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Abstract: A pair of chiral nanocluster complexes were formed by the host−guest interaction between
the enantiomeric 2,6-helic[6]arenes and nanocluster Ag20. The formation and stability of the nanoclus-
ter complexes were experimentally and theoretically confirmed. Meanwhile, the chiral nanocluster
complexes exhibited enhanced luminescence and induced CD signals at room temperature in the
solid state, revealing the stable complexation and chirality transfer from the chiral macrocycles to the
nanocluster Ag20.
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1. Introduction

Metal nanoclusters (MNCs) have emerged as an excellent choice for constructing
functional nanomaterials in recent years because of their disparate microscopic structures
and unique macroscopic properties [1,2]. Hence, MNCs featuring strong chiral attributes
and chiroptical activities [3,4] have been widely applied in asymmetric catalysis [5,6],
negative refractive index materials [7], chemical sensing [8], optical materials [9], and
biological imaging and therapy [10,11]. Therefore, the design and construction of novel
chiral MNCs has gradually become a research focus in the field of nanomaterials [12,13].

Supramolecular assembly [14] has been extensively explored to modify the struc-
tures and morphology of MNCs, and even modulate their properties and functions.
The application of macrocyclic hosts to construct metal nanocluster hybrid systems through
host−guest assembly has gained great attention [15–19], especially macrocycle-based chi-
ral MNC complexes. Zang and coworkers used the electrostatic assemblies between the
crown ether−cation complexes and the chiral copper nanoclusters to modulate the chi-
ral/achiral assembly and induce the circularly polarized luminescence of the nanocluster
complexes for the first time [20]. Moreover, the specific chiral recognition between the
chiral α-cyclodextrins and the nanoclusters could promote the enantio-separation of the
racemic Au20 nanoclusters [21]. Pradeep and Purkayastha’s groups constructed chiral
gold nanoclusters through host–guest assembly with chiral cyclodextrins and studied their
chiroptical properties [22,23]. These results have revealed that constructing chiral MNCs
assemblies with macrocyclic hosts can not only improve the stability of chiral MNCs, but
also reversibly modulate the physicochemical properties and increase the diversity of chiral
MNCs. However, it is still challenging to construct new macrocycle-directed chiral MNCs
due to the deficiency of the synthetic chiral macrocycles.

In our previous work, we reported a new kind of chiral macrocyclic host, 2,6-helic[6]arene [24],
which performed wide applications in molecular recognitions and self-assemblies [25–29].
Herein, we report a pair of new chiral nanocluster complexes (G@P/M-H6) formed by
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host−guest interactions between the chiral 2,6-helic[6]arenes (P/M-H6) and Ag20 nan-
ocluster [30–33] G (Figure 1). It was found that the chiral nanocluster complexes showed
enhanced emission and induced Cotton effects at room temperature, which indicated that
encapsulation of the silver clusters by chiral 2,6-helic[6]arenes played an important role in
modifying the properties of the silver clusters.
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2. Results 
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As shown in Figure 2a, G was synthesized by the mixing of AgNO3, precursor [Ag-
StBu]n, ligand L1, and triethylamine (Et3N) in a mixed solvent of CH3CN and N,N-dime-
thylacetamide (DMAc) (v/v = 1:1) under vigorous stirring for 30 min at room temperature. 
The block crystals of G were obtained by slow vapor diffusion of tetrahydrofuran into the 
above solution in darkness. X-ray crystallographic analysis (Table S1) revealed that the 
solid-state structure of G (Figure 2b,c) was similar to the reported Ag20 nanoclusters 
[31,32,34], which possessed a drum-like Ag20S10 core with one CO32− anion in the center. 
Two trimethylammonium L1-H ligands were anchored to the Ag20S10 core in the antipar-
allel direction by the linking of the carboxylic groups and the peripheral silver atoms. 
Additionally, two DMAc and six NO3− anions coordinated with the silver atoms around 
the silver clusters, and two remaining NO3− anions covered the top and the bottom of the 
Ag20S10 core. The maximum outer diameter of G was ca. 31.4 Å, with a thickness of 5.2 Å. 

