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ABSTRACT (150 words) 24 
 25 
Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is 26 
sensitive to environmental DNA contamination, in particular when applied to samples with low 27 
microbial biomass. Here, we present contamination-free metagenomic DNA sequencing (Coffee-28 
seq), a metagenomic sequencing assay that is robust against environmental contamination. The 29 
core idea of Coffee-seq is to tag the DNA in the sample prior to DNA isolation and library 30 
preparation with a label that can be recorded by DNA sequencing. Any contaminating DNA that is 31 
introduced in the sample after tagging can then be bioinformatically identified and removed. We 32 
applied Coffee-seq to screen for infections from microorganisms with low burden in blood and urine, 33 
to identify COVID-19 co-infection, to characterize the urinary microbiome, and to identify microbial 34 
DNA signatures of inflammatory bowel disease in blood. 35 
 36 
INTRODUCTION 37 
 38 
Metagenomic DNA sequencing is a routinely used tool to characterize the genetic makeup and 39 
species composition of microbial communities. In addition, metagenomic DNA sequencing of clinical 40 
isolates is increasingly used for unbiased detection of microbial infection. Nonetheless, sample 41 
contamination by environmental DNA plagues these assays. DNA contamination unavoidably 42 
occurs to a degree during the process of sample preparation for DNA sequencing and is particularly 43 
problematic for samples that have a low biomass of microbial DNA that can easily be overwhelmed 44 
by contaminating DNA1–3.  45 
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46 
Figure 1. Coffee-seq proof-of-principle. A) Experiment workflow. Tagging of sample-intrinsic DNA by47 
bisulfite DNA treatment is performed directly on urine or plasma. Contaminating DNA introduced after the48 
tagging step is identified based on lack of cytosine conversion. B) Bioinformatics workflow. C Representative49 
example of the cytosine fraction of mapped reads in an unfiltered (top) dataset, a read-level filtered dataset50 
(middle) and a fully filtered dataset (bottom). D) Number of reads assigned to Cutibacterium acnes (common51 
environmental DNA contaminant) in ΦX174 DNA after conventional sequencing (green) and Coffee-seq52 
(purple). E) Deliberate contamination assay. Detection of known contaminants before (top) and after (bottom)53 
filtering. F) Number of reads assigned to contaminants. 54 
 55 
Multiple solutions have been proposed to overcome the impact of DNA contamination on low56 
biomass metagenomic sequencing. DNA contamination can be avoided to an extent by processing57 
samples in a clean room facility4,5. However, this approach does not avoid contaminant DNA58 
present in reagents. Other approaches are based on batch-correction algorithms that identify59 
microbial species detected in negative controls5,6. These methods however, tend to overcorrect,60 
eliminate sample-intrinsic species that are also common DNA contaminants, and make the incorrect61 
assumption that sample contamination is perfectly reproducible across all samples in a batch. Here,62 
we describe Contamination-Free metagenomic sequencing (Coffee-seq), a metagenomic63 
sequencing method that is robust against DNA contamination. Coffee-seq tags sample-intrinsic,64 
non-contaminant DNA, before DNA isolation with a chemical label that can be recorded via DNA65 
sequencing. Contaminating DNA that is introduced in the sample after this initial tagging step can66 
then be identified and eliminated. Several biochemistries can be envisioned for the initial DNA67 
tagging step. Here, we implement deamination of unmethylated cytosines via bisulfite salt treatment68 
of DNA. This chemistry does not require the use of enzymes or DNA oligos and can be applied69 
directly to clinically relevant samples, such as blood and urine, as demonstrated in this work. We70 
present an analysis of the technical performance of Coffee-seq and describe proof-of-principle71 
applications of Coffee-seq to identify viral and bacterial COVID-19 co-infection from blood, to screen72 
for urinary tract infection (UTI), to characterize the urinary microbiome, to screen for infections with73 
low burden and prevalence in the blood of patients that presented with respiratory symptoms at74 
outpatient clinics in Uganda, and to identify microbial DNA signatures in the blood of patients with75 
inflammatory bowel disease (IBD). 76 
 77 
Coffee-seq working principle 78 

