromolecules, tissues, etc.). Because spirals/helices 
lack a center of symmetry, the majority of biological 
matter, such as wood and bone, has piezoelectric capa-
bilities (Wojnar 2012) in combination with the material’s 
electromechanical coupling (Jiang et al. 2003). The nerv-
ous system, voltage-controlled muscular action, and ion 
transporters all display piezoelectric properties due to this 
mechanocoupling linkage (Bystrov et al. 2012). In 1940, 
Martin measured electric potentials from a bundle of wool 
crushed by two metal plates, and in doing so he reported 

the first piezoelectric phenomena in biological tissues 
(Martin 1941). Keratin, in the shape of an alpha-helix, is 
the major component of hair, horns, and wool. The highly 
ordered structure of keratin and the inherent polarization 
of its component alpha-helices (maintained by hydrogen 
bonds between the hydrogen in the amine group and the 
oxygen in the carbonyl group) are known to be responsible 
for the tissue’s piezoelectricity (Telega and Wojnar2002).

Bone as a piezoelectric material

Bones are made up of two different types of tissue, com-
pact (cortical) bone which constitutes the compact, robust, 
and hard outer bone layer and accounts for around 80% of 
adult bone mass(Clarke 2008) and cancellous (spongy or 
trabecular) bone which exists as a network of trabeculae or 
rod-like structures often visualized as a spongy meshwork 
existing at the interior of the bone (Singh 1978). Bones are 
not static tissues and they must be maintained, remodeled, 
and reshaped on a regular basis (General 2004). This proce-
dure involves three different cell types:

 (i) Osteoblasts: Cells responsible for generating new 
bones and repair (Tanaka et al.  2005)

 (ii) Osteocytes: Inactive osteoblasts important for com-
munication inside bone (Bellido 2014)

Fig. 4  Some biological 
piezoelectric materials. The 
figure shows some biological 
molecules and tissues with 
piezoelectric properties, such 
as collagen, keratin dentin, 
deoxyribonucleic acid(DNA), 
tendons, elastin, and collagen
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 (iii) Osteoclasts: Osteoclasts assist in remodeling dam-
aged bones and the creation of channels for nerves and 
blood vessels to pass through. They produce enzymes 
and acids to breakdown and digest minerals in bone. 
This is referred to as resorption (Tanaka et al.  2005).

In 1867, Davis proposed a scientific law stating that soft 
tissues (e.g., ligaments, tendons, and fascia) heal accord-
ing to the manner in which they are mechanically stressed 
(Davis 1867). In 1892, Wolff proposed a similar law in rela-
tion to bone transformation (now known as Wolff’s Law) 
(Wolff 1892) which can be paraphrased as follows:

When healthy human bones are exposed to a shift 
in mechanical stress over time, they progressively 
remodel to become stronger and denser to resist the 
greater loading, or weaker and less dense in response 
to decreased loading.

In other words, if loads and stress are applied to the 
bones, the body responds by building up more bone to 
withstand the force being applied (Frost 1994, Frost 2001). 
According to the law, there is a strong association between 
bone density and physical activity. Taken together, Wolf’s 
and Davis’s laws have created a conundrum for scientists 
trying to determine how osteocytes and osteoblasts detect 
and respond to mechanical strain.

In 1957,Yasuda and Fukada reported the presence of a 
piezoelectric phenomenon in bones (Fukada and Yasuda 
1957). In 1960, the role of collagen as piezoelectric polymer 
in the modeling process was discovered (Ahn and Grodz-
insky 2009). Collagen is the most abundant protein in the 
human body (Halperin et al.  2004). As one of the major 
building blocks of tissues, it is essential for the normal func-
tioning of the tendon, ligament, bone, cartilage, skin, the 
heart, and blood vessels. The triple helix is a three-helical 
spiral form found in collagen molecules. In 1964, Fukada 
and Yasuda also observed the direct and converse piezo-
electric effects in the tendon of horse and ox, which con-
sists of collagen fibers (Fukada and Yasuda 1964). The study 
attributed the effect to the displacement and polarization of 
hydrogen bonds present in the polypeptide chains in col-
lagen crystals.

