

OPEN a ACCESS

Crystal structure of 3-[(E)-2-(4-phenyl-1,3-thiazol-2-yl)hydrazin-1-ylidene]-

indolin-2-one

Bhimashankar M. Halasangi,^a Prema S. Badami,^b Sangamesh A. Patil^a and G. N. Anil Kumar^{c*}

^aDepartment of Chemistry, Karnatak University, Dharwad, India, ^bDepartment of Chemistry, Shri Sharanabasaveshwar College of Science, Gulbarga 585 102, India, and ^cDepartment of Physics, M S Ramaiah Institute of Technology, Bangalore 560 054, Karnataka, India. *Correspondence e-mail: anilgn@msrit.edu

Received 4 October 2014; accepted 16 October 2014

Edited by A. J. Lough, University of Toronto, Canada

In the title molecule, $C_{17}H_{12}N_4OS$, the thiazole ring forms a dihedral angle of 10.8 (2) $^{\circ}$ with the phenyl ring and an angle of $3.1(3)^{\circ}$ with the indole ring system [which has a maximum deviation of 0.035 (2) Å]. The dihedral angle between the planes of the phenyl ring and the indole ring system is 11.5 (1)°. An intramolecular N-H···O hydrogen bond is observed. In the crystal, pairs of $N-H \cdots O$ hydrogen bonds form inversion dimers with an $R_2^2(8)$ graph-set motif.

Keywords: crystal structure; indolinone; hydrazine; 1,3-thiazole; hydrogen bonding; biological activity.

CCDC reference: 1029498

1. Related literature

For the biological activities of substituted thiazoles, see: Ali et al. (2011); Bharti et al. (2010); Kondratieva et al. (2007). For a related structure, see: Sadık et al. (2004).

Å

Å

2. Experimental

2.1. Crystal data	
C ₁₇ H ₁₂ N ₄ OS	a = 17.7108 (8)
$M_r = 320.37$	b = 5.1411(2)
Monoclinic, $P2_1/c$	c = 15.9065 (6)

 $\beta = 94.706 \ (3)^{\circ}$ V = 1443.45 (10) Å³ Z = 4Mo $K\alpha$ radiation

2.2. Data collection

Bruker SMART CCD area-detector	11530 measured reflections
diffractometer	3142 independent reflections
Absorption correction: multi-scan	2124 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.039$
$T_{\min} = 0.887, \ T_{\max} = 0.934$	

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	208 parameters
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
3142 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1		
Hydrogen-bond	geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2···O1	0.86	2.12	2.771 (2)	133
$N4-H4\cdots O1^{i}$	0.86	2.11	2.922 (2)	158

Symmetry code: (i) -x, -y, -z + 1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Acknowledgements

USIC, Karnatak University, Dharwad, is greatly acknowledged for the single-crystal XRD data collection. BMH is grateful to the UGC for financial support in the form of an **RFSMS** scholarship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5732).

References

- Ali, M. A., Mirza, A. H., Bakar, H. J. H. A. & Bernhardt, P. V. (2011). Polyhedron, 30, 556-564.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651-660.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kondratieva, M. L., Pepeleva, A. V., Belskaia, N. P., Koksharov, A. V., Groundwater, P. V., Robeyns, K., Van Meervelt, L., Dehaen, W., Fan, Z. J. & Bakulev, V. A. (2007). Tetrahedron, 63, 3042-3048.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sadık, G., Necmi, D., Ibrahim, Y., Alaaddin, Ç. & Dinçer, M. (2004). Acta Crvst. E60. 0889-0891.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

 $\mu = 0.23 \text{ mm}^{-1}$

 $0.35 \times 0.31 \times 0.25 \text{ mm}$

T = 296 K

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Watkin, D. M., Pearce, L. & Prout, C. K. (1993). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2014). E70, o1177-o1178 [doi:10.1107/S1600536814022715]

Crystal structure of 3-[(*E*)-2-(4-phenyl-1,3-thiazol-2-yl)hydrazin-1-yl-idene]indolin-2-one