For the practical implementation of Coffee-seq, we tag DNA by bisulfite salt-induced conversion of79 
unmethylated cytosines to uracils (Fig. 1A). Uracils created by bisulfite treatment are converted to80 
thymines in subsequent DNA synthesis steps that are part of the DNA sequencing library81 
preparation. After DNA sequencing, contaminating DNA introduced after tagging can then be82 
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identified based on the lack of cytosine conversion. Bisulfite conversion does not require the use of 83 
commercial enzymes or oligos that are a frequent source of DNA contamination, and we found that 84 
it can be applied directly to the original sample, before DNA isolation. We developed a 85 
bioinformatics procedure to differentiate sample-intrinsic microbial DNA, contaminant microbial 86 
DNA, and host-specific DNA after Coffee-seq tagging (Fig. 1B, Methods). This procedure consists 87 
of three steps. First, host cfDNA is removed via mapping and k-mer matching. Given that CpG 88 
dinucleotides are heavily methylated in the human genome and rarely in microbial genomes, 89 
sequences containing CG dinucleotides are also removed. Second, remaining sequences that 90 
consist of more than three cytosines, or one cytosine-guanine dinucleotide are flagged and removed 91 
as likely contaminants. Last, a species-level filtering step is performed to remove any remaining 92 
reads that primarily originate from C-poor regions in the reference genome (Fig. 1C, Methods).  93 

We devised two assays to test the principle of Coffee-seq. First, we applied Coffee-seq and 94 
conventional DNA sequencing to samples of sheared ΦX174 DNA (New England Biolabs, 95 
#N3021S) with variable biomass (0.0025 ng, 0.025 ng, 0.25 ng, 2.5 ng, 26 ng, and 155 ng for 96 
Coffee-seq; 0.004 ng, 0.04 ng, 0.4 ng, 4 ng, 35 ng, and 240 ng for standard cfDNA sequencing). We 97 
first quantified the abundance of Cutibacterium acnes (C. acnes), which is a frequent member of the 98 
normal skin flora and is routinely identified as a contaminant in DNA sequencing7. We observed an 99 
increase in C. acnes abundance with decreasing input biomass, as expected given that samples 100 
with a lower biomass are more susceptible to environmental contamination (Fig. 1C). We found that 101 
despite a ~30% lower biomass at the beginning of library preparation for the Coffee-seq samples, 102 
far fewer C. acnes reads were present after Coffee-seq filtering (4223.8 and 119.5 MPM in the 103 
highest biomass samples, 1.48 and 0 MPM in the lowest biomass samples, before and after Coffee-104 
seq filtering respectively; Fig. 1D). 105 

Second, we performed Coffee-seq on sheared ΦX174 DNA samples with variable biomass (0.0025-106 
155 ng; Fig. 1E) which we spiked after Coffee-seq tagging with 1 ng of sheared DNA from a well-107 
characterized community of microbes to simulate microbial DNA contamination (10 species; Zymo 108 
Research, #D6305). Before applying the Coffee-seq bioinformatics filter, we observed a negative 109 
correlation between the ΦX174 DNA input biomass and the relative number of reads from the spike-110 
in community, as expected (Pearson’s R = -0.54, p-value = 6.5x10-6; Spearman’s ρ = -0.82, p-value 111 
= 6.3x10-16; Fig. 1E). After applying the Coffee-seq filter, we observed an average percent decrease 112 
of 99.8% of molecules mapping to species of the spike-in community (Fig. 1F). Sequences mapping 113 
to Escherichia coli (E. coli) were the most abundant after filtering (58.89%). Given that ΦX174 114 
genomic DNA is isolated after phage propagation in E. coli culture, we reasoned that these 115 
remaining reads were likely intrinsic to the original sample. Together, these experiments 116 
demonstrate the effectiveness of Coffee-seq for the detection and removal of DNA contaminants. 117 

Application of Coffee-seq to cell-free DNA in blood and urine 118 

Cell-free DNA (cfDNA) in blood and urine has emerged as a useful analyte for the diagnosis of 119 
infection8–15. Metagenomic cfDNA sequencing can identify a broad range of potential pathogens with 120 
high sensitivity. Yet, because of the low biomass of microbial-derived cfDNA in blood and urine, 121 
metagenomic cfDNA sequencing is highly susceptible to environmental contamination, limiting the 122 
specificity of metagenomic cfDNA sequencing for pathogen identification.  123 

