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Members of the ATPases Associated with various cellular Activities (AAA+) superfamily

participate in essential and diverse cellular pathways in all kingdoms of life by harnessing

the energy of ATP binding and hydrolysis to drive their biological functions. Althoughmost

AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct

structural elements that are fine-tuned to their specific functions. A central question

in the field is how ATP binding and hydrolysis are coupled to substrate translocation

through the central channel of ring-forming AAA+ proteins. In this mini-review, we will

discuss structural elements present in AAA+ proteins involved in protein quality control,

drawing similarities to their known role in substrate interaction by AAA+ proteins involved

in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit

Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our

current understanding on the inter-relationship of those structural elements and propose

a model how ATP binding and hydrolysis might be coupled to polypeptide translocation

in protein quality control machines.
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THE AAA+ PROTEIN SUPERFAMILY

AAA+ proteins harness metabolic energy in form of ATP to facilitate diverse cellular processes,
including organelle biogenesis, membrane fusion, transcriptional regulation, and protein quality
control (PQC). Members of the AAA+ superfamily can be classified into one of four distinct clades
or superclades: (1) the clamp loader clade, (2) the initiator clade, (3) the classic clade, and (4)
the Pre-Sensor I insert (PS-I) superclade (Iyer et al., 2004; Erzberger and Berger, 2006). The PS-I
superclade is further sub-divided into the superfamily 3 (SF3) helicase clade, the HCLR clade (HslU,
ClpAB-D2, Lon, and RuvB family), the helix 2 (H2)-insert clade, and the Pre-Sensor II insert (PS-II)
clade (Iyer et al., 2004; Erzberger and Berger, 2006). A hallmark of all AAA+ proteins is the AAA+
ATP-binding domain that is composed of ∼220 amino acids and typically forms a hexameric ring
structure in solution. The AAA+ domain features several conserved elements required for ATP
binding and hydrolysis, including the Walker A and B motifs, the arginine (Arg)-finger motif, and
the sensor-1 and -2 motifs (Figure 1A). In addition, each AAA+ clade features a specific insertion
of a secondary structure element within the core AAA+ fold. For instance, the defining feature
of the PS-I superclade is a β-hairpin insertion before the sensor-1 motif (Figures 1A,B). Despite
the wealth of structural information, the functional importance of clade-specific insertions remains
largely unclear.
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FIGURE 1 | (A) Conserved structural elements of the PS-I superclade mapped onto the crystal structure of the ClpB-D2 domain (PDB: 4FD2) (Biter et al., 2012).

Walker A motif (WA; pink), Walker B motif (WB; red), Arg-finger (Arg; green), pore loop-1 (loop-1; blue), ISS motif (yellow), PS-I β-hairpin (PS-I; magenta), sensor-1 (S1;

orange), sensor-2 (S2; brown), and the glutamate-switch (Glu; cyan) (Zhang and Wigley, 2008). The same colors are used throughout in all figures. (B) Multiple

sequence alignment of PS-I members generated using PROMALS3D (Pei et al., 2008) showing the conservation of the ISS and PS-I motifs. Escherichia coli ClpA;

Thermus thermophilus ClpB; Bacillus subtilis ClpC; Saccharomyces cerevisiae Hsp104; S. cerevisiae Hsp78; E. coli ClpX; E. coli HslU; E. coli LonA; Macaca mulatta

polyomavirus 1 Large Tumor antigen (LTag); Deltapapillomavirus 4 E1; E. coli PspF; Aquifex aeolicus NtrC; E. coli RuvB.

