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Understanding the relation between (sensory) stimuli and the activity of neurons (i.e., “the

neural code”) lies at heart of understanding the computational properties of the brain.

However, quantifying the information between a stimulus and a spike train has proven to

be challenging. We propose a new (in vitro) method to measure how much information

a single neuron transfers from the input it receives to its output spike train. The input

is generated by an artificial neural network that responds to a randomly appearing and

disappearing “sensory stimulus”: the hidden state. The sum of this network activity is

injected as current input into the neuron under investigation. The mutual information

between the hidden state on the one hand and spike trains of the artificial network or

the recorded spike train on the other hand can easily be estimated due to the binary

shape of the hidden state. The characteristics of the input current, such as the time

constant as a result of the (dis)appearance rate of the hidden state or the amplitude

of the input current (the firing frequency of the neurons in the artificial network), can

independently be varied. As an example, we apply this method to pyramidal neurons in

the CA1 of mouse hippocampi and compare the recorded spike trains to the optimal

response of the “Bayesian neuron” (BN). We conclude that like in the BN, information

transfer in hippocampal pyramidal cells is non-linear and amplifying: the information loss

between the artificial input and the output spike train is high if the input to the neuron (the

firing of the artificial network) is not very informative about the hidden state. If the input

to the neuron does contain a lot of information about the hidden state, the information

loss is low. Moreover, neurons increase their firing rates in case the (dis)appearance rate

is high, so that the (relative) amount of transferred information stays constant.

Keywords: neural information processing, artificial neural network, in vitro electrophysiology, Bayesian neuron

model, information theory

Abbreviations: BN, Bayesian Neuron, see Denève (2008a); MSE, Mean-Squared Error (Equation 14); FMSE, Fraction of
output MSE relative to input MSE (Equation 16); MSEP , Fraction of output MSE relative to MSE in Poisson spike train
(Equation 15); F, Fraction of information relative to entropy of the hidden state (Equation 2); FI, Fraction of information
about the hidden state in output relative to input (Equation 3); FS, SNRoutput/SNRinput.
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1. INTRODUCTION

Neuroscientists aim to understand how the brain represents and
transforms incoming information by quantifying the relation
between (sensory) stimuli and the activity of neurons (i.e.,
“the neural code”). When researching such information transfer
properties of neural systems, and in particular of single neurons,
there are twomain questions: (1)what information is encoded by
a neuron (and what information is discarded), and (2) how much
information is transferred (or lost). The first question is often
investigated by fitting functional filter models such as a Linear–
Non-linear Poisson model (Chichilnisky, 2001) or a Generalized
Linear Model (Paninski, 2004) to the neural input and output
(for an overview see Simoncelli et al., 2004; Schwartz et al.,
2006). Here, we will focus on the second question: How much
information is transferred by single neurons? This question was
first posed by MacKay and McCulloch (1952) and de Ruyter
van Steveninck and Bialek (1988) were first to develop a way to
measure the information transfer in neurons. This quantitative
approach to information transfer is important, because it shows
how information transfer properties change. For instance, the
amount of information a neuron transmits depends on the
background activity of the network a neuron is embedded in
Panzeri et al. (1999) and Shadlen and Newsome (1998), on
neuromodulators such as dopamine (Cruz et al., 2011) and on the
type of code that is used (i.e., a “temporal” or “rate” code, Panzeri
et al., 2001).

Researchers have attempted to measure the information
transfer from presynaptic activity to output spike trains in
neurons in different experimental setups and sensory systems
in vivo and in vitro (including the visual system of the
fly (de Ruyter van Steveninck and Bialek, 1988) and the
whisker system of rats (Panzeri et al., 2001), using different
information theoretical measures (for an overview, see Borst and
Theunissen, 1999; Dimitrov et al., 2011). However, quantifying
the information between a stimulus and a spike train has
proven to be challenging. For example, information can be
measured by reconstructing the stimulus from a spike train,
and estimating the signal-to-noise ratio (Bialek et al., 1991;
Rieke et al., 1997). This method requires a large amount of
data, since a model needs to be fitted to the neural response
(e.g., a linear filter and transfer function) before transferred
information can be measured. Alternatively, information can be
measured using the so-called “direct method” (de Ruyter van
Steveninck et al., 1997; Strong et al., 1998), in which the response
variability is used to estimate the mutual information between
stimulus and spike train output. Measuring the information
between a neuron’s input and output this way involves various
difficulties and biases, including the need to repeat a stimulus
many times (or for a vary long time) and a bias due to
limited sample sizes (Treves and Panzeri, 1995; Strong et al.,
1998). Moreover, it might be difficult to determine what kind
of stimulus to use, and in these setups the stimulus and the
measured neuron are often several synapses away, making
it difficult to assess where a measured loss of information
happens. Finally, the choice of what set of stimuli to use is
non-trivial.

Here we present a method to estimate how much information
is contained in the spike train of a single neuron in an in vitro
setup. The neuron is presented with an current input, generated
by a population of artificial presynaptic neurons that respond
to a randomly appearing and disappearing preferred stimulus:
the hidden state (Denève, 2008a; Lochmann and Denève, 2008).
This hidden state mimicks for instance a randomly appearing
bar with a preferred orientation (for cells in primary visual
cortex) or sound with a preferred frequency (for cells in auditory
cortex). The information estimate is calculated by comparing
the absence/presence of the hidden state and an estimate of
the presence of this stimulus, based on the output spike train.
The method does not require vast amounts of data or many
repetitions. The method can be applied in any in vitro setup (so it
not limited to sensory systems). Moreover, various experimental
parameters such as the autocorrelation time-constant due to
the (dis)appearance rate of the hidden state or the specific
amount of information in the input and the amplitude of
the signal relative to the background noise can systematically
be varied, while the input is still close to the natural stimuli
neurons normally receive. Finally, since we have a model of
the optimal response (the “Bayesian neuron,” Denève, 2008a),
the quality of the performance of the neuron can be rigorously
assessed.

The goal of the method presented here is to define an
experimental paradigm with which the information (loss) of the
spike-generating process can be quantified and compared (for
instance between neuropharmacological states) in an in vitro
paradigm. This information-calculation is based on previous
work (Denève, 2008a; Lochmann and Denève, 2008), where
a similar method was used to compare single-compartment
models. Here, we add the following to the existing method:
Firstly, we replace delta-spikes by exponential kernels to mimick
Post-Synaptic Currents (PSCs). Secondly, we define the output
of the artificial neural network as a current output, and scale
it so that it can be injected in a current-clamp setup. Thirdly,
we show that the mutual information in the input current
can be kept constant while varying experimental parameters.
There is a a trade-off between the autocorrelation time and
the firing rates of the artificial presynaptic neurons: if the
autocorrelation time is short (i.e., the hidden state appears
and disappears with a high rate), a high firing rate of the
presynaptic neurons is needed to keep the information in the
input current constant1. Finally, we provide an example of an
in vitro experiment where this paradigm is used. We apply
the method presented here to pyramidal neurons in region
CA1 of the rat hippocampus in an in vitro slice, to quantify
the information loss from input to output spike train as a
function of the stimulus (dis)appearance rate, the input current
amplitude, and the information content of the input current
(for an overview of other coding properties of these cells, see
Hasselmo, 2011).