To assess the performance of Coffee-seq in metagenomic cfDNA sequencing, we assayed a total of 124 
169 cfDNA isolates (42 urine, 127 plasma) collected from five groups of subjects: 1) 26 urine 125 
samples from a cohort of kidney transplant patients with and without UTI (16 UTI positive, 10 UTI 126 
negative; “kidney transplant cohort”), 2) 16 urine samples collected early after transplantation from 127 
10 kidney transplant patients that received a ureteral stent at the time of transplantation (samples 128 
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were collected pre-stent and post-stent removal for 5 of the 10 patients; “early post-transplant 129 
cohort”), 3) 56 plasma samples from a cohort of 44 patients presenting with respiratory symptoms at 130 
outpatient clinics in Uganda (28 sputum positive for Tuberculosis [TB], 16 sputum negative for TB; 131 
“Uganda cohort”), 4) 41 plasma samples from a cohort of 32 patients diagnosed with IBD (16 132 
patients with Crohn’s disease, 16 patients with ulcerative colitis; “IBD cohort”), and, 5) 30 plasma 133 
samples from a cohort of 14 patients hospitalized with COVID-19 (“COVID-19 cohort”; see Table S1 134 
and Supplementary Information for details on the patients and samples included).  135 

 136 

Figure 2. Coffee-Seq applied to cell-free DNA in urine and plasma. A) Microbial abundance of 25 most 137 
abundant common contaminant genera (selected from the 68 genera4) before and after Coffee-seq filtering in 138 
plasma and urine from five independent subject cohorts (Tx = transplant). Total abundance of all contaminant 139 
genera B) and C. acnes C) before and after Coffee-seq filtering (KUCP = Kidney Transplant cohort with 140 
positive urine culture, KUCN = Kidney Transplant cohort with negative urine culture, EPTx = Early Post 141 
Transplant cohort). Bray-Curtis dissimilarity index before D) and after E) filtering. Samples are organized by: 142 
sequencing batch, researcher performing the experiment, cohort, and biofluid. *** p-value < 0.001 143 

We performed Coffee-seq for all samples and obtained an average of 46.5 ± 23.6 million paired-end 144 
reads per sample. We detected and quantified the abundance of 68 genera that have been reported 145 
as frequent DNA contaminants in multiple independent studies (summarized in Ref. 4; Fig 2A, 49 of 146 
these genera detected in at least one sample). We found that 76% of these genera were completely 147 
removed from all samples after Coffee-seq filtering. We calculated the total number of molecules 148 
from all contaminant genera and observed an up to 3 orders of magnitude reduction after Coffee-149 
seq filtering (reduced by a factor of 7.5, 1711.2, 177.6, 548.3, 547.2 for the kidney transplant cohort, 150 
early post-transplant cohort, Uganda cohort, IBD cohort, and COVID-19 cohort, respectively; Fig. 151 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469599
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

2B). We investigated the impact of Coffee-seq filtering on removing reads originating from the skin 152 
contaminant C. acnes (Fig. 2C). C. acnes was detected in all samples and completely removed 153 
from 50 samples by Coffee-seq filtering. In the remaining samples, we observed an up to 2 orders of 154 
magnitude reduction of C. acnes reads. 155 

We next evaluated the utility of Coffee-seq to correct for batch effects and to reveal true differences 156 
in microbiome profiles for different patient groups. To this end, we calculated the Bray-Curtis 157 
Dissimilarity Index for all clinical samples included in this study and sorted the datasets based on 158 
the following parameters: 1) sequencing run, 2) operator, 3) urine culture test, 4) study cohort, and 159 
5) biofluid type. Before Coffee-seq filtering, we observed a high similarity for samples assayed in the 160 
same experimental batches (Fig. 2D). Coffee-seq filtering removed these batch effects and 161 
revealed distinct cohort-specific microbiome profiles. Most notably, we observed distinct plasma 162 
microbiome profiles for plasma samples from the Uganda cohort (Fig. 2E). These results 163 
demonstrate that Coffee-seq directly applied to biofluids leads to a dramatic decrease in 164 
experimental noise and bias due to DNA contamination. 165 

Coffee-seq enables to screen for UTI and to characterize the urine microbiome  166 