Figure 1. Structures of the chiral macrocyclic hosts P-H6/M-H6, the silver cluster G, and the ligands
L1 and L2 (H atoms and solvent molecules of G were omitted for clarity; color legend: Ag, green; S,
orange; C, gray; N, blue; O, red; L1 was designated as L1-H after L1 coordinated to Ag atoms with
one proton lost).

2. Results
2.1. Synthesis and Structures of the Silver Cluster

As shown in Figure 2a, G was synthesized by the mixing of AgNO3, precursor
[AgStBu]n, ligand L1, and triethylamine (Et3N) in a mixed solvent of CH3CN and N,N-
dimethylacetamide (DMAc) (v/v = 1:1) under vigorous stirring for 30 min at room temper-
ature. The block crystals of G were obtained by slow vapor diffusion of tetrahydrofuran
into the above solution in darkness. X-ray crystallographic analysis (Table S1) revealed
that the solid-state structure of G (Figure 2b,c) was similar to the reported Ag20 nanoclus-
ters [31,32,34], which possessed a drum-like Ag20S10 core with one CO3

2− anion in the
center. Two trimethylammonium L1-H ligands were anchored to the Ag20S10 core in the
antiparallel direction by the linking of the carboxylic groups and the peripheral silver
atoms. Additionally, two DMAc and six NO3

− anions coordinated with the silver atoms
around the silver clusters, and two remaining NO3

− anions covered the top and the bottom
of the Ag20S10 core. The maximum outer diameter of G was ca. 31.4 Å, with a thickness of
5.2 Å.

2.2. Study on the Formation of the Nanocluster Complexes

It was reported that the cavity size of host P/M-H6 is about 9.10 Å (Figure 1), which
could form good binding with trimethylammonium groups through C–H···π and cation–π
interactions [35]. The host–guest interaction between P/M-H6 and ligand L1 was quan-
tificationally investigated by Job plot and 1H NMR titration experiments (Figures S1–S4),
confirming that P/M-H6 and ligand L1 could form stable complexes in a 1:1 binding mode.
Based on the above results, the nanocluster complex G@P-H6 was prepared by dissolving
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the host P-H6 and the crystal of G in the molar ratio of 2:1 in the mixed solvent of CH3CN
and DMSO (v/v = 5:1). After stirring for 30 min, ether was added to precipitate the G@P-H6
complex. The turbid liquid was centrifuged, and its supernatant was discarded. Then, the
white nanocluster complex was collected after the residual solvent was evaporated in
92.3% yield. The enantiomeric complex G@M-H6 was synthesized by the same method in
89.9% yield.
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Figure 2. (a) The synthetic route of silver cluster G. (b) Top view and (c) side view of the crystal
structure of G, H atoms and solvent molecules were omitted for clarity. Color legend: Ag, green; S,
orange; C, gray; N, blue; O, red.

