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Abstract

Background: The accurate annotation of protein functions is of great significance in
elucidating the phenomena of life, treating disease and developing new medicines.
Various methods have been developed to facilitate the prediction of these functions by
combining protein interaction networks (PINs) with multi-omics data. However, it is still
challenging to make full use of multiple biological to improve the performance of
functions annotation.

Results: We presented NPF (Network Propagation for Functions prediction), an
integrative protein function predicting framework assisted by network propagation
and functional module detection, for discovering interacting partners with similar
functions to target proteins. NPF leverages knowledge of the protein interaction
network architecture and multi-omics data, such as domain annotation and protein
complex information, to augment protein-protein functional similarity in a
propagation manner. We have verified the great potential of NPF for accurately
inferring protein functions. According to the comprehensive evaluation of NPF, it
delivered a better performance than other competing methods in terms of leave-
one-out cross-validation and ten-fold cross validation.

Conclusions: We demonstrated that network propagation, together with multi-
omics data, can both discover more partners with similar function, and is
unconstricted by the “small-world” feature of protein interaction networks. We
conclude that the performance of function prediction depends greatly on whether
we can extract and exploit proper functional information of similarity from protein
correlations.

Keywords: Network propagation, Protein-protein interaction, Prediction of protein
function

Background
Proteins are the main component of cells and play an essential role in nearly all cell

functions such as composing cellular structure. Biological functions are performed by

groups of interacting and functionally associated proteins, instead of individual pro-

teins. The accurate characterization of protein functions is a key to understanding life

at the molecular level and has a profound impact on biomedicine and pharmaceuticals.
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Proteins of unknown function comprise a significant fraction of sequenced ge-

nomes [1]. Thus, how accurately unknown proteins are determined in their pur-

poses has become one of the greatest challenges in the post-gene era. However,

due to the inherent difficulty and high costs, experimental techniques to deter-

mine protein functions has been unable to meet the growing genomic sequence

data. An increasing number of protein-protein interaction data urgently requires

computational methods to predict protein functions.. A protein interaction net-

work (PIN) can be modelled as an undirected graph, in which a vertex represents

a protein and an edge denotes an interaction between a pair of proteins. Intui-

tively, numerous network-based [2–4] or graph-based [5, 6] approaches are ap-

plied to predict protein functions from PINs. These methods are based on the

observation that proteins often possess similar or identical biochemical functions

with their interaction partners in the PINs [2, 7]. Unfortunately, these methods

are often plagued by noise and errors, resulting in biased outcomes and reduced

confidence in PINs.

To provide an accurate prediction results, the integration of different types of

biological data has become an important and popular strategy. A number of ap-

proaches have been developed to facilitate the prediction of protein functions by

combining PPIs with multi-source biological data. Cozzetto et al. [8] proposed an

effective method to deduce protein functions by integrating PINs with a wide var-

iety of biological information, such as sequence, gene expression, etc. Zhang et al.

[9] developed the domain context similarity for the prediction of protein functions

using protein domain composition and PINs. As an improvement on Zhang’s

method, two algorithms, named DCS (domain combination similarity) [10] and

DSCP (domain combination similarity in context of protein complexes) were pro-

posed to annotate unknown proteins by combining PINs with proteins’ domain in-

formation and protein complexes information. For the annotation of protein

functions, the PON (protein overlap network) [11] was constructed using the pro-

tein domain information and PIN topology. Sarker et al. [12] initially reconstructed

a protein-protein network based on PINs and protein domains, and then presented

the GrAPFI method for the annotation of protein functions. INGA [13] and INGA

2.0 [14] web servers were developed to infer protein functions by combining pro-

tein interaction networks, domain assignments and sequence similarity. PANNZER2

[15] was another functional annotation web server based on sequence similarity

practical. On the basis of the deep learning framework, Zhang proposed two

methods: DeepGOA [16] and DeepFunc [17], for accurate prediction of protein

functions. Normally, these methods are based network or neighbour-count. Mul-

tiple biological data is fused into these methods to improve the quality of the PINs.

For example, Zhang, DCS and DSCP have improved neighbour-count-based

methods with integrated protein domain data. The combinatorial theory was

used in these three methods to calculate the functional similarity between pro-

teins. Combining protein domain information with the topologies of PINs, the

PON and GrAPFI method rebuilt protein interaction networks for the prediction

of protein functions. Then, these two methods annotated unknown proteins ac-

cording to their 1-layer neighbours in the constructed network based on neigh-

bor count and link weights. In spite of the advances in these methods, it was a
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central challenge to the integration of multiple biological data categories within

a single analysis framework.

