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ABSTRACT Flavonoids are a group of polyphenolic dietary compounds found in
many different plant-based foods. There is increasing evidence that higher flavonoid
intake may be causally linked to a reduced risk of cardiovascular disease and other
chronic diseases. The bioactivity and bioavailability of many dietary flavonoids can
be influenced by gastrointestinal microbiome metabolism. However, the role that
habitual flavonoid intake plays in shaping the human gut microbiome is poorly un-
derstood. We describe an application of an ecosystem-based analytic approach to
nutritional, microbiome, and questionnaire data from a cohort of more than 240
generally healthy adult males to assess the role of dietary flavonoid compounds in
driving patterns of microbial community assembly. We identified six subclass-specific
microbial communities (SMCs) uniquely and independently associated with intakes
of the six flavonoid subclasses. Eggerthela lenta was positively associated with in-
takes of flavonol and flavanone, and Adlercreutzia equolifaciens was positively associ-
ated with intakes of flavonols and flavanol monomers. In contrast, for nearly all
flavonoid subclasses, Flavonifractor plautii was inversely associated with subclass
consumption. Consuming tea at least once per week explained 10.4% of the to-
tal variance in assembly of the 20 species comprising the flavanol monomer
SMC. The novel methodology employed, necessitated by multidimensional micro-
biome data that consist of nonindependent features that exhibit a wide range of
distributions and mean values, addresses a major challenge in our ability to un-
derstand associations of the microbiome in a wide range of clinical and epidemi-
ologic settings.

IMPORTANCE Dietary flavonoids, which have been implicated in lowering chronic
disease risk and improving blood pressure, represent a diverse group of polypheno-
lic compounds found in many commonly consumed foods such as tea, red wine, ap-
ples, and berries. The bioactivity and bioavailability of more dietary flavonoids can
be influenced by gastrointestinal microbiome metabolism. With demonstrated prebi-
otic and antimicrobial effects in in vitro and in animal models, it is surprising that there
are not many human studies investigating the role dietary flavonoids play in shaping
the gastrointestinal microbiome. Our analysis revealed patterns of community assembly
that uniquely and independently characterize an individual’s exposure to various fla-
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vonoid compounds. Furthermore, this study confirmed, independent from effects of
other dietary and lifestyle factors included in the multivariate-adjusted model, that fla-
vonoid intake is associated with microbial community assembly.

KEYWORDS diet, flavonoid, microbiome

Flavonoids are a group of structurally diverse, water-soluble, polyphenolic, plant-
derived compounds found in nutritionally diverse foods, including apples, berries,

tea, citrus, and red wine (1–3). There is increasing evidence that higher flavonoid intake
may be causally linked to a reduced risk of cardiovascular disease and other chronic
diseases. These benefits appear to result from improvements in nitric oxide homeosta-
sis and endothelial function and reductions in platelet aggregation and oxidative stress
(4–19). The ubiquity of flavonoids and their metabolites in the food supply worldwide
makes them an important candidate for population-level prevention of chronic disease.
It has long speculated that microbial metabolism might be a major contributor to the
overall metabolism of dietary flavonoids (20–26).

The mechanisms underpinning microbial metabolism of dietary flavonoids and their
absorption by the host are well defined (26). However, the role that habitual flavonoid
intake plays in shaping the human gut microbiome, and by extension, on microbiome-
mediated nutritional and physiological impacts, is poorly understood. Elucidating the
interplay between dietary flavonoids and gut microbiology is essential if their role in
mitigating risks for pathologies, including cardiovascular disease, diabetes, cognitive
function, and cancer (4–10, 27, 28), is to be exploited effectively.

We aimed to identify the relationships between the patterns of consumption of
specific flavonoid subclasses and the composition of the human gut microbiome.
Specifically, we set out to test the hypothesis that there is significant divergence in the
gut microbiome characteristics of habitual high and low flavonoid consumers, includ-
ing in the representation of flavonoid-metabolizing taxa.

The potential complexity of interactions between dietary flavonoids and the human
gut microbiota presents a major analytical challenge when testing this hypothesis.
Derivations of the conserved 2-phenylchroman nucleus flavonoid structure give rise to
more than 4,000 different flavonoid compounds, grouped into six different flavonoid
subclasses, and each with unique chemical and physiological properties (2). When
combined with the phylogenetic and functional diversity of the human gut microbiota,
the potential complexity of interactions involving gut microbes, flavonoids, and their
derivative metabolites, is vast. This complexity is compounded by the capacity of
flavonoids to promote or suppress bacterial growth (23–25, 29–31).