NMR spectroscopy was used to investigate the host−guest interaction of complex
G@P-H6 in solution. When the complex was dissolved 5:1 (v/v) in CD3CN/DMSO-d6,
the 1H NMR spectrum of G@P-H6 showed a distinctive difference from that of free P-H6
and G (Figure 3), which demonstrated the formation of the complex. The trimethylammo-
nium proton Ha on L1-H of G exhibited pronounced up-field shifts due to the shielding
effect of the cavity of P-H6, and aromatic proton Hc also shifted up-field to 6.9 ppm, over-
lapping with the proton signals of H4 and H7. Meanwhile, the aromatic proton Hd on
L1-H and proton He on the t-butyl mercaptan ligand L2 of G shifted downfield because
of the de-shielding effect of the methoxyl groups outside the host cavity. However, the
signals related to the methylene proton Hb on L1-H disappeared after complexation, which
could be caused by the encapsulation of the cavity of P-H6 and the extensive broadening
effects due to the complexation dynamics. The proton signals of H1 and H2 on P-H6 only
showed slight downfield shifts because of the complexation. These observations indicated
that in complex G@P-H6, the trimethylammonium ligand L1-H of G was encapsulated
into the cavity of the macrocyclic host, and the ligand L2 of G was outside of the cavity.
To further confirm the complexation between the host and the silver cluster, the 2D nu-
clear Overhauser enhancement spectroscopy (NOESY) NMR experiment was carried out
(Figure S7). It was found that the NOE correlation signals between the proton H1 of P-H6
and trimethylammonium proton Ha of G demonstrated the formation of the nanocluster
complex in solution, which was consistent with the results of the 1H NMR spectra. The 1H
and 2D NOESY NMR spectra of the nanocluster complex between M-H6 and G are shown
in Figures S6 and S8, suggesting the same complex capacity as that of P-configuration.

The solid-state 13C NMR experiments were also carried out to gain insight into the
complexation of the nanocluster complexes in solid state. The signals of the solid-state
13C NMR spectrum showed that the peaks of carbons a–b on L1-H of G distinctly shifted
up-field and C1–C3 of P-H6 exhibited downfield changes (Figure S9), suggesting the good
binding between the host and the silver cluster in solid state. Meanwhile, the similar signal
changes of complex G@M-H6 in Figure S10 demonstrated the same complexation as that
of G@P-H6.
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Moreover, the size of G would be changed when the surface was covered with the
macrocyclic hosts. The TEM images showed the isolated G presented particles with good
monodispersity and uniform particle size (~2 nm) (Figure 4a). The nanocluster complex
G@P-H6 with the diameter of 18 nm was much larger than the isolated G (Figure 4b),
which was attributed to the cap of P-H6 on the surface of the silver cluster. It is worth
noting that the size of G@P-H6 was much larger than the length of one G and two P-H6
molecules. We speculated that further aggregation through the π–π interaction afforded
the increasing size of the nanocluster complexes because the isolated hosts presented aggre-
gated particles (~12 nm) in TEM images (Figure S11). Besides, the average hydrodynamic
diameters of G and G@P-H6 measured by DLS were in agreement with the TEM results.
The silver cluster G possessed an average hydrodynamic diameter of 1.4 nm in solution
(Figure 4a, inset). For complex G@P-H6, the average size was about 20 nm (Figure 4b,
inset). The nanocluster complex formed by M-enantiomer showed the same morphological
results (Figures S12 and S13). These results not only proved the formation of the nanoclus-
ter complexes, but also suggested that the macrocyclic hosts had a dramatic influence on
the size and surface environment of the silver cluster.
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complex G@P-H6 (inset: DLS image of G@P-H6).
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2.3. DFT Calculation of the Nanocluster Complexes

In addition, DFT calculation was further implemented at the PBE [36]/(DND:DSPP) [37]
level of theory by the Dmol3 package [38,39] to shed light on the structure of the inclusion
complex G@P-H6. In the theoretical model of G and G@P-H6, the ligand L2 was simplified
as SCH3, and the two NO3

− anions that covered the top and the bottom of the Ag20S10 core
were omitted. The optimized structure of G (Figure S22) was consistent with the single-
crystal structure. As shown in Figure 5a,b, two P-H6 hosts encapsulated the two L1-H
ligands of G, respectively. It was revealed that C−H···π and hydrogen-bonding interactions
were responsible for such complexation. When the L1-H ligand of G was included in the
cavity of P-H6, the C−H···π interaction distances were 2.45 to 2.52 Å and the hydrogen-
bonding distances of 2.44 to 2.60 Å were found between O of the NO3