The healthy urinary tract was long believed to be sterile16,17, but this picture was challenged with 167 
recent advances in urine culture techniques that have identified bacteria in the urinary tract of both 168 
males and females18. Yet many microbes are difficult to cultivate in vitro, and bacterial culture can 169 
also be sensitive to contamination19. Therefore, comprehensive and accurate characterization of 170 
species colonizing the urinary microbiome is still lacking.  171 
 172 
We reasoned that Coffee-seq could provide insight into the composition of the urine microbiome 173 
with both high sensitivity and specificity. We first applied Coffee-seq to 26 urine samples from 23 174 
kidney transplant patients with and without infection of the urinary tract as determined by 175 
conventional urine culture (16 UTI positive [Enterococcus faecalis: n=3; Enterococcus faecium: n=1; 176 
Escherichia coli: n=10; Klebsiella pneumoniae: n=1; Pseudomonas aeruginosa: n=1] and 10 UTI 177 
negative). Coffee-seq consistently identified microbial cfDNA from species reported by urine culture 178 
(16/16 UTI positive samples; Fig. 3A). Coffee-seq also identified two Corynebacterium species 179 
(Corynebacterium jeikeium and Corynebaterium urelyticum) in one sample from a UTI positive 180 
patient (E.coli) with culture confirmed Corynebacterium co-infection. In addition, we found that 181 
samples from UTI positive patients had a significantly higher burden of total microbial DNA 182 
compared to samples from UTI negative patients (1451.8 ± 3024.7 MPM and 12.8 ± 17.6 MPM, 183 
respectively in the filtered samples; p-value = 1.1x10-5, Wilcoxon test; Fig. 3B). Conventional 184 
metagenomic sequencing (without Coffee-seq filtering) detected uropathogens with equal sensitivity 185 
but suffered from poor specificity: DNA from common uropathogens not identified by culture was 186 
detected in many samples, albeit with low abundance, including in samples from patients without 187 
UTI. We conclude that the improved specificity of Coffee-seq allows for more accurate 188 
characterization of co-infection networks in the scope of UTIs, and more accurate characterization 189 
of the normal urine microbiome in the absence of UTIs. It is important to note that two common skin 190 
microbes, C. acnes and Staphylococcus epidermis, were found in most samples (23/26 samples). 191 
While these two species have been shown to cause UTIs20,21, they may also have been introduced 192 
as contaminants at the time of urine collection, which underscores an important limitation of Coffee-193 
seq: Coffee-seq is not robust against contamination that occurs before the tagging step. 194 
 195 
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 196 
Figure 3. Application of Coffee-seq to plasma and urine. A) Heatmap of abundance of species (molecules 197 
per million, MPM) identified in patients with and without UTI, before and after application of Coffee-seq filter. 198 
B) Boxplot of the relative number of microbe-derived molecules (MPM) in samples from patients with and 199 
without UTI, before and after Coffee-seq filtering. C) Dot plot of the most abundant genera in urine from male 200 
and female kidney transplant recipients. D-E) Boxplot showing Bray-Curtis similarity index (as defined in D) of 201 
the urine microbiome within individual patients and between patients before and after stent removal. F-G) 202 
Heatmaps of the abundance of species identified in plasma from COVID-19 patients with and without culture 203 
confirmed F) lung and G) blood infection, before and after application of Coffee-seq filter (red * indicates 204 
detection by sputum culture only). Red boxes indicate positive culture tests. H)  Barplot of the prevalence of 205 
Epstein-Barr Virus (EBV), Torque teno virus (TV), Malaria, or Shigellosis pathogens in different patient 206 
cohorts. I) Heatmap of the abundance of species identified in matched stool and plasma cfDNA samples in 207 
patients diagnosed with Crohn’s disease or ulcerative colitis. J) Heatmap of the change in abundance of gut 208 
specific bacteria before and after treatment. (Black * in panels A, F, and G indicates agreement with urine, 209 
respiratory and blood culture, respectively). 210 
 211 

To explore the effect of gender on the urine microbiome, we analyzed isolates from culture 212 
confirmed UTI negative patients (n=26) from the kidney transplant (n=10) and early post-transplant 213 
(n=16) study cohorts (5 female, 14 male). This analysis yielded a small, but statistically insignificant, 214 
difference in total microbial load for male versus female patients (Fig. S1). We also observed that a 215 
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subset of the most abundant genera was found in both male and female samples, with a marked 216 
variation in number of samples and abundances (Fig. 3C).   217 

Studies investigating the temporal dynamics of urine microbiome in individuals can benefit from the 218 
high sensitivity and specificity achieved with our assay. We applied Coffee-seq to paired urine 219 
samples obtained from 5 kidney transplant patients collected at two time points before and after 220 
ureteral stent removal (Fig. 3D). We compared the  similarity of microbial composition between 221 
samples from the same patient (intra-individual) and between different patients (inter-individual) at 222 
different sampling points and observed that the microbial composition remained more similar in the 223 
same patient (Fig. 3E) than between different patients, supporting the utility of Coffee-seq to 224 
measure subtle dynamics in urine microbiome composition (Mean Bray-Curtis Similarity: 0.41±0.06 225 
and 0.317±0.09 respectively, p-value = 3.1x10-2, Wilcoxon test). 226 