In the context of functions prediction, most network analysis methods depended

on the principle of ‘guilt by association’, which is based on observations that a pro-

tein shares many functional features with its direct interacting partners in PINs. A

simple and generic method might be to characterize unknown proteins with func-

tions of all direct neighbours in PINs. Nevertheless, such a straightforward way

would potentially yield false positives that are linked to proteins by irrelevant inter-

actions; it would also introduce false negatives that do not directly connect to pro-

teins with known functions [18]. It is verified by our statistics on the yeast PINs.

We investigated the shortest path length distribution of protein pairs with common

functions and proteins pairs that do not share any function. The statistics results

were shown in Fig. 1. Figure 1 shows that the proportion of protein pairs with co-

annotation is higher than that of protein pairs with none-annotation when the dis-

tance is less than 3. This indicates that co-annotated proteins are closer to each

other than non-co-annotated proteins. Figure 1 also reveals an interesting

phenomenon that proteins seem to co-annotate with their level-3 or level-4 neigh-

bours instead of direct interacting partners, due to the incompleteness and fault of

the PINs.

To clear this hurdle, as a proxy to a ‘functional distance’ between proteins, the

short-path distance instead of Euclidean distance (i.e. the short-path distance be-

tween proteins is equal to 1) was adopted in some approaches to predict protein

functions. However, most of proteins can arrive reach other proteins within a few

steps because of the small-world feature of the PIN. Although these approaches

can effectively suppress false negatives, it will also return many spurious functions

Fig. 1 Distribution of shortest-path distances in the pairs of proteins sharing functions. This figure illustrates
the shortest path length distribution of protein pairs with common functions and proteins pairs that do not
share any function. The curve is plotted by short-path distances between proteins on the horizontal axis
and the proportion of pairs of proteins on the vertical. The red round curve describes the relationship
between pairs of proteins with common functions and the short path distances between them, and the
blue rectangle curve depicts that of pairs of proteins without common functions
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by including irrelevant interactions. Network propagation provides us with a more

refined approach by using the flow of information through network connections as

a means to establish relationships between nodes [19]. There are various guises of

network propagation, such as random walks on graphs [20], the Google PageRank

search algorithm [21], heat diffusion processes [22], graph kernels [23], etc. In bio-

logical network, plenty of methods based on network propagation have been widely

applied to essential proteins identification [24, 25], drug synergy prediction [26],

tumors classification [27], disease associated genes identification [28, 29], microbe-

disease associations inference [30] and protein functions prediction [31], which

demonstrated that network propagation is a powerful data transformation method

of broad utility in genetic research [18]. Additionally, the rationality of combining

the protein domain, complex information and PINs for functions prediction is sub-

stantiated by the DCS and DSCP methods.

Inspired by these findings, we developed a network propagation-based method,

named NPF, for prediction of protein functions. Our model initially simulates the

random walk with restart algorithm and constructs a propagation network by inte-

grating knowledge of the protein interaction network architecture, protein domains

and protein complexes. This serves as the basis for us to detect functional modules

with high coupling in the prediction of functions of unknown protein. To evaluate

the performance of NPF, we apply our method and six other state-of-the-art

methods for prediction of protein functions on yeast PINs. Experimental results

demonstrated that NPF outperformed these competing methods, including

Neighbourhood-counting (NC) [2], Zhang [9], DCS [10], DSCP [10], PON [11] and

GrAPFI [12].

Methods
The NPF method is divided into three stages: (1) Constructing three protein-

protein correlation networks by integrating knowledge of the protein interaction

network architecture, protein-domain associations and protein-complex associa-

tions. (2) Building a propagation network by applying an improved random walk

with restart algorithm to multiple protein correlation networks. (3) Detecting func-

tional modules with high coupling in the propagation network and annotating

functions for target proteins. The flowchart for the NPF method is shown in

Fig. 2.

Construction of multiple protein correlation networks

Biological functions are performed by a group of genes or proteins which are

related to one or more cellular interactions, e.g. protein-protein interaction, co-

regulation, co-expression or membership of a protein complex. Physical PINs

directly indicate the cooperation of proteins to drive a biological process [32].

Moreover, computational approaches had successfully detected stable functional

modules from co-expression networks [33]. We suspect that tightly interacting

and functionally dependent proteins may co-express, co-regulate or share a com-

mon protein complex, etc. Therefore, we constructed multiple protein-protein

correlation networks with integration of knowledge of protein interaction
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network architecture, protein domain annotation and protein complexes

information.