Multidimensional microbiome data sets are characterized by variables that are
neither biologically nor numerically independent and that exhibit a wide range of
distributions and mean values. Analyses of diet-microbiome associations are based on
the biological hypothesis that dietary intake has a profound influence on microbiome
composition (32, 33). In order for statistical models to reflect this hypothesis, dietary
variables need to represent the independent variable, and the numerous microbiome
variables need to represent the dependent variable matrix. In nutritional epidemiology,
diet association studies are plagued by a multitude of potential diet, lifestyle, and
environmental factors that may influence observed population-level associations (34).
To combine the many nuances associated with nutritional epidemiology analyses with
the biological complexities underpinning ecological analyses, we used novel imple-
mentations of statistical methods developed and validated previously (35), combined
with structural equation modeling and regression-based analyses, to identify and interro-
gate subclass-specific microbial communities (SMCs).

We describe an application of this approach to nutritional, microbiome, and vali-
dated questionnaire data from a cohort of generally healthy adult males to describe the
role of dietary flavonoid compounds (and their main dietary sources in the habitual
diet) in driving patterns of microbial community assembly.
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RESULTS AND DISCUSSION
Cohort characteristics. The characteristics of the study population are presented in

Table 1. The mean � standard deviation total-flavonoid intake was 460 � 303 mg/day,
with the highest tertile of high total-flavonoid consumers having more than threefold-
greater mean total-flavonoid intake than low total-flavonoid consumers. This biologi-
cally substantial difference of 570 mg/day equates to nearly three cups of black tea,
nine medium sized oranges, or nearly five glasses of red wine (36, 37). High total-
flavonoid consumers were more likely to have their samples collected in winter and be
of healthy weight (as defined as having a body mass index of �25 kg/m2). The cohort

TABLE 1 Baseline cohort characteristics stratified by total-flavonoid consumption tertiles

Characteristic

Parameter valuea

Low flavonoid
intake
(<300 mg/day)

Moderate flavonoid
intake
(300 to <505 mg/day)

High flavonoid
intake
(>505 mg/day)

No. of participants 83 81 83
Total flavonoid intake (mg/day) 206 � 64 394 � 61 779 � 309
Alpha diversity (Shannon H’ index) 3.9 � 0.2 3.9 � 0.3 3.9 � 0.3

Sample details and demographics
Bristol scoreb

Type 1-2 (%) 17 12 13
Type 3-4 (%) 69 72 69
Type 5-7 (%) 14 16 18

Season of sample collection
Summer (%) 11 14 10
Autumn (%) 11 17 18
Winter (%) 37 25 49
Spring (%) 41 44 23

Sample collected in the morning (%) 82 83 86
Geographical location

West (%) 30 28 22
Midwest (%) 22 26 24
South (%) 31 30 30
Northeast (%) 17 16 24

Characteristics and medications
Age (yr) 71 � 4 71 � 4 71 � 5
Physical activity (METsc) 112 � 62 113 � 51 134 � 56
Body mass indexd

Normal wt (%) 49 47 59
Overweight (%) 36 44 31
Obese (%) 14 9 10

Antibiotics (%)e 27 30 23
Acid-lowering medications (%)f 24 17 18

Dietary intake (mean � SD)
Caloric intake (kcal/day) 1895 � 513 2151 � 590 2464 � 562
Protein intake (g/day)g 84 � 14 83 � 15 81 � 14
Fat intake (g/day)g 76 � 13 75 � 13 72 � 14

Saturated fat (g/day)g 24 � 5 22 � 5 21 � 6
Trans fat (g/day)g 2.2 � 0.6 2.0 � 0.6 1.8 � 0.5
Monounsaturated fat (g/day)g 29 � 6 30 � 8 28 � 7
Polyunsaturated fat (g/day)g 16 � 4 16 � 4 17 � 5