1Note that increasing the number of presynaptic neurons or the firing rates of the
presynaptic neurons has the same effect: increasing the stimulus amplitude relative
to the background noise. This relative stimulus amplitude is related to, but not the
same as, the signal-to-noise ratio (see Supplementary Material).
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2. METHODS

Here we present an experimental method to estimate how much
information is contained in the spike train of a single neuron. In
the first part of this methods section, we summarize and explain
the theory behind the method. In order to easily estimate the
information in a spike train, the neuron has to respond to a
special type of input generated by an artificial neural network,
which is explained first in Section 2.1.1. In the next Section
2.1.2, we explain how this special form of a noisy input can
be used to quantify the information in the output spike train.
The theoretical derivation follows Lochmann and Denève (2008),
who compared model-neurons this way. Next, we define an
optimal response model (Denève, 2008a; Section 2.1.3), which
sets a benchmark for the performance of the recorded neuron.

In the second part of the methods section, we zoom in on the
experimental part of the method: in Section 2.2.1 we explain how
the activity of the artificial neural network, which is in arbitrary
units, can be scaled so that it can be used as a fluctuating current
input in an in vitro setup. Next, the input parameters used in the
experiments are summarized (Section 2.2.2). Finally, the details
of the experimental slice preparation and recording are given
(Section 2.2.3).

2.1. Theory
2.1.1. Input Generation
Except for sensory receptors, neurons in the brain respond to
input generated by other neurons. We assume here that neurons
respond to the absence or presence of a preferred stimulus
feature, for instance an edge in a preferred orientation (visual
system). This absence or presence of the preferred stimulus
feature is represented by the hidden state x (Figure 1): a binary
variable that equals 1 if the preferred stimulus is present, and 0 if
it is absemt. We assume that this preferred stimulus appears and
disappears randomly following a memoryless (Markov) process
with rates ron and roff. Or, stated differently, the quantities
τ = 1

ron + roff
and p1 = ron

ron + roff
quantify respectively how fast the

hidden state switches and the probability of finding the hidden
state in the “ON” (1) state.

The second assumption in the input generation, is that
neurons do not directly observe the hidden state, but receive
synaptic inputs from a population of N presynaptic neurons
i, whose firing rate is modulated by the stimulus so that each
fire Poisson spike trains with rate qion when x = 1, and
qioff when x = 0. These two assumptions are comparable
to the assumptions that are implicitly made when estimating
tuning curves, for instance by fitting filter models such as a
Linear-Nonlinear Poisson model (Chichilnisky, 2001) to sensory
stimuli: in both cases it is assumed that a neuron responds
only to the present value (so no history or reverberation effects)
of a preferred stimulus feature that it does not have direct
access to.

Each of the spikes from the population of artificial presynaptic
neurons is convolved with an exponential kernel with a time
constant of 5 ms and a unitary surface. Moreover, the spike trains
from different presynaptic neurons are weighted according to

their reliability, i.e., wi = log qion
qioff

(Figure 1). This is the third and

strongest assumption of the input generation. These values for
the weights result in an optimally informative total input current
(Denève, 2008a), and can be learned with an unsupervised, local,
spike-dependent learning rule (Denève, 2008b). We did not use
a learning rule here, but just used the “optimal” weights. The
relation between the weights and the firing frequencies makes
sense intuitively: we assume that the neuron listens strongly to
informative neurons (qion >> qioff, results in wi >> 0), not

to neurons that are not informative (qion ≈ qioff, so wi ≈
0) and neurons that fire more when the preferred stimulus is
absent have an inhibitory contribution (qion << qioff, results in
wi << 0). Given these weights, the sum-total synaptic input is
given by

I =
N

∑

i= 1

wisi ∗ k, (1)

where ∗ denotes a convolution with the exponential kernel k(t)
and si =

∑Mi
mi = 1 δ(t − tmi ) is the spike train of artificial neuron i

that depends on the hidden state through qion and qioff. However,
this input cannot be injected directly into a neuron in an in
vitro setup or into a model neuron yet: it has to be scaled from
dimensionless units to ampère A, which will be explained in
Section 2.2.1. The autocorrelation time constant of the input
depends on the switching rates of the hidden state (through
τ = 1

ron + roff
and on the distribution of firing rates in the

artificial neural network qion and qioff. Since we do not know
anything a priori about the distributions of the firing rates qion
and qioff, we make the most simple assumption and draw them

from a Gaussian distribution. So qion and qioff are all drawn from
a Gaussian distribution with mean µq and standard deviation

σq =
√

1
8µq (the value if σq is chosen so that virtually all firing

rates are positive). Note that even though the firing rates qion and
qioff are drawn from the same distribution, this generally does not
mean they have the same value.

2.1.2. Estimating Mutual Information
The mutual information between the hidden state and the the
input (MII) or any output spike train (MIspike train) in response
to this input can easily be estimated, because the input defined
in the previous section uses a hidden state x. In this section, we
will explain how to estimate this information in a spike train
(the method can be applied to any spike train, be it recorded,
simulated any other spike train). We start by estimating the
entropy of the hidden state. Next, we consider the following
two steps: (1) the transformation from hidden state to input
(MII), and (2) the transformation from input to spike train (i.e.,
the neural spike generating process, MIspike train). By definition,
MII and MIspike train cannot exceed the entropy of the hidden
state Hxx (determined by p1, Equation 4). If there would be no
information loss, the mutual information between the spike train
and the hidden state equals the entropy of the hidden state:
MIspike train = MII = Hxx. However, in practice every step will
result in information loss: MIspike train < MII < Hxx. Since we
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FIGURE 1 | Graphical representation of the input model: the input is generated by N artificial neurons i that fire Poisson spike trains with rates qion and qioff in

response to a hidden Markov model, with rates ron and roff. The spikes of each artificial neuron are convolved with an exponential kernel with a time constant of 5 ms

and a weight of wi = log
qion

qioff

. This current is injected into hippocampal pyramidal cells in an in vitro current clamp setup. The resulting spike trains are recorded and

used to reconstruct the hidden state.

have access to MIspike train, MII , and Hxx, we can estimate the
information loss at every step.

The derivation follows Lochmann and Denève (2008) and
Denève (2008a). The method requires two assumptions; firstly
an ergodic argument: it is assumed that an average over samples
can be replaced by an average over time. This means that
if in an experiment the setup is not stationary during the
time window for which the mutual information is calculated,
the approximation fails. Secondly, it is assumed that output
spike trains are by approximation Poissonian. The estimate
of the mutual information is not strongly sensitive to this
assumption, but strong deviations from Poissonian statistics will
make the estimate fail. Time is measured in discrete steps, as
most simulations and experiments use finite sampling rates. The
mutual information is estimated for a single time-step, so it is
an information rate (in bits/second). However, for simplicity
and since we do not adjust the time step of our simulations of
experiments here, we will only report the mutual information (in
bits).