− ligands and the
nearest H of P-H6. The binding energy (BE) value in the PBE method for G@P-H6 was
−282.81 kcal/mol. All the simulated results confirmed the stable complexation between
the silver cluster G and the host P-H6.
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2.4. Photophysical Properties of the Nanocluster Complexes

The absorption spectra of the silver cluster, macrocyclic hosts, and their complexes
were then investigated both in solution and solid state. It could be observed that the
UV-Vis absorption spectra of P-H6 showed a maximum absorption peak at 290 nm, and G
presented a broad absorption band from 267 to 350 nm in solution (Figure S14). When P-H6
and G were dissolved in solution, the complex showed absorption at 290 nm with a
shoulder peak at about 325 nm (Figure S14). As shown in Figure 6a, the UV-Vis absorption
spectra in solid state were basically consistent with those in solution. G and P-H6 displayed
a maximum absorption peak at 280 and 290 nm, respectively. The absorption spectrum of
the nanocluster complexes exhibited a broad absorption peak from 275 to 375 nm with a
new shoulder peak at ca. 340 nm due to the host−guest complexation between P-H6 and
the ligand of G. Solid-state absorption spectra of G with different equivalents of P-H6 were
also measured (Figure S16) to further investigate the host–guest complexation. It could be
found that the increase of P-H6 caused a bathochromic shift of the maximum absorption
peak, and the new shoulder peak at 325 nm gradually increased. These results might be
attributed to the overlap of the absorption peaks and the host−guest complexation of P-H6
and G.

The solid-state photoluminescence properties of G, P/M-H6, and G@P/M-H6 at 300
and 77 K were further studied. As shown in Figure 6b, G showed a weak emission band
centered at 370 nm at 300 K and the luminescence of P-H6 was barely detected under the
same test conditions. With the increase of P-H6, the emission of G at 375 nm gradually
enhanced until the molar ratio of P-H6/G reached 2/1 (Figure S18). Compared with that of
the free silver cluster, the maximum emission peak of G@P-H6 at 375 nm enhanced nearly
three times. It was probably because the trimethylammonium of L1-H was encapsulated
into the cavity of P-H6 so that the rigidity of G enhanced and its non-radiative transition
was suppressed.
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Figure 6. (a) Absorption and (b) photoluminescence spectra of G, P-H6, and G@P-H6 in solid state
at 300 K (λex = 290 nm).

Moreover, we also measured the temperature-dependent luminescence of G and
G@P/M-H6 (Figure 7a, Figures S19 and S20). It was found when the temperature of
G@P-H6 decreased from 300 to 77 K, a distinct emission at 600 nm appeared and grad-
ually enhanced. The maintained low-temperature emission at 600 nm of G@P-H6 could
be assigned to the cluster-centered excited state and ligand-to-metal charge-transfer tran-
sition [34,40]. However, the luminescence intensity at 77 K of G@P-H6 at 600 nm was
obviously lower than that of the isolated G (Figure S21). These observations could be
attributed to the protection to the singlet excited state of G from the cavity of P-H6, which
effectively reduced the loss of energy by non-radiative decay at 300 K and decelerated the
intersystem crossing process of G at 77 K. Besides, the temperature-dependent spectrum
of G@P-H6 was transformed to the Commission Internationale de L’Eclairage (CIE) 1931
coordinates (Figure 7b). It could be observed that the emission colors of G@P-H6 changed
from orange to purplish blue with the increase of temperature in the CIE chromaticity
diagram, which presented multicolor luminescence with a broad range.
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Based on the spatial confinement of the silver clusters by the chiral cavities of the
macrocyclic hosts, we deduced that the nanocluster complexes could show chiroptical
properties in the solid state. As shown in Figure 8, mirrored Cotton effects for P-H6 and
M-H6 from 275 to 325 nm were obviously observed, in agreement with their absorption
regions, while the silver cluster G exhibited no CD signals. The complexes of G@P-H6 and
G@M-H6 presented mirrored CD signals from 275 to 340 nm with a new maximum peak at
320 nm, which suggested that the achiral silver cluster was endowed with CD properties.
Since the Ag20S10 core and ligands of G were achiral, the new CD responses might arise
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from a tandem process: chiral cavities of P/M-H6 induced chiral character in the elec-
tronic transitions of ligand L1-H, and then ligand-to-silver core-based electronic transitions
led to the CD activity. However, CPL signals of G@P/M-H6 were not detected, which
might be caused by the reduced efficiency of chirality transfer during the two transition
processes. These results indicated that the host−guest assembly with chiral macrocyclic
hosts could be a convenient and potent method to endow achiral metal nanoclusters with
chiroptical properties.
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3. Conclusions