Carbohydrate intake (g/day)g 224 � 33 229 � 36 241 � 38
Alcohol intake (g/day)g 16 � 18 18 � 18 20 � 20
Fiber intake (g/day)g 23 � 6 25 � 6 28 � 7
Yogurt intake (servings/wk) 1.6 � 2.1 2.5 � 2.5 3.3 � 3.5

aResults are percentages or means � standard deviations (SDs), where appropriate. A total of 247 participants were examined in this study.
bAs defined by the Bristol stool chart.
cMETs, metabolic equivalents.
dBody mass index (BMI) cutoffs: normal weight (�25 mg/kg2), overweight (25 to �30 mg/kg2), obese (�30 mg/kg2).
eUse of antibiotics reported in the preceding 12 months.
fUse of proton pump inhibitors and/or H2 receptor antagonists reported in the preceding 2 months.
gValues are energy adjusted.
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consisted of only four current smokers, two from the low total-flavonoid consuming
group, and two from the moderate consumers. There was no difference in fecal
microbial alpha diversity across the different levels of total-flavonoid intake.

Similar to non-U.S. countries (38–40), the flavanol polymer and monomer classes
made the greatest contributions to total-flavonoid intake in this cohort, contributing
62% and 12%, respectively (Table 2). Despite the fact that the study population was a
U.S. population, the foods contributing most to flavonoid intake are common features
of many dietary patterns (41, 42).

Composition of the subclass-specific microbial communities. We first sought to
identify subclass-specific communities (SMCs) in order to summarize the species that
were differentially more, and less, prevalent in high flavonoid subclass consumers. For
all flavonoid subclasses, the greatest degree of discrimination between low and high
subclass consumers was observed along eigenvector 1 of the canonical discriminant
models, and thus, the eigenvector 1 canonical discriminant coefficients were used to
determine which microorganisms comprise SMC scores. This ecosystem-based analysis
identified six communities of bacteria, one for each flavonoid subclass.

TABLE 2 Structure and intake of flavonoid subclasses and the major whole-food contributors in this cohort

Flavonoid subclass
Subclass intake
(mg/day)a Characterizing structure

Major food
source

Contribution to
subclass intake (%)

Flavonols 26 � 14

Onion 23.0
Tea 12.7
Apple 9.4

Flavanol monomers 57 � 55

Tea 41.5
Blueberry 16.6
Red wine 10.3

Flavanol polymers 283 � 207
Polymeric compounds Tea 28.1

Apple 15.8
Blueberry 11.4

Flavanones 38 � 36

Orangesb 83.5
Grapefruitb 8.3
Red wine 3.8

Flavones 3.7 � 2.9

Orangesb 29.6
Red wine 23.2
Vegetable juice 18.6

Anthocyanidins 52 � 46

Blueberry 63.1
Strawberry 12.1
Apple 9.2

aResults are means � standard deviations (SDs). There were a total of 247 participants in this study.
bIncludes both juice and the whole fruit.
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The Lachnospiraceae (NCBI taxonomy identifier NCBI:txid186803), Prevotellaceae
(NCBI:txid171552), Coriobacteriaceae (NCBI:txid84107), and Bacteroidaceae (NCBI:txid815)
families were the most bacterial common families to be identified, representing 20%, 10%,
10%, and 9%, respectively, of inclusions into individual SMC scores.

Members of the Bacteriodaceae family made predominantly inverse contributions to
subclass-specific microbiome communities. Antimicrobial effects of flavonoids on Bac-
teriodaceae have been observed in chicks and broilers (43, 44), and tea polyphenols
have been reported to reduce the abundance of Bacteriodaceae in the fecal samples of
swine (45). In vitro, tea flavonoids and their metabolites have been shown to inhibit the
growth of bacteria belonging to the Bacteroides genus (46). Together, these results
suggest that this broad antimicrobial effect of flavonoids on Bacteriodaceae is less likely
to be linked to specific enzymes, and more likely to occur as a result of broadly conserved
structural features in the Bacteriodaceae family.

Of the 73 species identified for inclusion into the SMC scores, 56% (n � 41) repre-
sented species that were unique to just one flavonoid subclass, with anthocyanidins
having the most nonshared species (Table 3). Anthocyanidins are differentiated from all
other flavonoid subclasses by being the only flavonoid subclass to exist naturally in
ionic form.