Bhimashankar M. Halasangi, Prema S. Badami, Sangamesh A. Patil and G. N. Anil Kumar

S1. Experimental

S1.1. Synthesis and crystallization

An ethanolic solution of 1.81g (0.01 M) of 2-hydrazino-4-phenylthiazole was added drop wise to an etanolic solution of 1.47g (0.01 M) of isatin with constant stirring. After the complete addition, the reaction mixture was stirred further for 8-9 hrs until the solid separated out from the reaction mixture. The separated solid was filtered and washed with cold alcohol, dried and recrystallized from DMF (Yield: 95 %. MP: 443-446K). Block-shaped colourless crystals were obtained by slow evaporation of a solution of the title compound at room temperature in DMF:water in the ratio 2:1.

S1.2. Refinement

H atoms were placed in idealized positions and refined using a riding-model approximation with N—H = 0.86 Å, C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(N,C)$.

S2. Comment

Isatin derivatives and compounds containing a thiazole ring are class of organic compounds which have fascinated many synthetic researchers due to their wide range of biological activity (Ali *et al.*, 2011; Bharti *et al.*, 2010; Kondratieva *et al.*, 2007).

The molecular structure of the title compound is shown in Fig. 1. An intramolecular N—H···O hydrogen bond is observed. The thiazole ring is essentially planar with a maximum deviation of 0.005 (2) Å for atom N1. The thiazole ring (S1/C9/N1/C7/C8) forms dihedral angles of 10.8 (2)° with the phenyl ring (C1–C6) and 3.1 (3)° with the indole ring system (C10—C16/N4/C17, with a maximum deviation of 0.035 (2)Å for atom C17). The dihedral angle between the phenyl ring and the indole ring system is 11.5 (1)Å. In the crystal, pairs of N—H···O hydrogen bonds form inversion dimers (Fig. 2). A closely related structure appears in the literature (Sadik, *et al.*, 2004).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates an intramolecular N—H···N bond

Figure 2

Part of the crystal structure with hydrogen bonds indicated as dotted lines

3-[(E)-2-(4-Phenyl-1,3-thiazol-2-yl)hydrazin-1-ylidene]indolin-2-one

Crystal data	
C ₁₇ H ₁₂ N ₄ OS	b = 5.1411 (2) Å
$M_r = 320.37$	c = 15.9065 (6) Å
Monoclinic, $P2_1/c$	$\beta = 94.706 \ (3)^{\circ}$
Hall symbol: -P 2ybc	$V = 1443.45 (10) \text{ Å}^3$
a = 17.7108 (8) Å	Z = 4

F(000) = 664 $D_x = 1.474 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ $\mu = 0.23 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.887, \ T_{\max} = 0.934$
11530 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.09	H-atom parameters constrained
3142 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 0.0098P]$
208 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.25 \ m e \ { m \AA}^{-3}$

T = 296 K

 $R_{\rm int} = 0.039$

 $h = -22 \rightarrow 22$ $k = -6 \rightarrow 6$ $l = -20 \rightarrow 20$

Block, colourless

 $0.35 \times 0.31 \times 0.25 \text{ mm}$

 $\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

3142 independent reflections 2124 reflections with $I > 2\sigma(I)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.33816(3)	0.66660 (12)	0.39879 (3)	0.04097 (19)	
01	0.08908 (8)	0.2212 (3)	0.51706 (8)	0.0481 (4)	
N1	0.28727 (8)	0.7985 (3)	0.54037 (9)	0.0325 (4)	
N2	0.21944 (9)	0.4599 (3)	0.46996 (9)	0.0369 (4)	
H2	0.1873	0.4489	0.5075	0.044*	
N3	0.21516 (9)	0.3013 (3)	0.40283 (9)	0.0341 (4)	
N4	0.05982 (9)	-0.1170 (3)	0.42364 (9)	0.0387 (5)	
H4	0.0225	-0.1842	0.4474	0.046*	
C1	0.43038 (11)	1.3281 (4)	0.58140 (12)	0.0359 (5)	
H1	0.4504	1.335	0.5292	0.043*	
C2	0.45583 (11)	1.5006 (4)	0.64372 (12)	0.0419 (5)	
H2A	0.4931	1.6214	0.6335	0.05*	
C3	0.42631 (12)	1.4945 (4)	0.72089 (12)	0.0410 (5)	