Bone is a composite consisting of about 19 wt% colla-
gen and about 70 wt% hydroxyapatite [HA] and about11 
wt% cells, water, and other materials (Kamel et al.  2015b; 
Zhou and Lee 2011). The major cause of piezoelectricity 
in living bone has been suggested as being due to the col-
lagen molecule’s non-centrosymmetry (Khare et al.  2020). 
Collagen fibers experience numerous types of motions 
during physical activities such as walking, stretching, and 
climbing, and as a result, bone is subjected to stresses such 
as compression and tension and in response to such stress-
ors, piezoelectric collagen develops charges (Senior 2010). 

The direction of mechanical stress or bone deformation 
determines the polarity of these electrical charges. Nega-
tive and positive charges are generated through compres-
sion and tension respectively. According to Halperin et al. 
(2004), the piezoelectric strain coefficient in human tibia 
varies between 7.7 and 8.7 pC/N. The lack of significant 
dispersion in piezoelectric strain coefficients suggests that 
the piezoelectric characteristic is consistent throughout the 
bone (Magnusson et al. 2001). When collagen molecules 
are stressed, charge carriers with and surrounding the mol-
ecule travel from the interior to the surface generating an 
electric potential in the bone (Ahn and Grodzinsky 2009, 
Ferreira et al. 2009). Because of the production of electri-
cal dipoles, this impact attracts bone-building cells known 
as osteoblasts (Vásquez Sancho 2018). Minerals, princi-
pally calcium, are then deposited on the strained side of 
the bone and as a result of the piezoelectric action, bone 
density rises (deVet 2020).

Recent research has suggested that bone piezoelec-
tricity is also linked to the piezoelectric characteristics 
of bone hydroxyapatite. For many years, it was assumed 
that hydroxyapatite could not be piezoelectric because 
it crystallizes in a centrosymmetric space group in the 
hexagonal system. However, computer investigations 
revealed that hydroxyapatite lacks an inversion center, 
which would indicate that the crystal is piezoelectric 
(Rajabi et al. 2015). Other research has indicated that 
thin films of hydroxyapatite have ferroelectric, piezo-
electric, and pyroelectric properties and poled thick 
films (heat-treated) exhibit strong surface charges with 
a piezoelectric coefficient as high as that of collagen 
(Lang 2016).

Piezoelectric biomaterials

Piezoelectric biomaterials are essential in many biomedi-
cal applications with most sensor devices associated with 
the direct effect in contrary, while physical actuators are 
based on the converse effect (Ali et al. 2019). Piezoelec-
tric materials are used in a wide range of detection-based 
applications such as detecting specific cancer biomarkers, 
DNA hybridization detection, determining drug effec-
tiveness, and detection of the hepatitis C virus (Zec et al. 
2014; Azhar et al. 2021).

Surface chemistry and topography are well recognized 
to influence protein adsorption and, as a result, cellular 
behavior (Anselme et al. 2010; Fadel et al. 2020b). The 
surface charge and wettability of the scaffolds control 
interactions at the material-cell interface (Fadel et  al. 
2020a) (Navarro et al. 2006). The shape of the scaffolds 
may be controlled using various manufacturing processes, 
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and additional functionalization of the materials can be 
used to immobilize biochemical substances (Ravichandran 
et al. 2012). The topographical properties of piezoelectric 
materials, as well as their piezoelectric constants and fer-
roelectricity, can be modified to meet particular require-
ments (Chen et al. 2020a).

Piezoelectric biomaterial applications in tissue 
regeneration

A range of research has suggested that the electrical poten-
tial induced by piezoelectric polymers and ceramics can pos-
sibly stimulate the cellular response and bioactivity of hard 
tissue (Khare et al. 2020). Due to the fact that piezoelec-
tric scaffolds can create electrical impulses in response to 
mechanical activity on the tissue around the implant, wound 
healing can be accelerated independently of the implantation 
zone (Ning et al. 2018).

Piezoelectric phenomena on non‑union bone fracture 
healing

Bone fracture healing is a complicated process and requires 
the interaction of several factors, including the timely expres-
sion of reparative genes and migration and action of certain 
cells (Bostrom 1998). If these factors are interrupted, the 
repair process can be impaired and delayed resulting in imper-
fect (non-union) healing of the bone (Bostrom et al.  1995). 
Electrical stimulation can be used to aid fracture healing in 
the majority of instances with this technique being known as 
capacitive coupling (Abeed et al.  1998). In this method, two 
skin electrodes are inserted on either side of the broken bone, 
and a small current is sent between the electrodes by a low 
voltage battery. The current is not felt by the patient, but it has 
an impact on the bone cells (Piazzolla et al. 2015).