Coffee-seq identifies bacterial and viral co-infection of COVID-19 from blood 227 

The COVID-19 pandemic is an unprecedented human health crisis. Viral or bacterial co-infection 228 
occurs in roughly 4% of hospitalized COVID-19 patients but can occur in up to 30% of COVID-19 229 
patients admitted to the intensive care unit22. Co-infection has been associated with longer fever 230 
duration, and increased admittance to the intensive care unit and ventilation treatment23. We 231 
reasoned that Coffee-seq may offer sensitive detection of bacterial co-infection in COVID-19 232 
patients with improved specificity over conventional metagenomic sequencing assays. 233 

We applied Coffee-seq to 30 plasma samples from 14 patients with COVID-19 collected as part of a 234 
clinical study aimed at identifying predictors of disease severity. Respiratory and blood cultures 235 
were obtained as part of standard clinical care. Three patients (P16, P24, P39) tested positive for 236 
blood borne infection and respiratory tract infection, while all other patients were not diagnosed with 237 
COVID-19 co-infection. Coffee-seq identified the causative pathogen in 3/3 blood infection cases 238 
and 7/8 respiratory infection cases (Fig. 3F-G). Conventional metagenomic sequencing (without 239 
Coffee-seq filtering) was equally sensitive to these pathogens but was limited by specificity (Fig. 3F-240 
G). Of interest, while we did not obtain plasma collected the day of infection for P24, we identified 241 
cfDNA originating from K. pneumoniae and Haemophilus influenzae, for which the patient tested 242 
positive four days later. While further investigation is necessary to resolve discrepancies between 243 
positive culture results and microbial cfDNA detection, these results suggest that Coffee-seq may be 244 
able to identify cases of infection earlier than traditional culture methods, and with improved 245 
specificity compared to conventional metagenomic sequencing techniques. 246 

Coffee-seq identifies bacterial and viral infections with low prevalence and low microbial 247 
burden 248 

Neglected tropical diseases significantly impact the public health and economies of low-income 249 
countries. Treatments exist for many of these diseases, but development and deployment of reliable 250 
diagnostic tests has been slow24. We reasoned that Coffee-seq could be used to screen for 251 
infections with low prevalence and low microbial burden. 252 

We applied Coffee-seq to 56 plasma samples from 44 individuals who presented with symptoms of 253 
respiratory illness at outpatient clinics in Uganda (28 sputum positive tuberculosis, 16 sputum 254 
negative tuberculosis). Nine of these individuals were HIV positive at the time of sample collection. 255 
We mined the data to determine the prevalence of infections endemic to Uganda and compared 256 
with results obtained for plasma samples collected from subjects that live in North America (54 257 
plasma samples from the IBD cohort; 30 plasma samples from the COVID-19 cohort). We screened 258 
the samples for Epstein-Barr virus, Torque Teno virus, and pathogens associated with malaria 259 
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(Plasmodium vivax and P. falciparum), and shigellosis (Shigella sonnei, S. dysenteriae, S. boydii, 260 
and S. flexneri). These pathogens were found at varying rates in samples from the Uganda cohort 261 
(Fig. 3H): malaria (3/44), Epstein-Barr virus (1/44), shigellosis (19/44), and torque teno virus (1/44), 262 
but not in the IBD cohort. Torque teno virus, which has previously been reported to be elevated in 263 
immunocompromised patients8, was identified in 3/30 COVID-19 patient samples, all from patients 264 
who had received a bone marrow transplant prior to sample acquisition.  265 

Coffee-seq identifies signatures of bacterial translocation from the gastrointestinal tract 266 

Bacterial translocation of intestinal microbes through mucosal membranes is believed to be a 267 
normal phenomenon, but has been found to occur more frequently in patients experiencing gut flora 268 
disruption25,26. In patients with inflammatory bowel disease, gut vascular barrier disruption has been 269 
linked to increased intestinal permeability and subsequent microbial translocation across the 270 
mucosal membrane27,28. The translocation of gut bacteria and their products to extraintestinal sites 271 
can result in systemic inflammation, resulting in autoimmune or other non-infectious diseases. 272 
Detecting signatures of translocation is therefore important but difficult in view of the low abundance 273 
of microbial DNA due to translocation in blood. 274 