The species identified in each SMC are phylogenetically diverse (Table 3). This is to
be expected given that the compounds comprising each flavonoid subclass also have
diverse structures, and there are numerous factors dictating how compounds elicit
antimicrobial effects. In agreement with our data, a comprehensive review of the
BRENDA (47) database (see Table S1 in the supplemental material) reveals that there is
great phylogenetic diversity in the microorganisms reported as being capable of
flavonoid metabolism. As is the case for flavonoid-microbe literature, the BRENDA
database does not provide a comprehensive summary of all bacteria involved in
flavonoid metabolism, but rather, it is useful in indicating the diversity of ways in which
bacteria metabolize flavonoids. For example, we identified Bifidobacterium adolescentis
(NCBI:txid1680) was inversely discriminatory for flavonol intake (Table 3, panel a). The
BRENDA database identifies B. adolescentis as a flavanol monomer metabolizer by
acting upon sucrose and (�)-catechin to produce D-fructose, (�)-catechin 3=-O-alpha-
D-glucoside, and (�)-catechin 3=,5-O-alpha-D-diglucoside. B. adolescentis catalyzes a
similar reaction involving (�)-epicatechin to produce (�)-epicatechin 3=-O-alpha-D-
glucoside, (�)-epicatechin 5-O-alpha-D-glucoside, and (�)-epicatechin 3=,5-O-alpha-D-
diglucoside (47). The precise mechanism by which flavonol compounds interact with B.
adolescentis, both enzymatically and structurally, remains unclear.

Eggerthella lenta (NCBI:txid84112) was positively associated with higher intakes of
both flavonols and flavanones. Red wine is a major contributor to flavanone intake in
this cohort and is also a good source of dietary flavonols. A randomized controlled trial,
also in healthy adult men, found that supplementation with red wine increased the
fecal content of E. lenta compared to placebo, independent of its alcohol content, and
was positively associated with the concentration of red wine metabolites in the urine
(48).

Eggerthella lenta is a flavonoid-metabolizing species (49, 50), strains of which are
capable of reductively cleaving the heterocyclic C-ring that is characteristic of flavonoid
compounds (51). For example, E. lenta rK3 cleaved the heterocyclic C-ring of both
(�)-epicatechin and (�)-catechin, giving rise to 1-(3,4-dihydroxy-phenyl)-3-(2,4,6-
trihydroxyphenyl)propan-2-ol. This effect does not appear to be strain specific, but
rather a feature of E. lenta in general (52). Furthermore, E. lenta JCM 9979 has been
showntoconvert(�)-epigallocatechininto1-(3,4,5-trihydroxyphenyl)-3-(2,4,6-trihydroxy-
phenyl) propan-2-ol (53). Even though the literature shows mechanisms for E. lenta in
the context of flavanol monomers, it is reasonable to draw the conclusion that this
species is capable of metabolizing flavonoid compounds more broadly.

Conversely, we have direct evidence for other identified species where the literature
has investigated the exact subclass species pairs we observed. For example, we found
that Adlercreutzia equolifaciens (NCBI:txid 446660) was a positive discriminator for both
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TABLE 3 Species composition of subclass-specific microbiome profile scores and their relation with subclass intakea

(Continued on next page)
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flavonol and flavanol monomer intake, meaning that A. equolifaciens is present in
greater abundance in high, compared to low, consumers of flavonols and flavanol
monomers. A. equolifaciens has been shown to metabolize flavanol monomers (49) by
catalyzing cleavage of the central C-ring, and then dehydroxylated the 4’ carbon of the
resultant metabolite’s B-ring (50, 53–55). Although traditionally thought of as an
isoflavone-metabolizing bacterium, more-recent data have demonstrated the capacity
of A. equolifaciens to metabolize nonisoflavone compounds (50), further reinforcing the
concept that activities of flavonoid-metabolizing bacteria are often not constrained to
one single flavonoid subclass.