An ideal bone graft material for bone fractures must 
exhibit properties conducive to osteointegration, osteocon-
duction, and osteoinduction (KAMEL et al. 2015a) (Moore 
et al.  2001). Osteoinduction implies the ability of the mate-
rial to stimulate stem cell differentiation towards the osteo-
genic lineage (Polini et al.  2011). Osteoinduction can result 
from either physical stimulation or the release of bioactive 
molecules or surface charge production (Lee and Shin 2007). 
The major benefit of the piezoelectric scaffold is that elec-
trical potential can be created under the effect of mechani-
cal stress without the need of electrodes (Zaszczynska et al. 
2020). Karimi et al. (2019) prepared bone scaffold from 
the piezoelectric polymer poly vinylidene fluoride (PVDF) 
and nano-hydroxyapatite for naproxen delivery (Karimi 
et al.  2019). PVDF has a complicated structure and may 
crystallize into five different crystalline phases: α, β, γ, δ, 
and ε. α, β, and γ are the most studied phases and in terms 
of desirable piezoelectric and pyroelectric qualities, the β 

phase is the most intensively studied (Jia et al.  2017). High 
amount of piezoelectric β phase in PVDF membranes has 
been obtained by annealing (Ruan et al.  2018) with studies 
revealing that the addition of nano-hydroxyapatite improves 
the scaffold mechanical properties yielding excellent cell 
viability especially at high extents of piezoelectric β phase.

Zang et al. (2014) fabricated a piezoelectric composite 
scaffold by freeze casting hydroxyapatite/barium titanate 
suspensions; the piezoelectric properties were investigated 
in addition to the morphologies and porosities (Zhang et al. 
2014). Results of this study indicated that the porous HA/
BT composite possessed a piezoelectric coefficient that was 
close to, if not higher than, that of native bone. Improvement 
of the piezoelectric coefficient d33 was effected by increasing 
the solid loading of the suspension and solidification velocity. 
According to the cytotoxicity assay on murine fibroblast cells, 
there were no evidences of cytotoxicity of these composites.

Liu et al. prepared composites from the biocompatible 
polymer polycaprolactone and barium titanate (BT) parti-
cles (Liu et al.  2019) and the effects of changing the BT 
concentration on the piezoelectric properties of the com-
posite were studied. The composites displayed piezoelectric 
characteristic due to the presence of BT; in addition, the 
piezoelectric coefficient (d33) increased with increasing the 
BT content. This study also confirmed that these types of 
composite did not display cytotoxicity and were beneficial 
for cell adhesion.

The cytotoxic and piezoelectric characteristics of a porous 
lead-free piezoelectric ceramic for usage as a direct bone 
replacement were studied by Wang et al. (2009). Porous 
lithium, sodium, potassium, and niobate samples were fab-
ricated by the Cold Isostatic Pressing (CIP) technique (Ani 
2006). The ceramic’s influence on the attachment and pro-
liferation of osteoblasts isolated from the skull of 1-day-
old Sprague–Dawley rats was investigated and the results 
confirmed that the CIP preparation technique had positive 
effects on the attachment and proliferation of osteoblasts 
and that the niobate ceramic had the potential to be used as 
a piezoelectric bone scaffold (Wang et al. 2009).

A piezoelectric degradable electrospun poly-l-lactic acid 
(PLLA) modified polydopamine (PDA) and graphene (rGO) 
scaffold was developed by Lai et al. (2021) to treat articular 
cartilage disorder. Results of the study indicated that extra-
cellular matrix secretion can be facilitated by piezoelectric-
ity induced by bending the scaffold with the piezoelectric 
properties of the scaffold controlling the cell differentiation 
and proliferation.

Piezoelectric biomaterials in dental applications

Montoya et  al. developed a new type of dental resin 
composite using piezoelectric barium titanate  (BaTiO3) 
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nanoparticles as multifunctional bioactive filler in order to 
offer antibacterial and remineralization effects (Montoya 
et al.  2021). The smart composite produces electric charges 
upon activation by the force of mastication (chewing). The 
produced electric charges were proportional to the concen-
tration of the filler and this was also shown to be propor-
tional to the ability to prevent biofilm formation.