In Section 3, we will often use the fraction of transferred
entropy

F = 〈 M̂I

Ĥxx

〉samples or simulations, (2)

where the brackets denote an average over samples orsimulations.
This fraction shows how much of the entropy of the hidden state

is transferred to the output spike train, and should therefore
always have a value between 0 (since information or entropy
cannot become negative) and 1 (the mutual information should
never exceed the entropy of the hidden state). Similarly, we will
use the fraction of transferred information

FI =
M̂Ispike train

M̂II
, (3)

which should also have a value between 0 (no information about
the hidden state in the input was transferred to the output spike
train) and 1 (all information in the input was transferred to the
output spike train).

2.1.2.1. Entropy of the hidden state
The theoretical value of entropy of the hidden state on each
moment in time depends only on the probability that the hidden
state is 1 (because a Markov process is memoryless):

Hxx = −p1 log2(p1)− (1− p1) log2(1− p1). (4)

However, for a given realization (the full sequence of hidden state
values up to time t: x0→t), the estimate of the entropy:

Ĥxx = −〈x0→t〉time log2(〈x0→t〉time)

− (1− 〈x0→t〉time) log2(1− 〈x0→t〉time). (5)
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could show small deviations from its true value given in
Equation (4).

2.1.2.2. Conditional entropy
We start with a general estimate of the mutual information
between the hidden state x and either an output spike train or
the input. We use y to denote the history of the spike train or
the input until now, and Y as the set of values y can take. The
estimated mutual information MI is defined as the difference
between the estimate of the entropy of the hidden state and the
estimate of the conditional entropy of the hidden state given the
history of y (spike train or input) until now:

M̂I = Ĥxx − Ĥxy. (6)

The conditional entropy of x given y is defined by

Hxy = −
∑

x∈X,y∈Y
p(x, y) log2(p(x|y)), (7)

where X is the set of values x can take (i.e., X = {0, 1}). Since the
hidden state can only take the values 0 and 1, we can estimate the
conditional entropy by averaging over time:

Ĥxy = −〈x log2(p(x = 1|y))+ (1− x) log2(p(x = 0|y))〉time

= −〈x log2(p(x = 1|y))
+ (1− x) log2((1− p(x = 1|y)))〉time, (8)

where we used the ergodic argument mentioned before to
approximate an average over samples by an average over time.
In the following two sections, we will explain how to estimate
p(x = 1|y) and p(x = 0|y) based on either the input or an output
spike train. Remember that x denotes the current value of the
hidden state, whereas y signifies the spike train or input history
up until now.

2.1.2.3. Mutual information between the hidden state and

the input
To estimate of the conditional entropy of the hidden state given
the input history, we have to estimate the probability of the
hidden state being equal to 1 given the history of the input.
Following the derivation in Denève (2008a), L(t), the temporal
evolution of the posterior log-likelihood of the hidden state being
1 based on the input history

L(t) = log2
p(x = 1|I0→t)

p(x = 0|I0→t)
= log2

p(x = 1|I0→t)

1− p(x = 1|I0→t)
(9)

can be estimated using the following differential equation:

dL̂

dt
= ron(1+ e−L̂)− roff (1+ eL̂)+ I(t)− θ , (10)

where θ =
∑N

i=1 q
i
on − qioff is the constant offset of the input,

which is chosen to be equal to 0 in this paper2. So if we generate

2For large enough N, θ ≈ 0. Since qion and qioff are drawn from the same normal

distribution with mean µq and standard deviation σq =
√

1
8µq, the difference

distribution has mean 0 and standard deviation
√
2σq =

√

1
2µq.

an input using the method from Section 2.1.1, we can integrate L̂
using Equation (10) and estimate the mutual information using
Equation (8) and the following estimate of the probability that the
hidden state equals 1 given the input history:

p̂(x = 1|I0→t) =
1

1+ e−L̂
. (11)

2.1.2.4. Mutual information between the hidden state and a

spike train
The conditional entropy and themutual information between the
hidden state and an output spike train ρ(t) =

∑M
m=1 δ(t − tm)

can be estimated using the same method as for estimating the
mutual information between the hidden state and the input: by
integrating the log-likelihood L over time. However, parameter I
in Equation (10) should now be replaced by Ispike train, generated
with the help of Equation (1). In this equation, the exponential
kernel k was used, because δ-spikes cannot be used in an
experimental setup. However, for the information calculation,
δ-spikes are not a problem, so the exponential kernel will be
discarded3. For a given spike train, we need to estimate both θ

and w, so we need to estimate qon and qoff:

q̂on =
∫

t|x= 1
ρ(t)dt

∫

t|x= 1
dt

= total # spikes while x = 1

total time x = 1

q̂off =
∫

t|x= 0
ρ(t)dt

∫

t|x= 0
dt

= total # spikes while x = 0

total time x = 0
.

(12)

Now, we can generate Ispike train for calculating L using Equation
(10) and estimating the mutual information using Equations (8)
and (11).

2.1.2.5. Hidden state estimate and mean-squared error
With the help of Equation (9), an estimate of the hidden state can
be defined: because the hidden state can only take the values 0
and 1, and the estimate of the probability that the hidden state is
equal to one p̂(x = 1|I0→t) can only take values between 0 and 1,
p̂(x = 1|I0→t) can be viewed as an estimate of the hidden state:

x̂(t) = p̂(x = 1|I0→t) =
1

1+ e−L̂(t)
. (13)

This can be used to calculate another measure of how well a
spike train represents the hidden state, the mean-squared error
(MSE)4:

MSE = 1

Nt

Nt
∑

t= 1

(x̂t − xt)
2, (14)

3Due to the discretization of numerical approaches, “true” δ-spikes cannot be
implemented in a computer. Rather, a δ-spike is implemented as a square kernel
with width dt and height 1

dt
.

4Note that this gives us another estimate of the mutual information, based on
the relation between the signal-to-noise ratio and the mutual information MI =
∫ ∞
0 log2(1+SNR(f ))df (Shannon, 1984; Cover and Thomas, 1991; Guo et al., 2005;
Schultz, 2007) and the noise signal is defined as noise = x − x̂. However, this will
give us essentially the same results, since it is based on the same estimate p̂(x = 1)
and L̂.
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where we used discretized time. We can normalize this MSE by
dividing it by the MSE of Poisson spike-trains with the same
number of spikes

MSEP =
MSEspike train

〈MSEPoisson spike train〉simulations
. (15)

This gives us a quantity that is around 1 when a spike train
performs as well as a Poisson spike train (so when there is
no information about the hidden state in the spike train) and
vanishes when the hidden state can be perfectly inferred from
the spike train (so the MSE vanishes). We can also normalize
MSEspike train by dividing it by the mean-squared error obtained
with the inputMSEI :

FMSE =
MSEspike train

MSEI
. (16)

This represents how much noise the spike process of the neuron
adds to the estimate of the hidden state: if it equals 1 the error
of the estimate based on the input has the same size as the
error based on the spike train, and the neuron transmits all the
information in the input perfectly.