Co-neighbor network

Molecular functions are performed by groups of proteins interacting to each

other. Thus, a straightforward strategy is to annotate proteins for target proteins

using knowledge of the protein interaction network architecture. In this study,

we used the overlapping interacting partners between a pair of proteins as an es-

timate of their functional correlation. In the Co-Neighbor network, two proteins

are connected if they have a physical interaction and link to one or more com-

mon proteins simultaneously. Given a pair of proteins pi and pj in the Co-

Neighbor network, their correlation value was calculated as follow [34]:

P N pi; pj

� �
¼ 2 j Npi∩Np j

j
j Npi j þ j Npi∩Np j

j �
2 j Npi∩Np j

j
j Npj

j þ j Npi∩Npj
j ð1Þ

Fig. 2 Flowchart of NPF method. a Three protein correlation networks Co_Neighbor, Co-Domain and Co-
Complex are derived from original PIN, protein domain data, as well as protein complex information,
respectively. b The propagation network PN is generated by running an improved random walk with restart
algorithm on multiple functional similarity networks. The propagation process is illustrated at different steps
until convergence. Changes in the color of nodes in the graph indicate the progress of the iterative
process. c Annotation for target proteins. Taking the target node as the seed node, a highly cohesive
functional module can be obtained. Functions of neighbors in the detected functional module are used to
characterize the target node
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where, N pi and N pj represents the set of direct neighbors of pi and pj respectively.

Npi∩N pj is an intersection of N pi and N pj.

Co-domain network

Domains are sequential and structural motifs found independently in different proteins

and play as the stable functional block of proteins. We now generalize the idea to con-

struct a protein correlation network based on the protein domain annotation informa-

tion. For a pair of proteins pi and pj, let M denotes the total number of domain

categories in PINs, and let x and y represent the number of domain categories of pi and

pj, respectively. Let z expresses the number of overlapping domain categories between

pi and pj. Then, we measured the functional correlation between two proteins pi and pj
in the Co-Domain network with the follow formula, which is an improvement of the

Zhang method [9]:

P D pi; pj

� �
¼ − log

Mz� M − zð Þx − z� M − xð Þy − z

Mx�My ð2Þ

Finally, the correlation score between pi and pj was obtained by the normalization

processing, which was described as follows:

P D pi; pj

� �
¼

P D pi; pj

� �
− min P Dð Þ

max P Dð Þ − min P Dð Þ ð3Þ

Co-complex network

Protein complexes consisting of molecular aggregations of proteins assembled by

multiple protein interactions are fundamental units of macro-molecular

organization and play crucial roles in integrating individual gene products to per-

form useful cellular functions. Studies [10] have revealed that if two proteins are

consisted of the same protein complexes, they tend to perform the same or similar

biological functions. As much, incorporating quality-controlled protein complexes

and analysing functional associations are both essential for accurate function anno-

tation. We therefore proposed to construct the protein correlation network Co-

Complex, where the functional correlation between two proteins is measured using

the Eq. (4) [35].

P C pi; pj

� �
¼ j Cpi∩Cp j

j
j Cpi j � j Cp j

j ð4Þ

In Eq. (4), C pi and C pj represents the set of protein complexes in which pi and pj is in-

volved respectively. Cpi∩C pj denotes the set of protein complexes containing both pi and pj.

Network propagation algorithm

The network propagation algorithm involved a random walk with restart process on

multiple protein correlation networks to generate an aggregated protein functional

similarity network with high confidence. This process considered the global connectiv-

ity patterns of the PIN for annotating target proteins. Moreover, this algorithm took

into account the structural feature and modular feature of protein for measuring func-

tional similarity by performing a two-step propagation operation. The output of the
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network propagation algorithm is a propagated protein functional matrix, which could

be used as input for protein function prediction.

At the first step of the network propagation algorithm, we established the transition

matrix, H, based on the Co-Neighbor network. The transition probability from protein

i to protein j was computed using the following equation:

h i; jð Þ ¼
P N pi; pj

� �

Xn
k¼1

P N pi; pkð Þ
; if

Xn
k¼1

P N pi; pkð Þ > 0

0 ; otherwise

8>>>><
>>>>:

ð5Þ

Intuitively, we wish to calculate functional similarity between proteins by propagation

that takes both structural feature and modular feature of proteins into account. These

two features are derived from domain annotation and protein complex information, re-

spectively. Therefore, we performed a two-step propagation operation to calculate func-

tional similarity between the protein pi with other proteins by

VDtþ1
i ¼ α�H�VCt

i þ 1 − αð Þ�RV Di ð6Þ

VCtþ1
i ¼ α�HT�VDt

i þ 1 − αð Þ�RV Ci ð7Þ

where the parameter α ∈ [0, 1] balances between the propagation information and re-

start scores, VDi
t and VCi

t are two vectors at the t step to measure structural correl-

ation and modular correlation between protein pi with the remaining proteins,

respectively. Elements of the two vectors are initialized to 1/n (i.e., VD0
i ¼ ½1=n; 1=n;⋯;