In summary, a pair of new chiral nanocluster complexes based on the enantiomeric
2,6-helic[6]arenes and achiral Ag20 clusters were conveniently prepared and characterized
experimentally and theoretically. The emission spectra showed that the nanocluster com-
plexes possessed enhanced luminescence at room temperature due to the protection to
the singlet excited state of the silver clusters from the encapsulation of the host cavities.
With the decrease of temperature, the nanocluster complexes also displayed multicolor
luminescence with a broad range. More importantly, the complexation between the chiral
macrocyclic hosts and the silver clusters endowed the nanocluster complexes with induced
CD properties, which suggested the consecutive chirality transfer from the chiral macro-
cycles to the achiral silver clusters. This work can provide guidance for the design and
construction of new functional nanomaterials with chiroptical activity.

4. Materials and Methods
4.1. General Methods

All reagents and solvents were purchased from commercial sources and used without
further purification. 1H, 13C, and 2D NOESY NMR spectra were recorded on Brucker® AVIII
400, 600, and 700 MHz NMR spectrometers. Single-crystal data were collected on XtaLAB
Synergy-R using graphite mono-chromated Cu Kα radiation. UV-Vis spectra were recorded
on a PerkinElmer® UV/Vis/NIR spectrometer (Lambda 950), and the fluorescence spectra
were recorded on an Edinburgh Instruments FLS1000 spectrometer. CD spectra were
recorded on a JASCO J815 spectropolarimeter. TEM images were obtained on a Hitachi®

HT-7700. DLS measurements were implemented on Zetasizer Nano ZS ZEN3600 of Malvern
Instruments Ltd. The hosts P-H6/M-H6, trimethylammonium L1 ligands, and precursor
[AgStBu]n were prepared according to the literature procedure [24,41,42]. Normalization of
the photoluminescence spectra was performed by dividing the luminescence intensities by
the maximum emission of the host–guest complex at 375 nm.
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4.2. Synthetic Procedure of the Silver Cluster and the Nanocluster Complexes

G: To an 8 mL mixed solvent of acetonitrile and N,N-dimethylacetamide (v/v = 1:1),
Ag20 precursor [AgStBu]n (0.1 mmol, 19.7 mg) was added under vigorous stirring at room
temperature. Then, AgNO3 (0.2 mmol, 34 mg) and the L1 ligand (0.03 mmol, 10.2 mg)
were added successively. When L1 was completely dissolved, 40 µL of triethylamine
was added. The mixture was allowed to react for another 30 min. Finally, the resultant
solution was filtered with syringe filters and injected into a test tube. With the poor solvent
tetrahydrofuran diffusing into the filtrate, light-brown block crystals of G were obtained
in darkness after three days. Yield: 65% (based on Ag). Elemental analysis calcd. (%) for
C71H138N12S10Ag20O33 (4144.77): C 20.47; H 3.34; N 4.03; S 7.70; found: C 20.48; H 3.37; N
4.07; S 7.66.

G@P-H6: The host P-H6 (14.2 mg, 0.015 mmol) and the crystals of G (31 mg, 0.0075 mmol)
were dissolved in 6 mL of mixed solvent of CH3CN and DMSO (v/v = 5:1). After stirring for
30 min, ether was added to precipitate complex G@P-H6. The turbid liquid was centrifuged,
and its supernatant was discarded. Then, the white nanocluster complex was collected after
the residual solvent was evaporated. The enantiomeric complex G@M-H6 was synthesized
by the same method.