2.1.2.6. Delays
The theoretical form of the input was derived using Dirac-
delta spikes (Denève, 2008a). Since an input consisting of delta
spikes cannot be used in an experimental setup, we chose to
convolve the input with exponential kernels, which mimics
cortical PSC shapes. However, since an exponential kernel rises
instantaneously, but decays slowly, this introduces a delay in the
input relative to the hidden state. On the next level, any neuron
that responds to this input will have a non-vanishing membrane
time constant, resulting in a further delay. With this reasoning,
each processing level adds a few ms delay to the representation
of the hidden state. To separate the effects due to delays and
other effects influencing the quality of the representation, we also
calculate the mutual information between the hidden state and a
shifted version of the input or spike train: we calculate the time-
value peak of the cross-correlogram between the hidden state
and the input/spike train, and shift the input/spike train by this
amount. The mutual information resulting from this calculation
will be denoted byMI∗.

2.1.3. Optimal Response Model
One of the advantages of creating an input using a hidden
Markov model is that we have a model for an optimal response:
the “Bayesian neuron” (Denève, 2008a). This model compares
the log odds ratio of the stimulus (i.e., the log-likelihood of the
hidden state being 1, see Equation 9) based on the input L with
the log odds ratio based on the output spike train G, and keeps
this difference small by spiking at appropriate times. This neuron
only spikes if the likelihood of the hidden state being 1 based on
the output spike train is lower than the likelihood of the hidden
state being 1 based on the input, thereby only transferring “new”

information and making efficient use of its output spikes:

dL

dt
= ron(1+ e−L)− roff (1+ eL)+ I(t)− θ

dG

dt
= ron(1+ e−G)− roff (1+ eG)

if L > G+ η

2
:

{

a spike is fired

G → G+ η

(17)

For a given input, the only free parameter in this model is η, the
reset and threshold condition which sets the output firing rate
of the neuron. The mutual information between a spike train
and the hidden state necessarily depends on the firing rate: if
a neuron does not spike, the mutual information vanishes. To
signal whether the hidden state switches on (or off), the neuron
needs to fire at least one spike every on (or off) state. Ideally, the
firing rate of a spike train is comparable to 1

τ
. We use parameter

η to match the firing rate of the neurons we measured and the
firing rate of the Bayesian neuron, to be able to compare the two.

2.2. Experimental Design
2.2.1. Scaling
The input defined in Section 2.1.1 is dimensionless (the weights
only give a relative contribution, scaled to how informative the
artificial neuron is about the hidden state). Input currents used
in in vitro experiments has either unit ampère A (current clamp),
volt V (voltage clamp), or siemens S (dynamic clamp). Therefore,
the dimensionless theoretical “input current” from the artificial
network has to be scaled so that it can be injected into the neuron
in a current clamp setup (so we will have to scale the input
generated by the artificial network to ampère A).

Iinjected = Ihold + IscaleIMarkov(t), (18)

where IMarkov(t) is the dimensionless “current” defined by
Equation (1). Finding Ihold and Iscale is not a trivial procedure:
how “strong” an input current is for a neuron depends on
its sensitivity to input current. This sensitivity can depend on
several neuronal properties such as its excitability (rheobase, the
steepness of the input-frequency curve), but also on the size of
the neuron and the strength of the seal of the patch clamp. Here,
we chose the following solution:

• Offset: In the current clamp measurements the membrane
potential was adjusted by a feedback system that injects current
(Ihold), so that the membrane potential stabilized to a desired
value (−65 mV) before the actual measurement was started.
From then on the value Ihold was fixed.

• Amplitude:Weused a probe input (see Section 3.1.2) to define
the amplitude with which to scale all inputs for a given neuron:
we tried factors Iscale (with a resolution of 250 pA, so 250, 500,
750, 1000, 1250 pA, etc.) to set the firing rate response of the
neuron to about 12 Hz overall (about 20 Hz when x = 1).

2.2.2. Parameters
Every parameter set {τ , p1,µq} defines an input “regime.” We
chose three “difficult” (i.e., lowMII) regimes: a “slow” (S) regime,
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with a small µq and a large τ ; a “fast” (F) regime, with a
large µq and a small τ , and a “probe” (P) regime in between
with intermediate µq and τ . The probe served to determine the
scaling of the input (previous Section 2.2.1). For comparison, we
also used a “fast switching—low amplitude” (FL) regime with
a very low information content and a “slow switching—high
amplitude” (SH) regime with a high information content. The
exact values and reasoning behind the regimes will be explained
in Section 3.1.2.

As explained in the previous Section 2.2.1, the theoretical
input generated by the artificial network needs to be scaled
in order to use it in an experimental set-up. We scaled the
inputs generated in the different regimes all with the same
factor (Equation 18). From then on the value was fixed. To
determine Iscale we used the probe (P) input, i.e., an input with
the same information content as the S and F inputs, but with an
intermediate τ : τprobe and µ : µq,probe. The mutual information
between the hidden state and a spike train naturally depends on
the firing rate. Therefore, we scale the input current so that each
neuron responds with about the same firing rate to the probe
input: about 12 Hz overall (about 20 Hz when x = 1).

The input defined in Section 2.1.1 was generated once for each
regime, and consequently used as a “frozen noise” input for the
experiments and simulations. The parameters for the generated
input are shown in Table 1. In Section 3.1.2 we will motivate
these choices. The input used in the experiments was 20 s for
the probes, and 300 s for each of the other regimes. The mutual
information was calculated on 15 consecutive windows of 20 s.
Unless mentioned otherwise, we used a sampling rate of 5,000
Hz (so a time step of dt = 0.2 ms) for both the input in the
experiments and the simulations. Due to the limited time we had
for each neuron, we measured in each neuron both the “slow”
(S) regime and the “fast” (F) regime, but only the “fast, low
amplitude” (FL) OR “slow, high amplitude” (SH) regime in the
following order: (1) F, (2) SH, (3) S or (1) S, (2) FL, (3) F. So
the switching speed was always changed first, and the amplitude
second.

We obtained valid recordings from 6 cells. We measured the
mutual information of on traces of 20 s. Since we used 300
s recordings, this means we obtained 15 measurements of the
mutual information per neuron and per regime.

2.2.3. Experiments

2.2.3.1. Animals and slice preparation
Electrophysiological experiments were performed using brain
slices from 4 to 5 week old C57/Bl6 mice (Harlan, The
Netherlands) of either sex (3 animals, 5 different slices in
total). All experiments were performed with the approval of the
committee on animal bioethics of the University of Amsterdam.
Hippocampal acute slices were prepared in ice cold (4◦C)
modified artificial cerebro spinal fluid (ACSF, in mM)—120
choline Cl, 3.5 KCl, 0.5 CaCl2, 6 MgSO4, 1.25 NaH2PO4, 10 D-
glucose, 25 NaHCO3. Animals were killed by decapitation, and
350µm thick slices were cut in the horizontal plane on a vibrating
slicer (Leica, VT1200S; Wetzlar, Germany). Slices were kept in a
perfusion chamber with ACSF (in mM)—120 NaCl, 3.5 KCl, 2.5
CaCl2, 1.3 MgSO4, 1.25 NaH2PO4, 10 Glucose, 25 NaHCO3 at

32◦C for 30 min, and then left at room temperature for at least 30
min until recordings started. For further details on the animals
and slice preparation, see Wierenga and Wadman (2003).