AAA+ proteins involved in PQC include members of the
Clp/Hsp100 family (Bukau et al., 2006; Olivares et al., 2016), Lon
(Venkatesh et al., 2012), and FtsH-like proteases in prokaryotes
and organelles (Gerdes et al., 2012; Okuno and Ogura, 2013).
Clp/Hsp100 members function as protein unfoldases to facilitate
either the disaggregation of previously aggregated proteins
(Doyle et al., 2013; Jeng et al., 2015; Mogk et al., 2015; Sweeny
and Shorter, 2016) or the degradation of ssrA-tagged proteins
(Olivares et al., 2016). Members of the Clp/Hsp100 family are
found in diverse microorganisms and belong to one of two
classes that are distinguished by the number of AAA+ domains
present in one polypeptide. Class I proteins, which include ClpA,
ClpB/Hsp104 and ClpC, possess two AAA+ domains, termed the
D1 and D2 domains, whereas class II proteins such as ClpX and
HslU contain only a single AAA+ domain that is homologous to
the second AAA+ (D2) domain of class I members (Schirmer
et al., 1996). AAA+ domains assemble into a homo-hexamer
composed of a D1 (class I) and a D2 ring (class I and II)
that represent the physiologically active form of Clp/Hsp100
proteins. In order to facilitate protein degradation, Clp/Hsp100
proteins must associate with an oligomeric peptidase such as
ClpP (Olivares et al., 2016), and assemble into a proteolytic
machine of similar architecture to the 26S proteasome in Eukarya
(Lee and Tsai, 2005). In contrast, PQC machines such as Lon
(Venkatesh et al., 2012) and FtsH-like proteases (Gerdes et al.,
2012; Okuno and Ogura, 2013) feature an integral peptidase
domain that is covalently linked to the AAA+ domain.

THE PORE LOOP-1

A hallmark of the AAA+ domain is the presence of conserved
loops that line the axial channel of the oligomeric ring assembly.
These pore loops have been implicated in substrate interaction.
One of these pore loops, known as pore loop-1, features a
Tyr/Phe- 9-Gly motif, where 9 is a hydrophobic residue (Wang
et al., 2001). The conserved aromatic amino acid is sensitive

to mutation and was shown to impair protein function of
several AAA+ ATPases when mutated (Yamada-Inagawa et al.,
2003; Lum et al., 2004; Weibezahn et al., 2004). For instance,
substituting the pore loop-1 tyrosine with alanine impaired
substrate binding and translocation by Clp/Hsp100 proteins
(Lum et al., 2004; Weibezahn et al., 2004; Hinnerwisch et al.,
2005; Wang et al., 2011; Iosefson et al., 2015). The single-particle
cryo-EM structure of a ClpB hexamer in the ATP-activated state
showed that the D1 pore loop-1 of all six subunits is arrested at
the central pore providing a platform for substrates to bind with
high-affinity (Lee et al., 2007). This model is consistent with the
proposed role of the D1 pore loop-1 Tyr in substrate interaction
(Schlieker et al., 2004). Subsequent crystal structures of a ClpB-
D2 monomer showed that pore loop-1 is stabilized by nucleotide
and is mobile (i.e., disordered) in the absence of nucleotide (Biter
et al., 2012; Zeymer et al., 2014), linking nucleotide binding to
regulating pore loop conformation. Although the structure of a
pore loop-bound substrate complex remains elusive, collectively
these findings support a mechanism by which ATP-dependent
changes are linked to pore loop conformations that could
facilitate substrate translocation through the hexameric ring
assembly.

A more recent high-resolution cryo-EM structure of yeast
Hsp104 bound to AMP-PNP revealed a left-handed spiral
architecture exhibiting a “staircase” arrangement of pore loops
along the central channel of the Hsp104 hexamer (Yokom et al.,
2016). Notably, in the cryo-EM structure the D2 domain of the
1st subunit contacts the D1 domain of the 6th subunit to give
rise to a closed “lock-washer” arrangement. Although the spiral
architecture is surprising, it is similar to the left-handed helical
assembly observed in crystal structures of bacterial ClpB (Lee
et al., 2003; Carroni et al., 2014) and a fungal Hsp104 (Heuck
et al., 2016). Examining the atomic structure of a substrate-
translocating Clp/Hsp100 complex will be necessary to provide
direct support for the functional role of pore loops in substrate
threading through the hexamer assembly.
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THE ISS MOTIF IN AAA+ MACHINES