Adaraev et al. synthesized piezoelectric polymer mem-
brane from a vinylidene fluoride/tetrafluoroethylene copoly-
mer coated with a thin layer of copper for use as a wound 
dressing in surgical procedures involving the oral mucosa 
(Badaraev et al.  2020). The mechanical, wettability, antibac-
terial, and other physicochemical properties of these mem-
branes were studied in addition to the in vivo study. Results 
indicated that this piezoelectric polymer membrane aided in 
oral mucosa regeneration and this process additionally acted 
as an antibacterial coating.

Piezoelectric biomaterials for cochlea implantation

The mammalian cochlea, which is a structure of the inner 
ear (Fig. 5), is an organ that converts incoming mechanical 
energy into electrical impulses in the auditory nerve fibers 
that terminate within it and, in actuality, it is the most sen-
sitive and advanced acoustic sensor ever devised (Mukher-
jee et al. 2000). Sensorineural hearing loss (SNHL) origi-
nates from structural damage occurring to the auditory 
nerve and SNHL is the cause of more than 90% of deaf-
ness problems (Hopkins2015). The origin of SNHL may 
be due to genetic factors, exposure to loud noises, or aging 
(Hannaford et al. 2005). Cochlear implants are a type of 
hearing aid that has been created to help people with sen-
sorineural hearing loss. The process of artificial electrical 
stimulation of auditory nerve fibers within the cochlea can 

be substantially simplified using a piezoelectric cochlear 
implant and research has been conducted to investigate 
their use in place of hair cells to create an artificial coch-
lear epithelium (Inaoka et al. 2011).

Jung et al. constructed a piezoelectric artificial cochlea 
(PAC) that is capable of interpreting incoming vibratory 
signals across the human hearing range without the need 
for additional power (Jung et al.  2015) with the human 
cochlea influencing the design, components, and operation 
of the PAC. The PAC was composed of a corona-poled 
piezoelectric thin film with a unique vibrating membrane. 
The frequency separation of the produced PAC was deter-
mined by measuring the vibration displacement of the 
membrane using a laser Doppler vibrometer to analyze 
the results. Mechanical vibratory behavior experiments 
showed that incoming signals could be separated into 13 
different frequency bands based on their frequency range 
of 300 to 6000 Hz.

Piezoelectric biomaterials for nerve regeneration

Neurotrauma is a leading risk factor for mortality around 
the world and is a major public health problem (Rubiano 
et al. 2015) (Reilly 2007). A variety of biomaterials have 
shown promise in enhancing and/or repairing the function 
of damaged nervous system tissue (Chen et al. 2019). How-
ever, considerable obstacles remain in the way of full func-
tional recovery of nervous system tissue, such as those con-
cerned with delayed or partial tissue regeneration (Khaing 
et al. 2014). More recent approaches to designing the next 
generation of tissue engineering scaffolds for the nervous 
system have incorporated nanotechnology or, more specifi-
cally, nanoscale surface feature dimensions that mimic nat-
ural neural tissue, and to this point piezoelectric scaffolds, 

Fig. 5  Structure of the ear (the 
outer, middle, and inner ear) 
(produced with permission 
from McKnight 2012)
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considered smart scaffolds, have shown great potential in 
the noninvasive treatment of neural tissue (Zaszczynska 
et al. 2020).

Seil and Webster studied the activity of astroglial cells 
on polyurethane-ZnO composites and the astroglial cell 
response was evaluated depending on cell adhesion and 
proliferation (Seil and Webster, 2008). Astrocyte adhesion 
was significantly reduced on ZnO NPs/[PU] composites 
compared to pure PU indicating that ZnO-PU composite 
scaffolds have the potential to facilitate nerve regeneration 
with greater efficiency than what is available today (Fig. 6).