2.2.3.2. Electrophysiological recordings
Current-clamp recordings were made under constant
superfusion of ACSF bubbled with carbogen (95% O2/5%
CO2) at a temperature of 32◦C. We recorded neurons solely
from the pyramidal cell layer of region CA1 and identified the
pyramidal cells using differential interference contrast (DIC)
with a light source of 780 nm (Scientifica; Uckfield, UK), as
well as on the basis of their firing properties. Neurons were
recorded in whole cell current clamp configuration with the
Axopatch 200B amplifier (Axon Instruments Inc.; Forster City,
CA, USA). For these recordings we used a pipette solution with
(in mM) 131.5 K-gluconate, 8.75 KCl, 10 HEPES, 0.5 EGTA, 4
MgATP, and 0.4 NaGTP, this solution was brought to a pH of 7.3.
Glass pipettes with a resistance in the range of 2.5–4 M� were
used. Signals were low-pass filtered at 5 kHz and sampled at 25
kHz. Series resistances was compensated up to 70%. Data was
acquired with in-house MATLAB based routines (MathWorks,
2007b; Natick, MA, United States).

We compensated online for the liquid junction potential (14.5
mV), as calculated from the solutions. To determine Ihold, we
used a feedback system that stabilized the membrane potential
to−65 mV until the actual measurement was started.

3. RESULTS

In order to calculate the information transfer in single neurons
in an in vitro setup, we designed an input current defined in
Sections 2.1.1 and 2.2.1. Before we describe the results of the
current clamp experiments, we will first discuss the properties of
this input current.

3.1. Input Properties
3.1.1. Information in Input Depends on Switching

Speed and Firing Rate
The input defined by Equation (1), depends on the switching
speed of the hidden state (ron and roff) and on the firing rates
of the artificial presynaptic neurons (qion and qioff, see Figure 1).
The characteristics of the hidden state are external, i.e., they
model how “the world outside of the animal” behaves. The
characteristics of the artificial neurons model how neurons
presynaptic to the real neuron (inside the animal) respond to the
external stimulus. Both the external parameters of the “outside
world” and the modeled internal parameters of the artificial
neurons influence how much of the entropy of the hidden state
(Hxx is transferred to the spike trains received by the neuron
(mutual information in the input, MII). In Figure 2 we kept
the entropy of the hidden state constant (roff = 2ron, so the
probability of the hidden state being 1 equals p1 = 1

3 and
the entropy of the hidden state is Hxx ≈ 0.92 bits at each
moment in time). The switching speed τ of the hidden state
and the firing rates µq of the artificial presynaptic neurons
were independently varied. We calculated the fraction of the
entropy in the hidden state that gets transferred to the input
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TABLE 1 | Parameter values for the different input regimes.

Regime Symbols Abbreviations ron (Hz) roff (= 2 ron) (Hz) τ (ms) µq (Hz)

Slow • S 6.7 13.3 50 0.5

Fast N F 5ron, slow = 33.3 66.7 10 5µq,slow = 2.5

Probe � P 2.5ron, slow = 16.7 33.3 20 2.5µq, slow = 1.3

Slow, high amplitude � SH 6.7 13.3 50 2.5

Fast, low amplitude ∗ FL 33.3 66.7 10 0.5

(Equation 2). Figure 2 shows that there is a trade-off between
the switching speed of the hidden state and the firing rates of
the presynaptic neurons: if the switching speed is high (small
τ ), a high firing rate of the presynaptic neurons is needed to
represent the hidden state, whereas for lower speeds the firing
rates can be lower. This was expected: in order to represent
x, one or more of spikes are needed to signal each period
when x is in the “ON” state (i.e., a period when x = 1). A
higher switching rate implies that these “ON” periods are shorter
and more frequent. Even though the total “ON”-time might be
unchanged, there are more separate “ON” states. Therefore, if
every “ON”-state needs (at least) one output spike to be visible in
the output spike train, more spikes are needed for a fast-switching
hidden state (small τ ). Note that since the artificial presynaptic
neurons fire Poissonian spike trains, a higher overall firing rate
can be obtained by either increasing the individual firing rates of
the neurons (µq), as in Figure 2, or by increasing the number
of presynaptic neurons N5. The relationship between µq and
τ is almost inversely proportional (black line shows inversely
proportional relationship).

Even though the time constant of the hidden state (τ ) and the
firing rates of the presynaptic neurons (µq) have a similar effect
on the mutual information between the hidden state and the
input, their effects on the shape of the input are quite different:
the effect of increasing µq is to increase the amplitude of the
input (Figure 2). Alternatively, increasing τ does not increase
the amplitude, but changes the autocorrelation-time τauto (see
Supplementary Material) of the input current signal. So, with τ

andµq we can vary the input amplitude and autocorrelation-time
independently, while keeping the mutual information between
the input and the hidden state constant.

3.1.2. Input Regimes
In order to show the power of the method presented here, we
designed two inputs with the same mutual information between
the input current and the hidden state, but with a different
amplitude (µq) and time-constant (τ ) on the basis of our results
from the previous section. The results of the current clamp
experiment will be shown in Section 3.2. Here, we explain the

5If we would use delta-spikes to simulate postsynaptic current shapes these two
options are completely equivalent (as long asN is large enough, about 100 or more
neurons are needed or otherwise the realization of the firing rates and therefore
the weights w results in large variations between realizations). For all other PSC-
shapes, there could be a small effect if overlapping spikes from different neurons
are added different from overlapping spikes from the same neuron, but we will not
consider this technical issue here, since the effects are small.

design of the experiment (Figure 2 and Table 1). We chose
three “difficult” (i.e., low information content) regimes: a “slow”
(S) regime (circle •), with a low amplitude and a large τ , a
“fast” (F) regime (triangle N), with a high amplitude and a
small τ , and a “probe” (P) regime in between (square �) with
intermediate firing rates and τ . The probe served to determine
the scaling of the input current (Section 2.2.1). For comparison,
we also used a “fast switching—low amplitude” (FL) regime with
a very low information content (star ∗) and a “slow switching—
high amplitude” (SH) regime with a high information content
(diamond �).

As explained in Section 2.2.1, the theoretical input generated
by the artificial network needs to be scaled in order to use it in
an experimental set-up. We scaled the inputs from the different
regimes all with the same factor (Equation 18). This factor was
determined once for each neuron, from then on the value was
fixed. To determine Iscale we used the probe (P) input defined
before, i.e., an input with the same information content as the
S and F inputs, but with an intermediate τprobe and µq,probe. As
argued before, the mutual information between the hidden state
and a spike train naturally depends on the firing rate. Therefore,
we scale the input current so that each neuron responds with
about the same firing rate to the probe input: about 12 Hz overall
(about 20 Hz when x = 1).