To identify signatures of bacterial translocation, we compared whole genome shotgun sequencing of 275 
fecal samples from 32 patients (Crohn’s n=16, ulcerative colitis, n=16) to matched plasma cfDNA 276 
samples assayed using Coffee-seq. We first quantified bacterial species identified in matched fecal 277 
and plasma samples (Fig. 3I). We identified cfDNA derived from gut-specific microbes in all patient 278 
samples, though to a much greater extent in individuals with ulcerative colitis (1.40±1.4 vs 279 
6.82±10.6 MPM of gut specific bacteria for Crohn’s disease and ulcerative colitis, respectively). To 280 
investigate the effects of treatment on bacterial translocation, we collected additional stool and 281 
plasma samples from nine patients (Crohn’s n=3, ulcerative colitis n=6) after treatment initiation and 282 
performed whole genome shotgun sequencing of stool and Coffee-seq on plasma cfDNA. We 283 
quantified the relative abundance of gut-specific bacterial species before and after treatment and 284 
found that the burden of cfDNA decreased for most bacterial species (28/36) following treatment, 285 
which may be explained by a reduction in the degree of bacterial translocation with treatment (Fig. 286 
3J). Of interest, out of seven subjects for which we detected Lactobacillus before treatment, five 287 
displayed an increase in Lactobacillus species burden in blood after treatment (up to 12.7-fold 288 
increase after treatment and an average of 3.36-fold MPM increase after treatment across all 289 
samples). Lactobacillus has been shown to promote gastrointestinal barrier function, protecting the 290 
gut from pathogenic bacteria and preventing inflammation28. For bacterial species besides 291 
Lactobacillus, we find an average of 0.3-fold MPM reduction after treatment. These preliminary 292 
results support the use of Coffee-seq to identify subtle signatures of bacterial translocation in the 293 
blood. 294 

DISCUSSION 295 

We report Coffee-seq, a method for metagenomic DNA sequencing that is robust against DNA 296 
contamination. In contrast to prior methods for the management of DNA contamination that have 297 
relied on algorithmic batch correction or the use of known-template or no-template controls, Coffee-298 
Seq uses a physical labeling technique to differentiate sample-intrinsic DNA from contaminating 299 
DNA. The principle of Coffee-seq has the potential for broad application in contexts where 300 
metagenomic analyses of isolates with low biomass of microbial DNA are required. In this proof-of-301 
principle study, we have explored applications of Coffee-seq to quantify microbial cell-free DNA in 302 
human biofluids. Metagenomic sequencing of microbial cell-free DNA in blood or urine is a highly 303 
sensitive approach to screen for a broad range of viral or bacterial pathogens, but because of the 304 
low biomass of microbial DNA in blood and urine this method is highly susceptible to DNA 305 
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contamination leading to a high false positive rate. We implemented Coffee-seq tagging of cell-free 306 
DNA in plasma and urine by bisulfite-induced deamination of unmethylated cytosines and show that 307 
this approach reduces background signals from common contaminants by up to three orders of 308 
magnitude. Coffee-seq thereby dramatically improves the specificity of metagenomic cfDNA 309 
analyses, opening up a broad range of applications, e.g. infectious disease with low microbial 310 
burden or syndromes that are accompanied by subtle changes in the plasma or urine microbiome.  311 

In its current implementation, Coffee-seq has several limitations. First, Coffee-seq is only robust 312 
against DNA contamination introduced after the labeling step. We implemented Coffee-seq tagging 313 
directly on biofluids, which allowed us to identify contaminants introduced during DNA isolation or 314 
library preparation but not during the sample collection or isolation of the plasma from whole blood. 315 
Second, the specific labeling strategy we have implemented here inherently modifies the DNA 316 
sequence and thereby limits the resolution of sequence-based analyses. Alternative 317 
implementations of contamination-free sequencing that do not introduce sequence alterations can 318 
be considered. Last, the principles introduced here can be adopted for molecular assays beyond 319 
whole genome sequencing, including amplicon sequencing assays, e.g. 16S rRNA profiling, or PCR 320 
assays.  321 

METHODS 322 

Study Cohort and sample collection:  323 

Uganda cohort and sample collection 324 

Forty-four plasma samples were collected from individuals seeking tuberculosis treatment in 325 
Uganda. Briefly, peripheral blood was collected in Streck Cell-Free BCT (Streck #230257) and 326 
centrifuged at 1600 x g for 10 minutes. Plasma was stored in 1 mL aliquots at -80oC. The study was 327 
approved by the Makerere School of Medicine Research and Ethics Committee (protocol 2017-020). 328 
All patients provided written informed consent. 329 