H3	0.4433	1.6113	0.7629	0.049*
C4	0.37150 (12)	1.3150 (4)	0.73568 (12)	0.0415 (5)
H4A	0.3512	1.3113	0.7877	0.05*
C5	0.34649 (11)	1.1406 (4)	0.67384 (12)	0.0376 (5)
Н5	0.3098	1.0188	0.6849	0.045*
C6	0.37525 (10)	1.1438 (4)	0.59528 (11)	0.0304 (5)
C7	0.34960 (10)	0.9552 (4)	0.52935 (11)	0.0309 (5)
C8	0.38282 (11)	0.9102 (4)	0.45680 (11)	0.0367 (5)
H8	0.4247	1.0007	0.4406	0.044*
C9	0.27677 (11)	0.6406 (4)	0.47676 (11)	0.0314 (5)
C10	0.16106 (11)	0.1315 (4)	0.39588 (11)	0.0319 (5)
C11	0.14763 (10)	-0.0560 (4)	0.32827 (11)	0.0317 (5)
C12	0.18154 (11)	-0.1039 (4)	0.25430 (12)	0.0409 (5)
H12	0.222	-0.003	0.2397	0.049*
C13	0.15406 (12)	-0.3045 (4)	0.20274 (12)	0.0451 (6)
H13	0.1762	-0.3386	0.1528	0.054*
C14	0.09393 (12)	-0.4556 (4)	0.22454 (12)	0.0422 (6)
H14	0.0768	-0.5912	0.1893	0.051*
C15	0.05887 (11)	-0.4091 (4)	0.29754 (12)	0.0392 (5)
H15	0.0183	-0.51	0.312	0.047*
C16	0.08638 (10)	-0.2078 (4)	0.34775 (11)	0.0319 (5)
C17	0.10069 (11)	0.0896 (4)	0.45404 (12)	0.0362 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0424 (3)	0.0466 (4)	0.0351 (3)	-0.0080 (3)	0.0099 (2)	-0.0052 (2)
01	0.0479 (9)	0.0568 (11)	0.0417 (8)	-0.0142 (8)	0.0156 (7)	-0.0154 (8)
N1	0.0296 (9)	0.0333 (11)	0.0350 (8)	-0.0022 (8)	0.0050 (7)	-0.0018 (8)
N2	0.0329 (10)	0.0424 (12)	0.0363 (9)	-0.0091 (9)	0.0080 (7)	-0.0058 (8)
N3	0.0328 (9)	0.0359 (11)	0.0335 (8)	-0.0026 (9)	0.0026 (7)	-0.0024 (8)
N4	0.0354 (10)	0.0422 (12)	0.0400 (9)	-0.0129 (9)	0.0112 (7)	-0.0035 (8)
C1	0.0343 (11)	0.0375 (14)	0.0362 (10)	-0.0027 (10)	0.0056 (8)	0.0039 (10)
C2	0.0377 (12)	0.0398 (15)	0.0478 (12)	-0.0074 (11)	0.0010 (9)	-0.0001 (11)
C3	0.0436 (13)	0.0342 (14)	0.0442 (12)	-0.0026 (11)	-0.0030 (9)	-0.0071 (10)
C4	0.0454 (13)	0.0432 (15)	0.0366 (11)	-0.0002 (12)	0.0078 (9)	-0.0046 (10)
C5	0.0359 (12)	0.0366 (14)	0.0411 (11)	-0.0069 (11)	0.0085 (9)	-0.0020 (10)
C6	0.0291 (11)	0.0275 (12)	0.0343 (10)	0.0043 (10)	0.0010 (8)	0.0020 (9)
C7	0.0289 (10)	0.0285 (12)	0.0354 (10)	-0.0006 (10)	0.0026 (8)	0.0023 (9)
C8	0.0345 (11)	0.0377 (14)	0.0385 (11)	-0.0086 (10)	0.0071 (9)	-0.0001 (10)
C9	0.0290 (11)	0.0309 (13)	0.0344 (10)	-0.0004 (10)	0.0026 (8)	0.0012 (9)
C10	0.0282 (11)	0.0341 (13)	0.0334 (10)	-0.0010 (10)	0.0025 (8)	0.0010 (9)
C11	0.0275 (10)	0.0331 (13)	0.0342 (10)	0.0012 (10)	0.0016 (8)	-0.0001 (9)
C12	0.0326 (12)	0.0505 (15)	0.0404 (11)	-0.0049 (11)	0.0080 (9)	-0.0022 (11)
C13	0.0370 (12)	0.0588 (17)	0.0398 (11)	0.0042 (12)	0.0047 (9)	-0.0104 (11)
C14	0.0381 (12)	0.0428 (15)	0.0445 (12)	0.0027 (11)	-0.0042 (9)	-0.0094 (11)
C15	0.0343 (12)	0.0387 (14)	0.0442 (11)	-0.0016 (11)	0.0013 (9)	-0.0029 (10)
C16	0.0279 (11)	0.0358 (13)	0.0321 (10)	0.0026 (10)	0.0026 (8)	-0.0003 (9)