3.2. Experimental Results
3.2.1. Representation of the Hidden State by a Single

Neuron

3.2.1.1. Neurons perform a non-linear operation on their

input
In the previous section, we explained the rationale behind
the experiments. In Figure 3 we show the distributions of
the injected input current (left) and the resulting membrane
potential (right) of one example neuron (denoted with + in
Figure 5). The input current distributions of both the S (blue),
and the FL (pink) regimes were identical, as expected. There
was a small difference between both F regimes (red) and the SH
(green) regime, because in the F regime the “ON” state (x = 1)
and “OFF” state (x = 0) are blurred by the exponential shape
of the artificial EPSCs (Section 2.1.1). The resulting membrane
potential distributions (Figure 3, right) are unimodal for both
the S and the FL regimes, as expected. However, in the SH
regime the (output) membrane potential distribution (green) is
bimodal, whereas the (input) current distribution is unimodal
for this regime (this effect was found for all cells for which we
measured the SH regime). This means that the neuron performs

Frontiers in Computational Neuroscience | www.frontiersin.org 8 June 2017 | Volume 11 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zeldenrust et al. Information Transfer in Single Neurons

FIGURE 2 | The mutual information between the hidden state and the input

generated by a network of N = 1, 000 artificial neurons as a fraction of the

entropy in the hidden state (top). This fraction of transferred information

depends both on the firing rate of the neurons in the network (µq) and on the

switching speed (time constant τ ) of the hidden state: if the hidden state

switches faster, more spikes (i.e., higher firing rate or more neurons) are

needed to reliably represent the hidden state in the input. For the experiments

we chose three “difficult” (i.e., low information content) regimes: a “slow”

regime (circle), with a low firing rate and a large τ , a “fast” regime (triangle),

with a high firing rate and a small τ and a “probe” regime in between (square)

with intermediate firing rates and τ , to determine the scaling of the input. For

comparison, we also used a “fast switching—low amplitude” regime with a

very low information content (star, example shown in Supplementary Material)

and a “slow switching—high amplitude” regime with a high information content

(diamond, example shown in Supplementary Material). NB Note that even

though theoretically MI ≥ 0, due to our approximation M̂I can take small

negative values. However, these effects are negligable (smallest value in this

figure is M̂I = −0.0011).

a non-linear operation on the input current; with a linear
transformation, the shape of the distribution would stay identical.
Moreover, the distributions of the membrane potentials in both F
regimes (red, full and dotted line) are not identical. This could
be due to neural adaptation to the input or to non-stationary
experimental conditions (for instance resistance of the seal with
the pipette).

3.2.1.2. Neurons transmit information about the hidden state
In Figure 4 we show the hidden state and the different estimates
of the hidden state (Equation 13), in the S (Figure 4A) and F
(Figure 4B) regime, for a single hippocampal (CA1) pyramidal
cell (depicted with 2 in Figure 5). Note that in both regimes,
spikes occur mostly in when x = 1, even if there is not a spike
every time. In Figure 4C we calculated the MSE between the
hidden state and the estimated hidden state, based on the spike
times of the recorded neuron and normalized by a Poisson spike
train of the same rate (MSEP, Equation 15). Note that the values
in both the slow and fast regime are smaller than but not far
from 1, meaning that the estimate is not much better than that
of a Poisson process. The neuron performs slightly better in the
slow regime: the difference in mean-squared error is small but
significant (slowMSEP = 0.83 ± 0.03, fastMSEP = 0.92 ± 0.01,
Student’s t-test on difference p = 1.2 · 10−7). In Figure 4D it
can be seen that the ratio between the MSE based on the spike
train and the MSE based on the the input (Equation 16) is close
to 1 (but significantly different; slow FMSE = 1.26 ± 0.05,
Student’s t-test on difference between 1: p = 5.8 · 10−12, fast
FMSE = 1.16 ± 0.02, Student’s t-test on difference between 1:
p = 5.3 · 10−13). So even though the neuron does not perform
much better than a Poisson process (Figure 4C), there is not
much information loss between the input and the output spike
train. The low mutual information between the spike train and
the hidden state is a result of the low information content of
the input. Indeed, in Figures 4E,F it is shown that the spike
train transmits about 40–50% of the information in the input
(Equation 3).

Even though the firing rate in the F regime is much higher
than that of the S regime, the difference in output-information
between the S and the F regime is very small [but significant:
(Figure 4E) slow FI = 0.45 ± 0.05, fast FI = 0.37 ± 0.04,
Student’s t-test on difference p = 1.2 · 10−4, (Figure 4F) slow
FIshifted = 0.48± 0.06, fast FIshifted = 0.39± 0.04, Student’s t-test
on difference p = 0.0012]. This means that the recorded neuron
represent the hidden state states equally well in both regimes, but
it is less efficient in the F state: it needs more spikes to transfer the
same amount of information. As explained before (Section 3.1.1),
more spikes are needed to represent a fast-switching hidden state.
The result that the recorded neuron indeed increases its firing
rate in the F regime relative to the S regime and the transferred
information stays the same in both regimes suggests that the
neuron “adapts” to the different regimes to keep the transferred
information constant.

In Figure 5A we show the FI against the firing rate (same as
in Figure 4E) for all recorded neurons. Different symbols denote
different cells, whereas different colors denote the different
regimes. The fraction of information about the hidden state
in the input that is transmitted into the output spike train,
depends on the amount of information in the input: in the
very informative regime (SH, green), about 50–60% of the
information in the input is transferred to the spike train,
whereas in the low informative regime (FL, pink) only about
10% of the information is transmitted. In the intermediate
S (blue), F (red), and P (black) regimes, the transmitted
information is comparable and between these two extremes.
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FIGURE 3 | Distributions of the input current (left) and output membrane potential (right), for a one of the recorded cells (depicted with symbol + in Figure 5). The

experiment was performed in the following order of regimes: fast (red), slow, high amplitude (green), slow (blue), slow (blue, dotted), fast, low amplitude (pink), fast

(red, dotted).

The “adaptation” (the neuron transmits as much information
in the S or F regime, but with different firing rates) seen in
Figure 4 can be seen in 4 (◦,⋄,2,+) out of 6 neurons. The
other two neurons (×,△) show a very low response in the slow
state.

The firing rate of the neurons depends strongly on the
amplitude of the input µq: in the SH (green) and F (red) regime,
that used the same value for µq (Table 1), the neurons show
similar firing rates of around 15 Hz (except for a single neuron
denoted with ⋄). In the SH (pink) and S (blue) regime, which also
used the same value forµq (Table 1), the neurons show low firing
rates, with the firing rates of the FL regime, which has very little
information about the hidden state in the input, having a lower
artificial network firing rate. So the firing rates of the neurons
increase with both the amplitude of the input and the amount of
information.

3.2.2. Comparison to an Optimal Response Model
Finally, we compared the responses of the recorded neurons to a
model of the optimal response for this input (Denève, 2008a; see
Section 2.1.3). The parameters of this “Bayesian Neuron” (BN)
are determined by the parameters of the input (i.e., ron, roff, and
θ), except for parameter η, which determines the firing rate of the
model neuron (changing η has a similar effect as changing the
reset value and threshold in a leaky integrate-and-fire model).