1=n� T, VC0
i ¼ ½1=n; 1=n;⋯; 1=n� T). It was to note that it is possible to tune the func-

tional similarity scores by defining two restart vectors RV_Di and RV_Ci by

RV Di ¼ P D i; 1ð Þ;P D i; 2ð Þ;⋯P D i; nð Þ½ �T ð8Þ

RV Ci ¼ P C i; 1ð Þ; P C i; 2ð Þ;⋯P C i; nð Þ½ �T ð9Þ

In this study, we set α to 0.5 [36, 37]. When the propagation converges, we can ob-

tain an adjacency matrix responding to the propagation network, which is formally de-

scribed as follows:

PN ¼
VC11 þ VD11 VC12 þ VD12 ⋯ VC1n þ VD1n

VC21 þ VD21 ⋱ ⋮
⋯ ⋯ ⋱ ⋮

VCn1 þ VDn1 ⋯ ⋯ VCnn þ VDnn

2
664

3
775 ð10Þ

The overall framework of network propagation algorithm can be illustrated as the Algo-

rithm 1. The proof of convergence on the Algorithm 1 can be found in Additional file 1.
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Prediction of protein functions
Intuitively, interacting partners are helpful to characterize target proteins. However,

members of the same functional module are often more densely connected than those

across functional modules [38]. Therefore, at the final stage of our work, we threw out

loosely connected neighbours and annotated target proteins with the remaining part-

ners in the newly constructed propagation network. Given a target protein v, M_V is a

module of the propagation network PN, which is composed of all neighbour nodes of v.

The module fitness [39] was introduced to quantitative describe the cohesion of M_V.

f M V ¼ WDin
M V

WDin
M V þWDout

M V

� �β ð11Þ

where WDM _ V
in denotes the total weight of edges contained entirely by a group of pro-

teins in the module M_V, WDM _V
out denotes the total weight of edges that connect

the group with the rest of the network. β is a positive real-valued parameter, controlling

the size of the module. To simplify operation, we set β to 1. The aim of this stage was

to determine a module starting from protein v such that the inclusion of a new neigh-

bour or the elimination of one neighbor from the module would lower fM_V. Thus for

this purpose, we introduced the concept of neighbour fitness. Given a v’s neighbour u,

the neighbour fitness of u in reference to the module M_V was calculated as follows:

f uM V ¼ f M Vþ uf g − f M V − uf g ð12Þ

In eq. (12), M_V+ {u} and M_V-{u} represents the module obtained from M_V with

neighbour u inside and outside, respectively.
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First, neighbours of v were ranked in descending order according to the functional

similarity to v. And then, all neighbours of v were visited and nodes with neighbour fit-

ness greater than 0 were selected to form a candidate proteins set P = {p1, p2,…, pl}. Let

F = {f1, f2,…, fm} be a list of functions of all proteins in P. The score of a candidate func-

tion fj in F can be calculated as follows:

Score F f j
� �

¼
Xl

u¼1

PN v; uð Þ�tuj ð13Þ

where PN(v, u) represents the functional similarity between u and v in the newly con-

structed propagation network. If u contains function fj, then tuj = 1, otherwise tuj = 0. Fi-

nally, candidate functions were ranked in descending order according to their scores

and TOP K of them were selected to characterize the target protein v. In this study, the

parameter K was set to the number of functions of the protein with the greatest func-

tional similarity to v in the propagation network PN. The Algorithm 2 gave the overall

framework of the proposed NPF method.

Results
Experimental data

To test the performance of NPF, we applied our method and six competing

methods to infer protein functions in the protein interaction network of Saccha-

romyces cerevisiae (Baker’s yeast), because of their completeness, convincement,

and widespread used in function prediction algorithms as gold standard data. The

PIN data is derived from BioGRID database [40], updated to Oct.28, 2017, which

consists of 4113 proteins and 26,105 interactions among the proteins with self-

interactions and repeated interactions removed. The BioGRID is an integrated

network, which has been proven successful in tasks such as predicting disease

genes [41].

The annotation data of proteins used for validation was downloaded from GO official

website [42]. The GO system consists of three separate categories of annotations,

namely molecular function, biological process and cellular component. This paper takes

the biological process as an example to analyse the performance of NGF. The protein

domain data was downloaded from Pfam database [43], which contains 1026 different

types of domains associated with 2566 proteins in the BioGRID network. The bench-

mark protein complexes set was adopted from CYC2008 [44], which consists of 408
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complexes involving 1600 proteins in the BioGRID dataset. The above four dataset

were uniformly transformed to use the Ensemble Genomes Protein labelling system.