Inverse discriminators are considered to be species that, when considered a part of
a community, are present in smaller relative abundance in high, compared to low,
flavonoid subclass consumers. Flavonifractor plautii (NCBI:txid292800) was an inverse
discriminator in the microbiome communities for five of the six flavonoid subclasses:
flavanol monomers, flavanol polymers, flavanones, flavones, and anthocyanidins. F.
plautii has been shown to metabolize many flavonoid compounds from a variety of

TABLE 3 (Continued)

aPanel a shows species composition of flavonol microbiome profile scores and their relationship with flavonol intake. Unclassified groups of Bilophila (NCBI:txid35832)
and Eggerthella (NCBI:txid84111) are also included in this profile as inverse discriminators. Panel b shows species composition of flavanol monomer microbiome
profile scores and their relationship with flavanol monomer intake. Unclassified groups of Veillonella (NCBI:txid29465) and Paraprevotella (NCBI:txid577309) are also
included in this profile as positive discriminators. Panel c shows species composition of flavanol polymer microbiome profile scores and their relation with flavanol
polymer intake. An unclassified group of Paraprevotella (NCBI:txid577309) is also included in this profile as a positive discriminator. Panel d shows species
composition of flavanone microbiome profile scores and their relationship with flavanone intake. An unclassified group of Paraprevotella (NCBI:txid577309) is also
included in this profile as an inverse discriminator. Panel e shows species composition of flavone microbiome profile scores and their relationship with flavone intake.
Panel f shows species composition of anthocyanidin microbiome profile scores and their relationship with anthocyanidin intake. An unclassified group of
Paraprevotella (NCBI:txid577309) is also included in this profile as a positive discriminator. For all panels, the subclass-specific Bonferroni corrected level of
significance is P value of �0.0025. For the Direction of discrimination column, footnote a indicates that red species represent species in the top ten of inverse
subclass-specific discriminatory rankings and green species represent species in the top ten of positive discriminatory rankings for each given subclass and that only
species in terminal nodes are displayed. For the Bootstrapped resamples column, footnote b indicates the direction-specific median (interquartile range [IQR]) ranking
of the canonical coefficient from 500 bootstrap resamples. For the Cohort column, footnote c indicates that results are partial Spearman rank correlation coefficients,
controlling for the following variables: age at time of fecal sample collection; energy expended in physical activity; body mass index; and intakes of yogurt, calories,
protein, saturated fat, trans fat, carbohydrate and fiber. n � 247. Black diamonds indicate unclassified species within the stated genus.
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subclasses (56, 57), providing a biological basis for why one species can contribute to
more than one SMC score. However, the relation of flavonoid intake with its relative
abundance in fecal samples of humans is unclear, with randomized controlled trials
finding no effect of polyphenol-rich diets on F. plautii abundance in healthy adults (58).
The role of flavonoids, as distinct from other polyphenolic compounds, in determining
the relative abundance of F. plautii requires further elucidation.

Ecosystem-based approach to analyzing the relation of diet (flavonoid subclass
intake) with the microbiome. By adopting a bootstrap resampling approach to
community identification, weighting all included microorganisms equally, and incor-
porating only directionality into the model, the SMC score was able to avoid carrying
forward artifacts, or unintended patterns, from the original data set. We have previously
shown that our profile identification method identifies a reproducible profile that
outperforms studies of individual associations in its validity (35). In agreement, this
current study also found more consistent associations with the profile identification
method compared to individual subclass-microbe regression models. For all flavonoid
subclasses, members of the SMC were consistently ranked as positive or inverse
discriminators in the bootstrap resamples (Table 3). Sensitivity analyses in which the
number of resamples and the random seed were varied did not have a substantial
impact on results, adding further evidence to the robustness of the results.

Conversely, partial Spearman correlation models in the sample data set identified 16
associations that remained significantly associated with the respective subclass after
controlling for multiple potential confounders. The consistency of the bootstrapped
community results, in conjunction with the limited number of microbes that are
individually associated with the subclasses, is further support that our community-
based analytic ethos is appropriate. The results suggest that flavonoid subclass con-
sumption impacts the microbiome at a community level, rather than at the level of
individual species.

When conducting community-based analyses, there is often concern that commu-
nity membership may be driven by an individual species, or group of species, that is
both strongly associated with subclass intake and that contributes substantially to the
total species abundance. To test whether this phenomenon was occurring in our
analysis, we examined the correlation between all species comprising an individual
SMC. As can be seen in Fig. S1 in the supplemental material, there were isolated cases
of two species being cocorrelated (P � 0.05), but there was no observable pattern
whereby many microbes were highly correlated with an individual species, nor was
there any evidence of groups of microbes being highly cocorrelated with each other.
As such, we concluded that community membership was not driven by a single organism,
or group of organisms, but rather that each member of the community contributed to
discrimination between high and low subclass consumers. This reinforces our conclu-
sion that the association of flavonoid subclasses with the microbiome is at the com-
munity level, and not at the level of individual species.