IBD cohort sample collection 330 

Peripheral blood samples were collected under IRB approved protocol (1806019340) at the Jill 331 
Roberts Center for IBD at Weill Cornell Medicine. PBMCs and plasma were fractionated using a 332 
Ficoll-Hypaque gradient. 333 

Stool sample collection 334 

DNA from fecal samples was isolated using the MagAttract PowerMicrobiome DNA/RNA kit with 335 
glass beads (Qiagen, Germany). Metagenomic libraries were prepared using the NEBNext Ultra II 336 
for DNA Library Prep kit (New England Biolabs, Ipswich, MA) following the manufacturer’s protocol. 337 
The DNA library was sequenced on an Illumina HiSeq instrument using a 2x150 paired-end 338 
configuration in a high output run mode.  339 

COVID-19 cohort sample collection 340 

Samples were collected as part of an observational study among individuals with COVID-1929,30 that 341 
were treated at New York Presbyterian Hospital and Lower Manhattan Hospitals, Weill Cornell 342 
Medicine. The study was approved by the Institutional Review Board of Weill Cornell Medicine (IRB 343 
20-03021645), and informed consent was obtained from all participants. 344 

UTI cohort sample collection 345 
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Twenty six urine samples were collected from 23 kidney transplant recipients who received care at 346 
New York Presbyterian Hospital–Weill Cornell Medical Center. The study was approved by the Weill 347 
Cornell Medicine Institutional Review Board (protocols 1207012730). All patients provided written 348 
informed consent. Patients provided urine specimens using a clean-catch midstream collection 349 
protocol. The urine specimen was centrifuged at 3000 x g for 30 minutes and supernatant was 350 
stored as 1 mL of 4 mL aliquots. 351 

Early post transplant sample collection   352 

Urine specimens collected within 10 ± 5 days of ureteral stent removal from patients who agreed to 353 
participate in the WCM IRB approved protocol # 20-01021269 were included in this study. Urine 354 
specimens were collected within 47 ± 11 days post-kidney transplantation. The presence of UTI was 355 
excluded by a negative urine culture and the absence of pyuria. This study was approved by the 356 
Weill Cornell Medicine Institutional Review Board (protocol 20-01021269). 357 

Definition of Positive and Negative urine culture for the UTI and Early post-transplant cohorts 358 

A positive urine culture was defined as a culture growing an organism identified to at least the genus 359 
level (≥10,000 cfu/mL). A urine culture was defined as negative when either no organism was 360 
isolated in culture (<1000�cfu/mL) or the organism was unidentified to either the genus or species 361 
level (i.e., unidentified) and the colony count was <10,000�cfu/mL. 362 

Coffee-seq in plasma. An aliquot of 520 µL of plasma was centrifuged at 14,000 RPM for 10 363 
minutes at 12oC to pellet cellular debris. The supernatant was transferred to a new 1.5 mL tube and 364 
the final volume was brought up to 1000 µL with PBS. The solution was heated to 98oC for 10 365 
minutes and mixed at 1000 RPM to coagulate the albumin present in plasma. The solution was then 366 
centrifuged at 4000 RPM for 10 minutes. 500 µL of supernatant was transferred to 15 mL falcon 367 
tube containing 3.25 mL of ammonium bisulfite solution (Zymo Research, product #5030) and 368 
shaken in a thermomixer at 98oC for 10 minutes (15s on/30s off). Samples were then transferred to 369 
a thermomixer at 54oC for 60 minutes (15s on/30s off). Then, cfDNA extraction was performed using 370 
the QIAamp Circulating Nucleic Acid Kit using the 4-mL plasma protocol (Qiagen, product #55114). 371 
Prior to DNA elution, 200 µL of L-Desulphonation buffer (Zymo Research, product #5030) was 372 
added to the columns for 15 minutes, followed by two washes with 200 µL absolute ethanol. DNA 373 
was then eluted according to manufacturer recommendations, and single-stranded library 374 
preparation is performed (Claret Biosciences, product #CBS-K150B). Libraries were then 375 
sequenced on an Illumina sequencer. 376 