View of the constructed networks

In order to better understand the behaviour of the proposed NPF method, we provided

descriptive statistics on the constructed networks, including the Co-Neighbor network,

Co-Domain network, Co-Complex network and PN (propagation network). Table 1

listed the basic statistics of the four constructed networks, such as size of networks,

average degree etc. When considering network characteristics, the characteristic path

length and the clustering coefficient are usually used to measure the network. Table 2

shows the topology features of the original PPI network and the constructed propaga-

tion network. The results indicate that the effect of the small-world characteristic on

function prediction was improved through network propagation. Figures 3 and 4

depicted the distribution of degree and clustering coefficient in these four networks, re-

spectively. Our statistics revealed reinforcing functional correlations or relationships

between proteins in the PN. Therefore, it is reasonable to believe that network propaga-

tion is helpful to reduce the negative effect of false negative and improve the accuracy

of prediction of protein functions.

Assessment criteria

Two assessment criteria were adopted to compare function prediction performance of

the NPF with six competing methods, including NC [2], ZhangDC [9], DCS [10], DSCP

[10], PON [11] and GrAPFI [12]. The NC method is a classic protein function annota-

tion method, which is only based on the PIN. Zhang and DCS inferred protein func-

tions through protein domain composition and PINs, and DSCP extends the protein

functional similarity definition in DCS by combining the domain compositions of both

proteins and complexes including them. PON and GrAPFI constructed a protein cor-

relation network and characterized unknown proteins by integrating PINs and protein

domain information.

Proteins in PINs were divided into two categories: the training set and the test-

ing set. In one round of cross validation, the functions of each protein in the test-

ing set are predicted according to the proteins in the training set. The validation

process is repeated multiple times until each protein has a chance to become a

member of the testing set. The final performances were evaluated by the average

of all rounds. The first assessment criterion was leave-one-out cross-validation [10]

which put one target protein into the testing set and the rest of proteins into the

training set per round. However, the leave-one-out cross-validation was often

Table 1 Statistics of constructed networks

Networks Number of nodes Number of edges Average degree Clustering coefficient Connected
components

Co-Neighbor 2696 13,728 10.184 0.645 25

Co-Domain 2448 18,123 14.806 0.743 471

Co-Complex 1595 10,886 13.650 0.798 279

PN 3082 57,256 37.155 0.673 185
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plagued by many unannotated proteins in the network. Another assessment criter-

ion used in this study was ten-fold cross validation [45], in which the proteins set

was randomly divided into ten subsets, a single subset was retained for the testing

set, and the remaining nine subsets were used as the training set. The cross-

validation process was then repeated ten times, with each of the ten subsets used

exactly once as the testing set. The ten results from the folds were then averaged

to produce the final performance.

To assess the quality of predicted functions, we matched inferred functions with ac-

tual functions of target proteins. Precision and Recall were the commonly used mea-

sures to test the performance of function prediction methods. Precision is the fraction

of predicted functions that are matched with known proteins while Recall is the frac-

tion of known functions that are matched with predicted functions. In this study, true

positive (TP), false positive (FP) and false negative (FN) represents the number of

matched predicted functions, incorrectly matched predicted functions and missing

matched known functions, respectively. Therefore, these two measures can be defined

as follows:

Precison ¼ TP
TP þ FP

ð14Þ

Table 2 Comparison of the original network and the constructed network

Networks Number of nodes Number of edges Characteristic path length Clustering coefficient

BioGRID 4113 26,105 3.461 0.309

PN 3082 57,256 3.710 0.673

This table compares the topology features of the original network based on the BioGRID dataset and the constructed
network PN

Fig. 3 The distribution of degree in constructed networks. This Figure shows the distribution of degree in
the four constructed networks. (a) Co-Complex network, (b) Co-Domain network, (c) Co-Neighbor network,
(d) PN network
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Recall ¼ TP
TP þ FN

ð15Þ

F-measure, as the harmonic mean of Precision and Recall, was another measure to

evaluate the performance of a method synthetically, which was calculated as follows:

F −measure ¼ 2� Precision� Recall
Precisionþ Recall

ð16Þ

Leave-one-out cross-validation

First, the leave-one-out cross validation was applied to verify the quality of predicted

functions inferred by our NPF methods, as well as a representative set of competing

methods: NC, Zhang, DCS, DSCP, PON and GrAPFI. To ensure impartiality, we fil-

tered out those GO terms whose number of annotated proteins is less than 10 or more

than 200 proteins. After being processed by this step, the number of GO terms is 267.