In Figure 5B, we show how the BN performs in a simulation
where we used the same input as we used in the experiments, for
different values of η. Overall, the BN performs somewhat better
than the recorded neurons, as can be expected from an optimal
response model. However, as in the in vitro experiments, the BN
increases its firing rate in the F state relative to the S state to keep
fraction of transferred information relatively constant [compare
for instance the F (red) and the S (blue) regime for η = 3.5,
denoted with △].

In both the experiments and the simulations, the S and SH
regimes seem to form a single curve, as do the F and FL regimes.
In the Bayesian neuron this makes sense: the switching speed of
the hidden state τ is a parameter of the model, the amplitude of
the input µq is not. So the BN has the same parameters in the S
and SH regimes, and the same is true for the F and FL regimes.
The observation that these regimes also form a single curve in
the experiments, suggest that the recorded neurons also adapt
their response properties to the input statistics. The recorded and
simulated neurons all transmit less information for a given firing
frequency in the F and FL regimes than in the S and SH regimes,
because in the F and FL regimes, more spikes are needed because
more spikes are needed to represent a fast-switching hidden state.

For a quantitative comparison between the experiments and
the BN, we fitted a saturating function to both slow states (green
and blue, fits represented by blue lines) and both fast states (red
and pink, fit represented by red lines) to the data from both the
experiments and the model:

FI = 2fsat

(

1

1+ e−νsatr
− 1

2

)

, (19)

where r is the firing rate, fsat is the saturation value and νsat
the saturation rate (in s). Since the BN is an ideal observer
model, we expect that the BN transmits more information than
the experimentally measured neurons: we expect the saturation
value fsat to be higher, which is indeed what we find (Figure 5C).
The closer the experimentally obtained fsat is to the values from
the model, the more “optimal” the information transfer of the
hippocampal pyramidal cells.

Finally, for both the S and SH curve and the F and FL
curve (Figure 5, right), there seems to be an optimal value for
parameter η of the BN. This means that the BN appears to have
an optimal firing rate: for too low firing rates (larger η) the
neuron will miss some periods when x = 1, whereas for too

Frontiers in Computational Neuroscience | www.frontiersin.org 10 June 2017 | Volume 11 | Article 49

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zeldenrust et al. Information Transfer in Single Neurons

FIGURE 4 | Representation of the hidden state by a single hippocampal pyramidal neuron (depicted with 2 in Figure 5). The neuron responds to the input by spiking

mostly when x = 1 in both the slow (A) and the fast (B) regime. The hidden state (black line) can be estimated from the input (red and yellow line) and from the output

spike train (green and purple line), using a correction for the exponential kernel (yellow and green lines, section 2.1.2.6) or not (red and purple lines). In (C) the MSEP
(MSE normalized by a Poisson spike train, Equation 15) is shown as a function of the overall firing rate, and in (D) the FMSE (MSE of the spike train normalized by the

MSE of the input, Equation 16). In (E,F), we show the mutual information between the spike train and the hidden state normalized by the mutual information in the

input, corrected for the exponential kernel (F) or not (E).

high firing rates (smaller η) the neuron will also spike when
x = 0, making the neuron less informative. This effect is stronger
for the fast regimes than for the slow regimes. For all regimes
investigated here, this optimal firing rate appears to be around 40
Hz (Figure 5B). In the experiments, we scaled the input current
to set the firing rate response of the recorded neuron to the probe
stimulus to about 12 Hz overall (about 20 Hz when x = 1), so
this “optimal” firing rate of 40 Hz was never reached. Whether
this 40 Hz is optimal for the recorded neurons too, remains to
be investigated (see Grienberger et al., 2017 for natural firing
regimes for hippocampal neurons).

4. DISCUSSION

An important task of the brain is to infer information about
the outside world. Except for sensory receptors, neurons in the
brain do not have direct access to sources in the outside world,
but have to infer the state of the world from input generated by
other neurons. This input from other neurons is often unreliable
and noisy (Knill and Richards, 1996; Körding and Wolpert,

2004). Therefore, neurons need enough input samples to keep
a reliable estimate. The number of samples can be increased
by either increasing the number of presynaptic neurons, or by
integrating information over a longer period of time. Which one
is feasible or appropriate depends on the characteristics of the
local network (How many presynaptic neurons are available?
With what frequency do they fire? How informative are they?)
and on the characteristics of the outside world itself (How fast
does a stimulus change?). Here, we modeled this by creating a
current input for a single neuron that has to infer the presence
or absence of a hidden state on the basis of noisy Poisson spike-
trains of presynaptic neurons. Like in the general case, there is
a trade-off between being fast, in which case many sources (pre-
synaptic neurons) are needed, and being precise, in which case a
longer integration time is needed, especially if there are not many
presynaptic neurons. We propose to use the current stimulus
designed here to measure in an in vitro setup how single neurons
transfer information about a time varying stimulus.

We propose a newmethod to measure howmuch information
a single neuron transfers from the (current) input it receives
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A B

C D

FIGURE 5 | (A) Representation of the hidden state by 6 hippocampal pyramidal neurons (8 measurements). The figure shows the mutual information between the

spike train and the hidden state normalized by the mutual information in the input, for 6 different hippocampal pyramidal neurons (depicted with symbols

◦, ⋄,2,×,+,△), in different regimes (blue: slow, red: fast, green: slow, high amplitude, pink: fast, low amplitude, black: probe). Solid lines: fit with saturating function

(Equation 19). NB Note that even though theoretically MII ≥ 0 and MIspike train ≥ 0, due to our approximation M̂I can take small negative values, and therefore so can

FI. However, these effects are negligable (they only occur when both MII and MIspike train are very small due to vanishing firing rates, which makes FI ≈ 0
0 ).

(B) Representation of the hidden state by the Bayesian neuron (Section 2.1.3) for different values of the threshold/reset parameter η. The inset shows the same

frequency range as in the experiments. Solid lines are fits using all data, dashed lines (“BN, limited”) are fits limited to values for η ≥ 2 (slow) or η ≥ 3 (fast). (C) Fitted

parameters of saturating function (Equation 19) to data. Error bars denote 95 % confidence intervals of the fit.

to the output spike train it generates. This method is based
on generating current input as the response of an artificial
population of presynaptic neurons responding to a stimulus
randomly switching on and off, and measuring how well this
hidden state can be constructed from the output spike train. This
gives a lower bound on themutual information between the spike
train (Lochmann and Denève, 2008). This method has several
advantages: (1) trials do not have to be repeated, since no estimate
of the trial-to-trial variability is needed; (2) since no decoding
model needs to be fitted, all recorded data can be used to measure
the quantities of interest; (3) for comparison, the properties of
an optimal response can be computed easily with the help of the
Bayesian neuron (Denève, 2008a); (4) as the method is designed
for an in vitro setup, stimuli are not limited to sensory stimuli,
and neurons outside the sensory systems can be analyzed; (5)
since we explicitly control how much information is present in
the input, the information loss at the spike generating process
itself can be measured; (6) experimental parameters, such as the
“time constant of the world” and the number of available sources
as discussed above can be systematically varied.