Coffee-seq in urine. An aliquot of 520 µL of urine was centrifuged at 14,000 RPM for 5 minutes to 377 
pellet cellular debris. 500 µL of supernatant was transferred to a new 15 mL falcon tube containing 378 
3.25 mL of ammonium bisulfite solution (Zymo Research, product #5030) and heated to 98oC for 10 379 
minutes. Samples were then kept at 54oC for 60 minutes. Then, cfDNA extraction was performed 380 
using a commercially available column-based kit (Norgen Biotek, product #56700). Prior to DNA 381 
elution, 200 µL of L-Desulphonation buffer (Zymo Research, product #5030) was added to the 382 
columns for 20 minutes, followed by two washes with 200 µL absolute ethanol. DNA was then 383 
eluted according to manufacturer recommendations, and single-stranded library preparation was 384 
performed (Claret Biosciences, product #CBS-K150B). Libraries were then sequenced on an 385 
Illumina sequencer. 386 

Alignment to the human genome. Adapter and low quality bases from the reads were trimmed 387 
using BBDuk31 and aligned to the C-to-T and G-to-A converted human genome using Bismark32 388 
(Bismark-0.22.1). PCR duplicates were removed using Bismark. 389 
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Depth of coverage. The depth of sequencing was measured by summing the depth of coverage for 390 
each mapped base pair on the human genome after duplicate removal, and dividing by the total 391 
length of the human genome (hg19, without unknown bases). 392 

Bisulfite conversion efficiency. We estimated bisulfite conversion efficiency by quantifying the 393 
rate of C[A/T/C] methylation in human-aligned reads (using MethPipe33 V3.4.3), which are rarely 394 
methylated in mammalian genomes. 395 

Metagenomic abundance estimation from sequencing data. Metagenomic analysis is performed 396 
as previously described12. Specific to Coffee-seq, read-level filtering of contaminants is performed 397 
by removing sequenced reads with 4 or more cytosines present, or one methylated CpG 398 
dinucleotide (the latter represents unmapped, human-derived molecules). Species-level filtering 399 
based on the distribution of mapped reads is carried out by first aligning filtered and unfiltered 400 
datasets independently. Cytosine-densities of mapping-coordinates in both datasets are measured 401 
using custom scripts, and their distributions are compared using a Kolmogorov-Smirnov test. 402 
Significantly different filtered-unfiltered distributions are further processed (D-statistic > 0.1 and p-403 
value < 0.01). Briefly, filtered datasets whose distribution of cytosines at mapped locations is 404 
significantly lower than unfiltered datasets have one read removed, and are re-tested for differences 405 
in their distribution. If the distributions are more similar (as measured through the same criteria), it is 406 
filtered out. This process is repeated until distributions are no longer significantly different, or if all 407 
reads are removed. Metagenomic abundances of filtered datasets are estimated using GRAMMy as 408 
previously described in Ref 12.  Microbial abundance in downstream analyses was quantified as 409 
Molecules Per Million reads (MPM).  410 

                                                    MPM�  

�������� 	
��� �
��  � ���

����
 ��
���� �����
 411 

Identification of translocated gut bacteria in plasma 412 

Fecal shotgun metagenomic data for 41 samples was obtained from 32 patients diagnosed with 413 
inflammatory bowel disease (IBD). Low-quality bases and Nextera-specific sequences were 414 
trimmed (Trim Galore). Reads were aligned (Bowtie234) against the human references (UCSC 415 
hg19). Unaligned reads were extracted and assembled with metaSPAdes35 and classified with 416 
Kaiju36. 417 

Paired cfDNA samples were filtered as previously described and aligned to the assembled reads 418 
with Bismark. Mapped reads with a minimum quality score of 15 were extracted and filtered for gut-419 
specific microorganisms identified by The Human Gut Microbiome Atlas37. 420 

Statistical analysis  421 

All statistical methods were performed in R version 4.0.5. Groups were compared using a two-sided 422 
Wilcoxon Rank Sum test. Boxes in the boxplots indicates 25th and 75th percentile, the band in the 423 
box indicated the median and whiskers extend to 1.5 x Interquartile Range (IQR) of the hinge. 424 

Code and Data Availability 425 

All scripts used in this study are available at https://github.com/omrmzv/CoffeeSeq. ΦX174 DNA 426 
sequencing data used in the proof of principle experiments has been deposited in NCBI’s Sequence 427 
Read Archive (SRA) under Bioproject ID (PRJNA782310). Sequencing data from human plasma 428 
cfDNA will be deposited in the database of Genotypes and Phenotypes (dbGaP) 429 
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