A piezoelectric nanogenerating scaffold of zinc oxide 
was fabricated by Qian et al. (2020). The piezoelectric scaf-
fold was shown to exhibit suitable physical and mechanical 
characteristics as well as biocompatibility. Results of the 
study suggested that the piezoelectric conduit accelerated 
the nerve conduction velocity and stimulated axonal remy-
elination, restoring motor function through promoting the 
recovery of end plate muscles. Furthermore, the piezoelec-
tric nanogenerator scaffold created a microenvironment that 
is electrically conductive and biomimetic without causing 
any toxicity to functional organs.

Piezoelectric biosensors

A biosensor is an analytical device that measures chemical 
or biological reactions by producing signals proportionate 
to the concentration of the analyte in the reaction (Turner 
2013). Biosensors can be divided into various groups, such 
as electrochemical, optical, and piezoelectric (Marco and 
Barceló 1996). In general, there are three components of a 
biosensor (Fig. 7) (Pohanka and Skládal 2008):

 (i) Analyte—the investigation biological molecule that 
must be identified by the device

 (ii) Receptor—a biomolecule that recognizes a target 
molecule (the analyte)

 (iii) Transducer—a device for converting the recognition 
event into a measurable signal.

Biosensors are employed in applications such as drug dis-
covery, disease monitoring, monitoring of disease-causing 
micro-organisms, and the detection of pollutants and mark-
ers which act as indicators of a disease in body fluids (e.g., 
sweat, blood, saliva, urine) (Schmid and Scheller 1989). As 
discussed within this review, piezoelectricity is highly suited 
to the fabrication of physical sensors and biosensors. It can 
easily record affinity interactions without requiring the use 
of any special reagents; however, the required loading sen-
sitivity can often be in the range micrograms, due to the 
requirement to generate a noticeable change in oscillation 
frequency of the piezoelectric device (Pohanka 2018).

Piezoelectric biosensors for breast cancer detection

Investigation of early stages of breast cancer has been carried 
out using many diagnostic tools such as magnetic resonance 
imaging, positron emission tomography, mammography, 
ultrasound, computerized tomography, and biopsy (Wang 
2017a). Even so, these techniques still have some limita-
tions like being expensive and time-consuming (Pereira et al.  
2019) and therefore, it is critical to develop a high-sensitivity 
and quick detection technique.

Sensitive piezoelectric sensors constructed using recep-
tor antibodies that specifically bind to human epidermal 
growth factor receptor (HER2) have been created by Loo 

Fig. 6  Schematic representation 
of nerve regeneration. a Periph-
eral nerve injury. b Wallerian 
degeneration, fragmentation of 
the axon, and myelin sheath. 
Schwann cells proliferate and 
phagocytosis of the degrad-
ing materials by macrophages. 
c Schwann cells in the distal 
segment line up in bands of 
Büngner. d Axonal reconnected 
and nerve fiber remyelinated ( 
adapted from Sedaghati et al.  
2014)
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et al. for use in breast cancer detection (Loo et al.  2011). A 
piezoelectric microcantilever sensor (PEM) was developed 
to detect HER2 biomarker levels present in human blood 
samples of patients with breast cancer. The anti-HER2 PEM 
biosensor was able to detect the naturally occurring and 
recombinant HER2 accurately at clinically relevant levels 
(> 2 ng/mL) affirming that the PEM biosensor is an effective 
tool for breast cancer detection.

A household usable device for early diagnosis and self-
screening of breast cancer, based on quartz crystal microbalance 
biosensor, was introduced by Arif et al. (2015). The sensor 
worked using a saliva sample which represents a noninvasive 
routine to detect the ATP6AP1 auto-antibodies that appear dur-
ing the early stages of breast cancer and as such the device may 
serve as alert to women instead of the regularized check-ups.

A PZT ceramic-based biosensor was developed by Ramirez 
et al. for the detection of cancer markers (Ramirez-Valles et al. 
2020). The detection of the cancer biomarkers α-fetoprotein 
(AFP) and prostate-specific antigen (PSA) was carried out 
through monitoring a change in frequency. The biosensor showed 
high-sensitivity and fast detection with small sample. In addi-
tion, the results indicated that the ceramic piezoelectric biosen-
sor could be used with various chemical interfaces with the pos-
sibility that the biosensor array could be expanded to different 
specificities for simultaneous detection of a range of analytes.