The ISS motif consists of a network of functionally conserved

residues crucial for transmitting the nucleotide status of one

subunit to the adjacent subunit, thereby providing the molecular
basis how ATP binding and hydrolysis is coordinated between
neighboring subunits in the ring assembly. The existence of an
ISS motif was first reported for the m-AAA protease (Augustin
et al., 2009), a member of the classic clade, and is defined as

the α-helix immediately preceding the sensor-1 motif featuring
a characteristic aspartic or glutamic acid at its C-terminus,
which interacts with a nearby arginine of the same subunit.
This arginine in turn interacts with the Arg-finger that senses
the nucleotide status in the adjacent subunit (Augustin et al.,
2009; Hanzelmann and Schindelin, 2016). The ISS motif is also
found in other members of the classic clade, including FtsH
(Bieniossek et al., 2006) and p97 (Hanzelmann and Schindelin,

2016). A sequence alignment indicates that an acidic amino acid
is conserved amongst members of the HCLR clade, including
the D2 domain of Clp/Hsp100 proteins (Figure 1B). However,
unlike members of the classic clade, the crystal structure of the
ClpB-D2 domain showed a direct interaction between Asp685
and the Arg-finger (Arg747) from the same subunit (Biter et al.,
2012; Zeymer et al., 2014), providing a means to directly signal
the nucleotide status between neighboring subunits (Figure 2A).
Consistent with a role in inter-subunit signaling, a mutation of
Asp685 to alanine significantly impaired ClpB’s ATPase activity
(Biter et al., 2012), confirming the existence of an ISS motif in the
broader AAA+ superfamily.

THE PS-I INSERT MOTIF

The PS-I motif is the defining feature of members of the PS-I
insert superclade (Iyer et al., 2004; Erzberger and Berger, 2006)

FIGURE 2 | (A) Model for inter-subunit communication in the PS-I insert superclade of AAA+ proteins involved in PQC. Composite model based on the crystal

structure of a ClpC hexamer (PDB: 3PXI) (Wang et al., 2011) following the subunit arrangement proposed by Biter et al. (2012). The hexamer model is compatible with

a sequential ATP binding and hydrolysis mechanism, and consists of crystal structures of the ClpB-D2 monomer in the ATP-bound (blue, PDB: 4LJ9), ADP-bound

(gray, PDB: 4FD2), nucleotide-free states (pink, PDB: 4LJ4) (Biter et al., 2012; Zeymer et al., 2014) superposed onto the ClpC-D2 large domain of the ClpC

ring-shaped hexamer (Wang et al., 2011). The pore loop-1 of the ClpB-D2 domain in the nucleotide-free state, which is disordered in the available crystal structures, is

indicated by a dotted line. The blue circle indicates section shown in the enlarged view. (B) Ribbon diagram of the SV40 LTag homo-hexamer structure bound to

double-stranded DNA (PDB: 5TCT) (Gai et al., 2016). Only the helicase domains are shown. For clarity, neighboring subunits are colored differently (cyan and gray).