C17	0.0322 (11)	0.0398 (14)	0.0368 (11)	-0.0016 (11)	0.0040 (9)	-0.0008 (10)		
Geomet	Geometric parameters (Å, °)							
S1—C8	S1—C8 1.711 (2) C4—C5 1.377 (3)							
S1—C9)	1.7203 (19)	C4—H4A		0.93		
01—C	17	1.240 (2)	C5—C6		1.388 (2)		
N1-C	9	1.299 (2)	С5—Н5		0.93		
N1—C	7	1.389 (2)	С6—С7		1.472 (3)		
N2—N	3	1.341 (2)	С7—С8		1.358 (2)		
N2-C)	1.374 (2)	С8—Н8		0.93		
N2—H	2	0.86		C10-C11		1.449 (3)		
N3—C	10	1.294 (2	.)	C10-C17		1.486 (3)		
N4—C	17	1.352 (2	2)	C11—C12		1.386 (2)		
N4—C	16	1.411 (2)	C11—C16		1.392 (3)		
N4—H	4	0.86		C12—C13		1.381 (3)		
C1—C2	2	1.378 (3)	C12—H12		0.93		
C1—C	6	1.391 (3)	C13—C14		1.385 (3)		
С1—Н	1	0.93		С13—Н13		0.93		
C2—C3	3	1.373 (3)	C14—C15		1.382 (3)		
С2—Н	2A	0.93		C14—H14		0.93		
C3—C4	1	1.373 (3)	C15—C16		1.372 (3)		
С3—Н.	3	0.93		C15—H15		0.93		
C8—S1	—С9	87.69 (9)	C7—C8—S1		111.71 (15)		
C9—N	l—C7	109.19 (15)	С7—С8—Н8		124.1		
N3—N	2—С9	117.83 (15)	S1—C8—H8		124.1		
N3—N	2—Н2	121.1		N1-C9-N2		122.80 (17)		
C9—N2	2—Н2	121.1		N1-C9-S1		117.03 (15)		
C10-N	N3—N2	118.11 (16)	N2-C9-S1		120.17 (14)		
C17—N	V4—C16	111.08 (16)	N3—C10—C11		125.96 (17)		
C17—N	V4—H4	124.5		N3—C10—C17		127.60 (18)		
C16—N	V4—H4	124.5		C11—C10—C17		106.44 (17)		
C2C	l—C6	121.10 ((18)	C12—C11—C16		119.27 (18)		
C2C	I—H1	119.5		C12—C11—C10		133.79 (19)		
C6—C	I—H1	119.5		C16-C11-C10		106.93 (16)		
C3—C2	2—C1	120.2 (2)	C13—C12—C11		118.73 (19)		
С3—С2	2—H2A	119.9		C13—C12—H12		120.6		
C1-C2	2—H2A	119.9		C11—C12—H12		120.6		
C2—C3	3—C4	119.63 (19)	C12—C13—C14		120.71 (19)		
C2—C3	3—Н3	120.2		C12—C13—H13		119.6		
C4—C3	3—Н3	120.2		C14—C13—H13		119.6		
C3—C4	4—C5	120.37 ((19)	C15—C14—C13		121.4 (2)		
C3—C4	4—H4A	119.8		C15—C14—H14		119.3		
C5—C4	4—H4A	119.8		C13—C14—H14		119.3		
C4—C	5—C6	121.01 ((19)	C16—C15—C14		117.20 (19)		
C4—C	5—H5	119.5		C16—C15—H15		121.4		
С6—С5—Н5 119.5		C14—C15—H15		121.4				