A piezoelectric finger (PEF) is a radiation-free, portable, 
and low-cost breast tumor detector capable of electrical 

tissue stiffness measurement (Xu et al. 2013). Measurement 
of tissue stiffness is achieved by simply placing a PEF on a 
tissue and inducing palpation type t (electronic palpation) 
but with much higher sensitivity and accuracy than is pos-
sible via other approaches (Xu et al. 2016). PEF has been 
successfully tested in vivo with better sensitivity than mam-
mography and has been shown to be able to detect breast 
cancers in women with dense breasts that were undetectable 
via mammography (Xu et al.  2016). The UELS has licensed 
the technology and received FDA approval with the PEF 
breast cancer detector marketed under the trade name intel-
ligent Breast Exam (iBE®) (Mango et al. 2022).

Piezoelectric biosensors for detection 
of viral infection

Under an alternating current (AC), a piezoelectric material 
shows mechanical oscillation. The frequency regulated by 
the AC voltage drops as the mass m grows owing to molec-
ular interactions. For viral detection, mass response-type 
piezoelectric sensors are often utilized (Chen et al. 2020b). 
The global spread of the severe acute respiratory syndrome 
coronavirus has reinforced the need for fast and sensitive 
detection techniques for controlling the outbreak (Aloraini 
et al.  2021). The techniques (and their limitations) for virus 

Fig. 7  Schematic diagram of the components of a biosensor consisting of bioreceptor, transducer, electronic system, and display unit, and vari-
ous types of bioreceptors and transducers used in the biosensors are represented (adapted with permission from Seed-Nanotech 2022)
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detection using different virus sensors have been reviewed 
by Narita et al. (2021).

Kabir et al. developed a piezoelectric microcantilever 
antibody-based biosensor for detecting COVID-19 without 
the need for any prior processing (Kabir et al. 2021). When 
the SARS-CoV-2 spike protein antigens adsorb on the top 
surface of the microcantilever, a surface tension is induced 
owing to the mass shift, resulting in observable tip deflec-
tion. Different forms and piezoelectric materials were evalu-
ated to create a biosensor with optimal characteristics, and 
it was determined that a poly[vinylidene fluoride] (PVDF) 
biosensor in the shape of a holed punched form triangle rep-
resented the best outcome. As a result, COVID-19 may be 
detected quickly in clinical samples with varying virus loads 
using the extremely sensitive microcantilever biosensor.

Wang et al. also studied the dynamic electromechanical 
response of piezoelectric fiber-epoxy matrix composites 
as mass load sensors for COVID-19 detection (Wang et al. 
2021). Although the preceding literature indicates great 
potential, the construction of a biosensor with optimum 
parameters for the detection of a specific virus with depend-
able accuracy remains a challenge for the future.

Conclusions

This review has summarized the piezoelectric effect phenom-
ena exploring the piezoelectric properties of both non-biological 
and biological materials with particular attention to piezoelectric 
properties of bones and history and types of piezoelectric bioma-
terials and highlights their applications in tissue engineering and 
biosensors. Piezoelectrics are non-centrosymmetric materials 
that can behave like a mechano-electrical transducer. Piezoelec-
tric materials represent the second major application of dielectric 
materials after semiconductors. They have many applications 
in the biomedical field and hold great potential as osteoinduc-
tive scaffolds in tissue regeneration. Electroactive scaffolds can 
create an electric field as a response of mechanical vibrations. 
They can also be tuned to create electric field properties of the 
original extracellular matrix to modulate the signaling pathways. 
Such approaches offer the potential for extending traditional 
techniques for inducing differentiation and proliferation of cells, 
such as through the incorporation of drugs or stimulating factors, 
which can be expensive and complicated.

In addition, piezoelectricity concepts are used widely in 
the manufacture of several devices such as sensors and actu-
ators. The accuracy of detection and sensitivity by piezoelec-
tric sensors is comparable with optical and electrochemical 
detectors. Apart from these real-time and label-free quali-
ties, the fundamental advantage of piezoelectric biosensors 
is their flexibility. In comparison to other sensors, such as 
optical devices, this method is flexible and inexpensive. As 
seen in this review, piezoelectric-based biosensors can even 

be used in the detection of viral pathogens such as the virus 
responsible for COVID-19.

In summary, piezoelectric materials will be important 
for future progress in biomedical science and regenerative 
medicine, and therefore, attention must be paid to the future 
development of this group of self-controlling smart systems.
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