Like any method, the method presented here has several
limitations and assumptions. We will discuss these explicitly.

Firstly, three assumptions concern generating the input current
for the experiments: (1) neurons respond to a randomly
appearing and disappearing “preferred stimulus” that (2) they
have no access to, and (3) synapses from informative presynaptic
neurons are stronger than synapses from non-informative
presynaptic neurons. The first two assumptions are comparable
to the assumptions that are implicitly made when estimating
tuning curves, for instance by fitting filter models such as a
Linear–Non-linear Poisson model (Chichilnisky, 2001): in both
cases it is assumed that a neuron responds only to the absence
or presence (so no history or reverberation effects) of a preferred
stimulus feature that it does not have direct access to. However,
in the case of filter models, the presence of the preferred stimulus
is graded: a preferred stimulus can be “more” or “less” present
(i.e., the stimulus can be more or less similar to the preferred
stimulus). Here, the stimulus is binary: it is either present or not.
Which one is more realistic probably depends on the system in
question. Whether the third assumption is realistic depends on
the learning rule that was used by the system. Denève (2008b)
showed that there exist indeed unsupervised, local, spike-based
learning rules by which these synapse strengths could be learned.
Secondly, the method requires two additional assumptions for
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the output spike trains: (1) an ergodic argument: it is assumed
that an average over samples can be replaced by an average over
time and (2) it is assumed that spike trains are by approximation
Poissonian. The first assumption means that if in an experiment
the system is not stationary during the time window for
which the mutual information is calculated, the approximation
fails. However, such an argument is necessary for almost any
experimental measurement. Concerning the second assumption:
the estimate of the mutual information is not strongly sensitive to
how “Poissonian” the output spike train is, but strong deviations
from Poissonian statistics will make the estimate fail. Finally, the
fact that we used somatic patch-clamp stimulation, means that
we ignored most of the computations that happen in dendritic
trees, something that has proven to be substantial in hippocampal
pyramidal cells (Spruston, 2008) and that could be essential for
the integration of (correlated) inputs (Ujfalussy et al., 2015).
This could be partly overcome by using bipolar electrodes and
stimulate dendritically, for instance to evoke dendritic calcium
spikes. However, the complex spatial distribution of dendritic
inputs will be difficult to assess experimentally, although it could
be investigated in a biophysical model. Another difference with
the natural situation is that normally synaptic input creates
conductance fluctuations, which have different (more complex)
dynamics than the current injections we used in our model and
experiments. For the moment we assume that this difference only
creates second order differences.

We designed different input currents with the same amount of
information about the hidden state, but with different switching
speeds and firing rates (which are realistic for hippocampal
neurons, see Grienberger et al., 2017), and injected these into
the somata of pyramidal neurons in the CA1 region of mouse
hippocampus. We found that the amount of information in the
recorded spike trains depended strongly on the firing rate of the
neuron: spike trains with more spikes were more informative
about the hidden state than spike trains with fewer spikes.
However, this effect saturated at around 15 Hz. The slope
of the relationship between the firing rate and the mutual
information depended on the switching speed of the hidden
state: slowly changing inputs were easier to represent, hence
contained more information for a given firing rate. However,
the neurons responded to two inputs that contained comparable
amounts of information about the hidden state, but had different
characteristics (a “slow” input with a low amplitude and a “fast”
input with a high amplitude) with different firing rates, but
kept the amount of information in the recorded output spike
trains constant, thereby “adapting6” to the characteristics of
the stimulus. Strikingly, how much of the information about
the hidden state in the input is transferred to the output
spike train depended on how informative the input was in the
first place: if the input was not very informative, not much
information is transferred, whereas a much larger fraction of
information about an informative input is transmitted to the
output spike train, an effect that is also present in the optimal
response of the Bayesian neuron, suggesting that biological

6The word “adapting” is between quotation marks, since it is possible that this
effect is caused by non-linear but instantaneous processes in the neuron and not
by an active adaptive process, compare for instance to Hong et al. (2008).

neurons approximate an optimal inference process. So the spike-
generating process of the recorded neurons has an amplifying
effect on information transfer: it reduces the information about
a low-informative input stronger than the information about
a high-informative input (as explained in the Supplementary
Material, the same holds for the relative signal-to-noise ratio:
FS = SNRoutput/SNRinput: the FS in response to an input with
a low SNR is lower than the FS in response to an input with a
high SNR).

The probability density functions of the membrane potential
and the input current values show that that the input-current-
to-membrane-potential transformation is strongly non-linear
and could therefore not be described by for instance a simple
leaky integrate-and-fire neuron. The strongly bimodal shape
of the membrane potential distribution (as opposed to the
input current distribution) can for instance be a result of a
saturating (sigmoidal) input-output relation. From this non-
linear processing and the amplifying effect on information
transfer together we conclude that the neurons we recorded
cannot have a simple linear input-output relation, but perform
complex transformations on their input. In agreement with this
conclusion, Ujfalussy et al. (2015) recently also suggested that the
neural computation from presynaptic spikes to the postsynaptic
membrane potential should be non-linear for optimal stimulus
integration. How such non-linear input-output relationships
shape the information processing properties of neurons and how
they respond to stimuli with different characteristics (see also
Stemmler and Koch, 1999; Brenner et al., 2000; Hong et al., 2008)
remains an important topic that needs to be investigated further.

The mutual information between the position of an animal
and the spike trains of rat hippocampal CA1 pyramidal cells
has been quantified by Barbieri et al. (2004), who also used
an estimate of the posterior probability to estimate the mutual
information. They concluded that the hippocampal place cells
contain a significant amount of information about the location
of the animal. However, how much information was present in
previous processing layers, and how much information is lost
or maintained by these neurons, was not specified. Here, we
quantified the information loss of the spike generating process,
i.e., the mutual information between the cellular input and the
output spike train. In barrel cortex, this information transfer
has been quantified, and several studies have shown that spike
generation can result in significant information loss (Panzeri
et al., 2001; Petersen et al., 2002; Alenda et al., 2010), similar to
what has been shown here. In hippocampus, what information
is encoded in the spike trains has been described extensively
since the discovery of place cells (O’Keefe and Dostrovsky,
1971). Moreover, how this information is encoded in the spike
trains has been suggested to depend on the theta/gamma
phase precession (Lisman, 2005). Finally, it has been shown
that the nature of this information transfer (for instance the
shape of place cell receptive fields) can change significantly,
depending on for instance the age of the animal (Tanila et al.,
1997). However, how much information is transferred by these
cells, and how that depends on parameters such as the input
characteristics, the state of the network (such as “up” or
“down” states or the “high conductance state”; Destexhe et al.,
2003) or the presence of neuromodulators such as dopamine
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or acetylcholine (ACh) remains to be quantified. Here, we
provide a method to easily measure information transfer or
information loss in hippocampus or any other system in an in
vitro setup.
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