Structure of the relationships between flavonoid subclass intake and micro-
biome composition. The microbiome is an ecosystem comprised of living microor-
ganisms interacting with the human gastrointestinal tract environment in which they
reside. As such, we sought to implement a structural equation model aimed at
modeling this ecosystem in the context of the nonindependence of human exposure
and microbiome variables and the numerous potential, as-yet-unknown, confounders.
As outlined in Table 4, despite substantial correlation between the intakes of the
various flavonoid subclasses, there were less pronounced correlations between the
different values of the SMC scores, which was expected given the large proportion of
unique species contributing to each of the microbiome communities of each flavonoid
subclass and the method utilized to identify the communities.

The effect of flavonoids on the microbiome is not unidirectional. In fact, compounds
from many flavonoid subclasses have been shown to elicit antimicrobial effects on
particular microorganisms (31). As such, in addition to incorporating a set of “positive”
species (that were in higher relative abundances in high subclass consumers, and lower
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relative abundance in low flavonoid consumers), the SMC scores also incorporated a set
of “inverse” species (that were in lower relative abundances in high flavonoid consum-
ers, and higher relative abundance in low flavonoid consumers). Given the way in which
the SMC scores were computed (equation 1), it was our prespecified hypothesis that,
compared to low consumers, high subclass consumers would have more of the
“positive” microorganisms and fewer of the “inverse” microorganisms. As such, for each
subclass, we hypothesized that subclass intake will be positively associated with the
value of the corresponding microbiome community score.

The relative importance of diet and lifestyle factors in influencing diet-microbiome
associations is poorly understood. When exploring the contribution of individual
variables in the multivariate-adjusted model, none of the variables significantly con-
tributed to the model (Table S2). Therefore, in addition to concluding that cocorrelation
with other flavonoid subclasses was not a driver of the subclass-specific associations,
we were also able to conclude that none of the included covariates significantly altered
the diet-microbiome relationship in this analysis. Furthermore, the inclusion of acid-
lowering medications and antibiotic medications to the multivariate-adjusted model
did not substantially alter results (data not shown).

Even after adjusting for potential confounders and removing the variability that is
accounted for by significant covariance with other variables in the flavonoid intake and
SMC score data matrices, the intakes of all subclasses remained significantly and
positively associated with the values of their respective SMC scores. These results
indicate that the SMC scores we identified were indeed reflective of the intake of their
respective subclass, and were not simply a marker for flavonoid intake in general, or a
diet/lifestyle that is characteristic of high flavonoid consumers.

Although we could not account for unmeasured confounders of the subclass-
community association, our structural equation modeling approach did enable us to
draw conclusions regarding how well our model reflects the observed data. With the
Bentler comparative fit and Bentler-Bonett normed fit (NF) all greater than 0.9, we
conclude that the model specifying that the subclasses are the major determinants of
their respective communities fits the observed data well and is an appropriate biolo-
gical model for this cohort.

Relation of whole-food intake with microbiome community scores. To test the
robustness of our identified communities and ensure translatability of results, we then
sought to explore how the SMC scores were related to the wholefoods contributing
most to the intakes of the corresponding subclasses outlined in Table 2. Echoing the
highly significant associations observed in the subclass analyses, we observed a strong
association of blueberry intake with the value of the anthocyanidin microbiome
community score (Table 5). In fact, even after accounting for diet and lifestyle factors
that may explain the relationship, blueberry consumption accounted for 14.2% of the
variance in the community of 20 species that comprised the anthocyanidin microbiome
community score (P � 0.0001). To ensure that this association was due to blueberries
themselves, and not because blueberries may serve as a proxy for total anthocyanidin
intake, we further adjusted the multivariate-adjusted model for intakes of the other
whole foods contributing most to anthocyanidin intake, and the significant association
remained: R2 � 14.4% and P � 0.0001. The anthocyanidin microbiome community
score was characterized by having a lower relative abundance of Clostridium bolteae
(NCBI:txid208479), which has been previously been shown to be associated with clinical
infection (59).