Out of all the 4113 proteins in the PINs, 2716 proteins were annotated. The average

and median number of GO terms for these annotated protein was 2.1 and 2, respect-

ively. The NPF method obtained 2146 functional modules for these 2716 training pro-

teins on the BioGRID databases. The average size and fitness value of the detected

functional modules is 13.48 and 0.5625, respectively.

We first assessed the performance of NPF and six other competing methods on these

target proteins by the average Precision, Recall and F-measure. The basic information

about predicted functions by NPF and six other competing methods was presented in

Table 3. In Table 3, MP was the number of proteins successfully matching at least one

known function, while PMP represented the number of proteins perfectly matching the

known functions, yet ZP was the number of proteins with zero-error prediction. MMP

Fig. 4 The distribution of clustering coefficient in constructed networks. This Figure shows the distribution
of clustering coefficient in the four constructed networks. (a) Co-Complex network, (b) Co-Domain network,
(c) Co-Neighbor network, (d) PN network
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denoted the number of proteins completely mismatching the known functions. In other

words, none of the predicted functions match the known functions. From Table 3, we

can see that NPF contained the second-biggest number of perfect matching proteins

(891) after NC (1428), while ZP of our method (885) is far more than NC’s (100). Fig-

ure 5 showed the overall comparison in terms of Precision, Recall and F-measure. It

illustrated that NPF archives the largest value of Precision and F-measure, the second-

largest value of Recall after NC. This is due to the maximum number of perfect match-

ing proteins with NC. F-measure of NPF was 61.56, 109.41, 19.74, 11.53, 209.80 and

103.36% higher than NC, Zhang, DCS, DSCP, PON and GrAPFI, respectively.

To further investigate the performance of NPF and six other competing methods, we

applied the Precision-Recall (PR) curve, whose vertical and horizontal coordination are

the values of Precision and Recall, respectively. The PR curve is a standard for evalu-

ation of the comprehensive performance of all methods in terms of different strategies

of function selection. Predicted functions were ranked in descending order according

to the values of functional similarity calculated by NPF, NC, PON and GrAPFI,

Table 3 Basic information of prediction by various algorithms

Methods MP PMP MMP ZP

NPF 1503 891 1213 885

NC 1945 1428 771 100

Zhang 727 421 1989 432

DCS 1269 743 1447 742

DSCP 1358 810 1358 799

PON 536 229 2180 277

GrAPFI 774 384 1942 432

This table shows the basic information of the results predicted by NPF, NC, Zhang, DCS, DSCP, PON and GrAPFI. MP is the
number of proteins successfully matching at least one known function. PMP represents the number of proteins perfectly
matching the known functions. MMP denotes the number of proteins completely mismatching the known functions. ZP
is the number of proteins with zero-error prediction. That is, all the predicted functions in these proteins match the
known functions

Fig. 5 Overall comparisons of various methods. Numbers of each bar are the values for each score,
including precision, recall and F-measure
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respectively. Then, the top K functions were selected and annotated target proteins.

The Parameter K changed from 1 to 267. As for the methods of Zhang, DSC and

DSCP, top N (N < =K) proteins which had the highest similarity value with target pro-

teins were selected and K functions in these fell out proteins were selected in turn to

characterize target proteins. For a given target protein and the parameter K, the preci-

sion and recall values can be calculated according to the definition in Eqs. (14) and

(15). The final PR curves of NPF and six other competing methods were drew accord-

ing to the average precision and recall values over all target proteins. The PR curves of

seven methods were illustrated in Fig. 4. Numbers in brackets represented the max-

imum F-measures for these seven methods. As shown in Fig. 6, NPF archived the first

maximum F-measures in all methods. The PR curves of our method was above that of

six other competing methods, which means that the NPF has a higher number of true

positives and at the same time a smaller number of false positives when selecting differ-

ent parameters. With the constant increase of K, the PR curve of NPF did not show

drastic fluctuations. Even in the worst case, the precision value of NPF can still archive

0.248. However, the precision values of DSCP and DCS dropped sharply with the emer-

gence of a large number of similar proteins.

For overall comparison, we counted the number of true positive and false positive

functions predicted by NPF and competing methods. A more valuable comparison be-

tween these methods was presented by plotting FP/TP curves as parameter K varies.