supporting information

C5—C6—C1	117.73 (18)	C15—C16—C11	122.65 (18)
C5—C6—C7	121.26 (18)	C15—C16—N4	128.34 (18)
C1—C6—C7	121.00 (17)	C11—C16—N4	109.01 (17)
C8—C7—N1	114.38 (17)	O1—C17—N4	126.73 (19)
C8—C7—C6	126.00 (18)	O1—C17—C10	126.84 (19)
N1—C7—C6	119.59 (16)	N4—C17—C10	106.42 (17)
C9-N2-N3-C10 $C6-C1-C2-C3$ $C1-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C1$ $C4-C5-C6-C7$	-179.69 (17)	N2—N3—C10—C17	0.7 (3)
	-0.6 (3)	N3—C10—C11—C12	-3.6 (4)
	0.2 (3)	C17—C10—C11—C12	176.1 (2)
	0.4 (3)	N3—C10—C11—C16	177.11 (18)
	-0.7 (3)	C17—C10—C11—C16	-3.2 (2)
	0.3 (3)	C16—C11—C12—C13	-1.0 (3)
	179.04 (18)	C10—C11—C12—C13	179.7 (2)
C_{2} C_{1} C_{6} C_{7} C_{2} C_{1} C_{6} C_{7}	0.3(3) -178 37 (17)	C11-C12-C13-C14 C12-C13-C14	-0.2(3)
C9—N1—C7—C8	0.9 (2)	C13-C14-C15-C16	-0.3(3)
C9—N1—C7—C6	-177.30 (17)	C14-C15-C16-C11	-0.9(3)
C5—C6—C7—C8	-167.50 (19)	C14—C15—C16—N4	178.32 (18)
C1—C6—C7—C8	11.2 (3)	C12—C11—C16—C15	1.6 (3)
C5—C6—C7—N1	10.4 (3)	C10—C11—C16—C15	-178.92 (17)
C1—C6—C7—N1	-170.89 (17)	C12—C11—C16—N4	-177.75 (17)
N1—C7—C8—S1	-0.5 (2)	C10—C11—C16—N4	1.7 (2)
C6—C7—C8—S1	177.49 (15)	C17—N4—C16—C15	-178.68 (18)
C9—S1—C8—C7	0.06 (16)	C17—N4—C16—C11	0.7 (2)
C7—N1—C9—N2	179.57 (17)	C16—N4—C17—O1	176.05 (19)
C7—N1—C9—S1	-0.8 (2)	C16—N4—C17—C10	-2.7 (2)
N3—N2—C9—N1	-178.05 (17)	N3—C10—C17—O1	4.6 (3)
N3—N2—C9—S1	2.4 (2)	C11—C10—C17—O1	-175.10 (19)
C8—S1—C9—N1	0.48 (16)	N3—C10—C17—N4	-176.72 (18)
C8—S1—C9—N2 N2—N3—C10—C11	-179.92 (16) -179.72 (16)	C11—C10—C17—N4	3.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N2—H2…O1	0.86	2.12	2.771 (2)	133
N4—H4···O1 ⁱ	0.86	2.11	2.922 (2)	158

Symmetry code: (i) -x, -y, -z+1.