A similar strong association was observed for tea intake, where even after adjusting
for multiple potential confounders and the consumption of other flavonol-rich foods,
tea consumption explained 5.9% of the unweighted variance in the 20 species com-
prising the flavonol microbiome community score (P � 0.001). The flavonol microbiome
community was characterized by having lower relative abundance of Faecalibacterium
prausnitzii (NCBI:txid853) which has been implicated as having beneficial effects on
human health (60), and a greater relative abundance of the flavonoid-metabolizing
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TABLE 5 Subclass-specific microbiome profile score by tertiles of whole-food consumption

Subclass-specific microbiome
profile score and characteristic

Parameter valuea

R2 (%) P for trendbLow consumers High consumers

Flavonol microbiome profile score
Onion consumption (frequency) �1/wk �4/wk

No. of participants 92 87
Age and energy adjusted �0.092 � 0.104 0.181 � 0.108 1.8 0.114
Multivariate adjustedc �0.042 � 0.107 0.119 � 0.111 0.8 0.378
Food and multivariate adjustedd 0.113 � 0.115 0.204 � 0.117 0.7 0.370

Tea consumption (frequency) Never consume �1/wk
No. of participants 138 77
Age and energy adjusted �0.183 � 0.084 0.226 � 0.113** 4.1 0.006
Multivariate adjustedc �0.224 � 0.082 0.304 � 0.111*** 6.0 <0.0001
Food and multivariate adjustedd �0.236 � 0.087 0.292 � 0.113*** 5.9 0.001

Apple consumption (frequency) �0.5/wk �3/wk
No. of participants 90 102
Age and energy adjusted �0.161 � 0.107 0.123 � 0.100 1.5 0.157
Multivariate adjustedc �0.004 � 0.119 �0.033 � 0.109 0.1 0.879
Food and multivariate adjustedd 0.088 � 0.126 0.102 � 0.114 0.0 0.996

Flavanol monomer microbiome profile score
Tea consumption (frequency) Never consume �1/wk

No. of participants 138 77
Age and energy adjusted �0.140 � 0.083 0.391 � 0.111*** 7.3 <0.0001
Multivariate adjustedc �0.161 � 0.082 0.478 � 0.111*** 9.8 <0.0001
Food and multivariate adjustedd �0.223 � 0.087 0.458 � 0.112*** 10.4 <0.0001

Blueberry consumption (frequency) � 0.5/wk �3/wk
No. of participants 111 89
Age and energy adjusted �0.073 � 0.095 0.145 � 0.107 1.2 0.227
Multivariate adjustedc �0.031 � 0.099 0.093 � 0.113 0.4 0.632
Food and multivariate adjustedd �0.034 � 0.100 0.041 � 0.118 0.4 0.579

Red wine consumption (frequency) Never consume �3/wk
No. of participants 76 105
Age and energy adjusted 0.098 � 0.115 0.060 � 0.097 1.7 0.126
Multivariate adjustedc 0.127 � 0.122 0.070 � 0.103 2.1 0.074
Food and multivariate adjustedd 0.103 � 0.135 0.042 � 0.103 2.3 0.040

Flavanol polymer microbiome profile score
Tea consumption (frequency) Never consume �1/wk

No. of participants 138 77
Age and energy adjusted �0.119 � 0.084 0.237 � 0.113* 2.6 0.040
Multivariate adjustedc �0.115 � 0.085 0.292 � 0.115** 3.3 0.016
Food and multivariate adjustedd �0.088 � 0.090 0.321 � 0.113** 3.3 0.012

Apple consumption (frequency) �0.5/wk �3/wk
No. of participants 90 102
Age and energy adjusted �0.247 � 0.105 0.110 � 0.098* 3.4 0.014
Multivariate adjustedc �0.206 � 0.119 0.076 � 0.109 2.6 0.040
Food and multivariate adjustedd �0.179 � 0.127 0.093 � 0.114 2.4 0.042

Blueberry consumption (frequency) �0.5/wk �3/wk
No. of participants 111 89
Age and energy adjusted �0.227 � 0.092 0.318 � 0.103*** 6.0 0.001
Multivariate adjustedc �0.227 � 0.097 0.331 � 0.110*** 5.1 0.002
Food and multivariate adjustedd �0.172 � 0.102 0.384 � 0.118*** 5.2 0.001