Fig. 7 showed the FP/TP of our method and six other competing methods fluctuated

under various value of the parameter K (ranging from 1 to 267). The smaller slope of

the FP/TP curve of a method was, the lower the noise ratio was, which resulted in a

greater predicted accuracy of the method. From this figure we can see that, FP/TP

curve of NPF has consistently been covered with that of all other methods. That is,

Fig. 6 The precision-recall curves of NPF compared to six other competing methods. The figure denotes
the precision-recall (PR) curves of NPF and six other competing methods (Zhang, DCS, DSCP, PON and
GrAPFI) based on the average prediction performance over all testing protein. The vertical and horizontal
coordination of the PR curves are the values of Precision and Recall, respectively. Numbers in brackets
represent the maximum F-measures for these seven methods
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NPF generated the fewest false positives among all the methods when matching the

same number of known functions.

To further analyze the difference between NPF and six other competing

methods, we selected YNL262W, YBR278W and YPR175W as examples and in-

ferred proteins using the seven methods. Table 4 listed the basic information of

these target proteins, including degree, number of domains and number of in-

volving complexes. Figure 8 showed the predicted functions by various methods

and the benchmark set. In Fig. 8, red elliptic nodes were target proteins, and red

edges represented interactions between target proteins. Green round rectangle

and grey rectangle nodes represented matched functions and false matched func-

tions, respectively. Solid edges and dash edges between proteins and functions de-

noted correct and false associations. Table 5 showed the description of seven

known functions of the three selected proteins. Take the protein YBR278W as an

example, which does not contain any domains. For the three domain-based

methods Zhang, PON and GrAPFI, no one function was inferred, let alone

matched a known function. DCS and DSCP generated two predicted functions

with one function matched by including neighbors or complex members for

Fig. 7 The FP/TP curves of various methods. This Figure depicts the FP/TP of our method and other
competing methods fluctuate under various value of the parameter K. The vertical and horizontal
coordination of the curve are the values of FP/TP and K, respectively. a Shows the FP/TP curves of NC and
NPF. b Shows the FP/TP curves of Zhang and NPF. c Shows the FP/TP curves of DCS, GrAPFI and NPF. d
Shows the FP/TP curves of DSCP and NPF

Table 4 Basic information of selected target proteins

Proteins Degree Number of domains Number of complexes

YNL262W 13 2 1

YBR278W 9 0 1

YPR175W 9 1 1

This table shows the basic information of three target proteins. The second column represents the number of its direct
neighbors in the original PINs, while the third column is the number of domains it contains. The last column denotes the
number of complexes involved
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calculation of domain context similarities. The NC method annotated the protein

YBR278W with functions of its all neighbors. Although the method successfully

matched five functions, it introduced a large number of false-positive functions.

Out of seven functions predicted by NPF, five functions were matched with

known functions. This is due to the fact that we discovered more partners with

similar functions through network propagation and got rid of some functionally

unrelated proteins by detecting functional modules with high coupling. The ex-

ample exhibited the highest predicting accuracy of NPF, compared to the results

archived by other competing methods.

Ten-fold cross validation

In the previous section, we applied the leave-one-out cross-validation to exhibit the

NPF’s improvement on function prediction compared to the state-of-the-art methods.

Fig. 8 Functions of three selected proteins predicted by various methods. Red elliptic nodes denote target
proteins, and red edges represent interactions between them. Green round rectangle and gray rectangle
nodes represent matched functions and false matched functions respectively. Solid edges and dash edges
between proteins and functions denote correct and false associations. (a) Benchmark results (b)-(h) is the
result generated by NPF, Zhang, DCS, DSCP, PON and GrAPFI, respectively

Table 5 Description of selected GO Terms

GO Term Description

GO:0006272 Leading strand elongation, which is continuous as it proceeds in the same direction as
the replication fork.

GO:0006273 Lagging strand elongation proceeds by discontinuous synthesis of short stretches of
DNA, known as Okazaki fragments, from RNA primers; these fragments are then joined
by DNA ligase.

GO:0006289 Nucleotide excision repair recognizes a wide range of substrates, including damage
caused by UV irradiation and chemicals.

GO:0006298 The mismatch repair system promotes genomic fidelity by repairing base-base
mismatches, insertion-deletion loops and heterologies generated during DNA
replication and recombination.

GO:0006303 The repair of a double-strand break in DNA in which the two broken ends are
re-joined with little or no sequence complementarity.

GO:0006348 Chromatin silencing at telomere means the repression of transcription of telomere
DNA by altering the structure of chromatin.

GO:0007064 Mitotic sister chromatid cohesion. The cell cycle process in which the sister chromatids
of a replicated chromosome are joined along the entire length of the chromosome.