The blue circle indicates section shown in the enlarged view.
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and consists of a β-hairpin that buttresses the pore loop-1 of the
same subunit (Figures 1A, 2A). Although the location of the PS-
I motif is not conserved in the primary amino acid sequence of
AAA+ proteins (Figure 1B), a pairwise structural comparison of
different HCLR clademembers shows that the location of the PS-I
motif is invariant in the 3D structure. The function of the PS-I β-
hairpin is perhaps best understood for AAA+ proteins involved
in nucleic acid translocation, such as the simian virus 40 large
tumor antigen (LTag) (Shen et al., 2005) and the papillomavirus
replication initiation protein E1 (Enemark and Joshua-Tor,
2006). Structural studies of the SV40 LTag helicase bound to
DNA showed that the β-hairpin is directly involved in binding
to DNA (Chang et al., 2013; Gai et al., 2016). In the hexamer
structure of SV40 LTag, the helicase forms a near-planar ring
with the β-hairpin lining the inner surface of the central channel
encircling the double-stranded DNA helix (Gai et al., 2016)
(Figure 2B). Substrate contacts are mediated by a combination
of hydrogen bonding, electrostatic and hydrophobic interactions
between residues at the tip of the β-hairpin (Lys512 and His513)
and the phosphate backbone, the sugar moieties and the edges
of bases of the DNA (Chang et al., 2013; Gai et al., 2016). It has
been suggested that ATP-driven domain motions are transmitted
to the β-hairpin resulting in DNA translocation along the central
channel (Gai et al., 2004; Chang et al., 2013). The importance
of the PS-I β-hairpin in substrate binding is also supported
by the crystal structure of a hexameric E1 helicase bound
to a single-strand of DNA (Enemark and Joshua-Tor, 2006).
Consistent with a potential role of the PS-I hairpin in substrate
binding, deletion of the β-hairpin loop in ClpB (ClpB1691–695)
impaired protein disaggregation to similar levels to that observed
with a ClpB variant featuring a D2 pore loop tyrosine to
alanine mutation (ClpBY643A) (Biter et al., 2012). Although the
ATPase activity is also reduced, it is similar for both mutants
(Biter et al., 2012).

More recently, the crystal structure of a fungal Hsp104
in the ADP-bound state was determined (Heuck et al.,
2016) revealing a different β-hairpin conformation that
contacts the D1 domain, and is distinct from the β-hairpin
conformation seen in crystal structures of bacterial ClpB
(Lee et al., 2003; Biter et al., 2012; Carroni et al., 2014;
Zeymer et al., 2014) and in the aforementioned helicases
(Enemark and Joshua-Tor, 2006; Gai et al., 2016). Although
deletion of the PS-I insert motif significantly impaired the
Hsp104 protein disaggregating activity (Heuck et al., 2016),
the interpretation of the observed defect is different. In the
case of Hsp104, it was proposed that the PS-I insert motif is
involved in signaling the nucleotide status between the two
AAA+ rings and is responsible for allosteric regulation that
controls Hsp104 function (Franzmann et al., 2011; Heuck
et al., 2016). Although not mutually exclusive, determining the

functional importance of the PS-I motif in ClpB/Hsp104
chaperones requires further structural and biochemical
confirmation.

COUPLING THE ATPASE CYCLE TO
SUBSTRATE TRANSLOCATION IN PQC
MACHINES

The available 3D structures of AAA+ machines involved in
PQC have provided snapshots of distinct functional states
and have contributed toward our molecular understanding
how the ATPase cycle is coupled to conformational changes
needed for substrate translocation. Structural evidence suggests
that the pore loop-1 conformation optimized for substrate
binding is determined by the nucleotide-bound status of the
cis-subunit, which in turn is controlled by the nucleotide
state of the trans-subunit (Biter et al., 2012) (Figure 2A). In
this model, the Arg-finger of the cis-subunit senses the ATP-
bound state in the neighboring subunit and transmits this
signal in cis via a conserved acidic amino acid residue (either
Asp or Glu) of the ISS motif, triggering ATP hydrolysis in
the cis-subunit concomitant with substrate translocation. We
propose that the PS-I motif communicates with pore loop-
1 and controls substrate interaction by either contacting the
substrate directly or regulating the ATPase cycle in the D2
ring through communication with the D1 ring. Although the
available structural and biochemical evidence provide support
for such mechanism, determining the structure of a substrate
bound complex will be necessary to provide a more accurate
mechanistic understanding how the ATPase cycle is coupled to
substrate translocation in PQC machines.
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