4.3. Preparation of the Samples for CD Measurements

The solid-state samples for CD measurements were ground with KBr (mass ratio of
P-H6/KBr = 1:77, mass ratio of G/KBr = 2:77) and then compressed to transparent discs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27123932/s1: Figure S1: (a) 1H NMR spectra (400 MHz,
CD3CN:DMSO-d6 = 5:1 (v/v), 298 K) of P-H6 with different equivalents of L1. [P-H6] = 2.50 mM;
(b) Plots of ∆δ (ppm) for the bridgehead proton vs the concentration of L1. Figure S2: Mole ratio
of P-H6 vs L1. Figure S3: (a) 1H NMR spectra (400 MHz, CD3CN:DMSO-d6 = 5:1 (v/v), 298 K) of
M-H6 with different equivalents of L1. [M-H6] = 2.50 mM; (b) Plots of ∆δ (ppm) for the bridge-
head proton vs the concentration of L1. Figure S4: Mole ratio of M-H6 vs L1. Figure S5: 1H
NMR spectra (400 MHz, CD3CN:DMSO-d6 = 5:1 (v/v), 298 K) of G with different equivalents of
P-H6. [G] = 2.50 mM. Figure S6: (a) The 1H NMR spectra of M-H6, G and G@M-H6 (400 MHz,
CD3CN:DMSO-d6 = 5:1 (v/v), 298 K, [M-H6] = 2.5 mM, [G] = 1.25 mM). Figure S7: 2D NOESY NMR
spectrum (700 MHz, CD3CN/DMSO-d6 = 5:1 (v/v), 298 K) of G@P-H6. Figure S8: 2D NOESY NMR
spectrum (700 MHz, CD3CN/DMSO-d6 = 5:1 (v/v), 298 K) of G@M-H6. Figure S9: Solid-state 13C
NMR spectra of P-H6, G and G@P-H6 (150 MHz, 298 K, mole ratio of P-H6/G is 2/1). Figure S10:
Solid-state 13C NMR spectra of M-H6, G and G@M-H6 (150 MHz, 298 K, mole ratio of M-H6/G
is 2/1). Figure S11: TEM images of the macrocyclic hosts: (a) P-H6, (b) M-H6. Figure S12: TEM
images of the nanocluster complex G@M-H6 ([M-H6]/[G] = 2/1). Figure S13: The DLS image of
G@M-H6 ([M-H6]/[G] = 2/1). Figure S14: Normalized UV-Vis absorption spectra of P-H6, G and
G@P-H6 in CH3CN:DMSO = 5:1 (v/v) ([P-H6] = 0.02 mM, [G] = 0.01 mM). Figure S15: Normalized
UV-Vis absorption spectra of M-H6, G and G@M-H6 in solid state. Figure S16: Normalized UV-Vis
absorption spectra of G with different equivalents of P-H6 in solid state. Figure S17: Normalized
luminescence spectra of M-H6, G and G@M-H6 at 300 K in solid state. Figure S18: Normalized
luminescence spectra of G with different equivalents of P-H6 in solid state at 300 K. Figure S19:
Solid-state emission spectra of G@M-H6 at different temperatures. Figure S20: Solid-state emission
spectrum of G at different temperatures. Figure S21: Normalized luminescence spectra of (a) P-H6,
G and G@P-H6; (b) M-H6, G and G@M-H6 at 77 K in solid state. Figure S22: (a) Top view and (b)
side view of the optimized structure of G (H atoms are omitted for clarity; color legend: Ag, green;
S, orange; C, gray; N, blue; O, red). Table S1: Crystal data and structure refinements for G (CCDC
2156603). Table S2: DFT calculation result of G.
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