The underscored text represents the name of GO Term
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However, in real-world applications, there are usually much more unknown proteins

than just one. To do this we adopted the ten-fold validation to verify the validity of our

method on PINs with less function information. The entire set of proteins was divided

into ten equal sets randomly, nine of which were used for training and the remaining

part was used for testing. The process is repeated 1000 times, each time using another

testing set. We ran the functional annotation methods of NPF, Zhang, DCS, DSCP,

PON and GrAPFI on PINs to get mean values and standard deviations of precision, re-

call and F-measure, as shown in Table 6. Additionally, predicted functions were ranked

in descending order according to the values obtained by various method and the top K

functions were selected to annotate target proteins. A more valuable comparison be-

tween these methods was presented by plotting PR curves and F-measure curves as the

parameter K varies using the ten-fold validation. Figures 9 and 10 illustrated the PR

curves and F-measure curves of various methods, respectively. Table 6, Figs. 9 and 10

exhibited the performance improvement of NPF compared to six other competing

methods. Therefore, NPF seemed to be an effective method for characterizing unknown

proteins.

Discussions
The accurate annotation of protein functions is the key to understanding life at

the molecular level and plays an important role in disease treatment, new drug

development. Limited by the quality of protein interaction data generated by

high-throughput technologies, methods that infer protein functions in terms of

protein interactions may not work well [10]. A popular optimization scheme for

the problem is to infer protein functions by combining PINs with multiple bio-

logical data. Despite the advances in these methods, designing efficient algo-

rithms to fuse these multi-source biological data remains challenging.

Additionally, the topology of the PINs, such as the “small world”, is also one of

the factors that affect the prediction performances. Here, we presented the NPF,

a network propagation-based method to annotate functions for target proteins.

To overcome the problem of incomplete and false interaction data, we con-

structed a propagation network by integrating knowledge of the protein inter-

action network architecture, protein-domain associations and protein-complex

associations. By propagating functional similarities across the networks, we can

obtain more functionally relevant interacting partners to characterize the target

Table 6 The prediction results using ten-fold validation

Methods Precison Recall F-measure

mean value standard deviations mean value standard deviations mean value standard
deviations

NPF 0.424 0.025 0.429 0.022 0.426 0.022

NC 0.176 0.014 0.610 0.023 0.273 0.018

Zhang 0.198 0.019 0.196 0.019 0.197 0.019

DCS 0.352 0.025 0.354 0.027 0.353 0.025

DSCP 0.378 0.027 0.382 0.028 0.380 0.027

PON 0.139 0.017 0.129 0.016 0.134 0.016

GrAPFI 0.219 0.018 0.209 0.018 0.214 0.018
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proteins, which effectively free from the constraints of the “small-world” charac-

teristic. Additionally, we take out those redundant function-independent partners

by forming functional modules with high cohesion. Comprehensive comparisons

among the state-of-the-art methods and our method have been made in terms

of the leave-one-out cross-validation and the ten-fold cross validation. Experi-

mental results demonstrated that our method outperforms other competing

methods. Specially, DSCP used the same kind of data as NPF, yet NPF outper-

formed DSCP. There are two reasons to believe that NPF probably come out

much better in the comparison. On the one hand, NPF can discover more

neighbors with similar functions through network propagation; on the other

Fig. 10 The F-measure curves of various methods using ten-fold validation. This Figure depicts the F-
measure of seven methods fluctuate under various value of the parameter K. The vertical and horizontal
coordination of the curve are the values of F-measure and K, respectively. a Shows the F-measure curves of
NC, DCS, Zhang and NPF. b Shows the F-measure curves of DSCP, GrAPFI, PON and NPF

Fig. 9 The precision-recall curves of various methods using ten-fold validation. This Figure shows the PR
curves of NPF and six other methods using ten-fold validation. The entire set of proteins is divided into ten
equal sets randomly, nine of which are used for training and the remaining part is used for testing. The
process is repeated 1000 times, each time using another testing set
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hand, NPF predicted functions using multiple neighbors, not just the closest

neighbors. In my opinion, proteins may be involved in different functional mod-

ules to perform multiple biological functions. Based on these results, we can

conclude that the network propagation is useful for the study of protein inter-

action networks.

Conclusions
In this study, we proposed a novel protein functions annotation method based on

network propagation, named NPF, which incorporates the topology of PINS and

multiple biological data, such as domain annotation information, protein complexes

information. Furthermore, we guarantee the NPF against false functions by detect-

ing functional modules based on the neighbour fitness. Experimental comparison

results between NPF and six state-of-the-art methods on yeast PINs showed that

NPF significantly outperforms other competing methods. In our future study, we

will take the hierarchical structure of GO Terms into account for further improve-

ment of the performance of function prediction.
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