Flavanone microbiome profile score
Orange consumption (frequency) �0.5/wk �3/wk

No. of participants 109 92
Age and energy adjusted �0.235 � 0.092 0.363 � 0.102*** 7.5 <0.0001
Multivariate adjustedc �0.221 � 0.096 0.376 � 0.104*** 6.9 <0.0001
Food and multivariate adjustedd �0.237 � 0.100 0.338 � 0.108*** 6.5 <0.0001

Red wine consumption (frequency) Never consume �3/wk
No. of participants 76 105
Age and energy adjusted �0.152 � 0.113 0.185 � 0.096* 2.7 0.035
Multivariate adjustedc �0.135 � 0.121 0.183 � 0.102 1.8 0.103
Food and multivariate adjustedd �0.161 � 0.127 0.144 � 0.101 1.5 0.137

(Continued on following page)
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bacterium E. lenta, which has been associated with frailty in the elderly (61) and
inactivates the cardiac drug digoxin (62). It is unclear how the health benefits of
flavonol intake interact, as shown by an abundant literature of the benefit of tea
consumption (63), with the nonbeneficial features of the community of bacteria
associated with high flavonol intake, as well as the other community members where
their importance to human health is not yet clearly elucidated.

The percent contribution whole foods make to total intake of a given subclass did
not appear to drive the strength of associations. In fact, for the flavanol polymer
subclass, although all three major whole-food contributors were significantly associated
with the value of the flavanol polymer microbiome community score, the top contrib-
utor, tea, accounting for 28.1% of total flavanol polymer intake, explained only 2.6% of
the flavone microbiome community score variance. Conversely, 6.0% of total variance
in the species comprising the flavanol polymer microbiome community was explained
by the consumption of blueberries, which contributed only 11.4% of total dietary
flavanol polymers. The association of flavanol polymer-rich foods independent from

TABLE 5 (Continued)

Subclass-specific microbiome
profile score and characteristic

Parameter valuea

R2 (%) P for trendbLow consumers High consumers

Grapefruit consumption (frequency) Never consume �0.5/wk
No. of participants 160 87
Age and energy adjusted �0.001 � 0.079 �0.009 � 0.107 0.0 0.954
Multivariate adjustedc 0.018 � 0.079 0.000 � 0.108 0.0 0.897
Food and multivariate adjustedd �0.017 � 0.083 �0.053 � 0.108 0.0 0.789

Flavone microbiome profile score
Vegetable juice consumption (frequency) Never consume �0.5/wk

No. of participants 157 90
Age and energy adjusted �0.113 � 0.079 0.188 � 0.106* 1.9 0.026
Multivariate adjustedc �0.100 � 0.080 0.184 � 0.109* 1.6 0.043
Food and multivariate adjustedd �0.113 � 0.080 0.210 � 0.105* 2.0 0.015

Red wine consumption (frequency) Never consume �3/wk
No. of participants 76 105
Age and energy adjusted �0.128 � 0.108 0.310 � 0.092** 8.1 <0.0001
Multivariate adjustedc �0.138 � 0.116 0.328 � 0.098** 7.5 <0.0001
Food and multivariate adjustedd 0.038 � 0.121 0.402 � 0.097* 7.2 <0.0001

Orange consumption (frequency) �0.5/wk �3/wk
No. of participants 109 92
Age and energy adjusted �0.293 � 0.092 0.219 � 0.101*** 6.4 <0.0001
Multivariate adjustedc �0.277 � 0.096 0.200 � 0.104** 5.2 0.001
Food and multivariate adjustedd �0.284 � 0.093 0.181 � 0.104** 5.0 0.001

Anthocyanidin microbiome profile score
Blueberry consumption (frequency) �0.5/wk �3/wk

No. of participants 111 89
Age and energy adjusted �0.410 � 0.087 0.499 � 0.098*** 16.3 �0.0001
Multivariate adjustedc �0.426 � 0.091 0.508 � 0.104*** 14.2 �0.0001
Food and multivariate adjustedd �0.431 � 0.103 0.585 � 0.109*** 14.4 �0.0001

Strawberry consumption (frequency) Never consume �3/wk
No. of participants 48 52
Age and energy adjusted 0.148 � 0.144 0.278 � 0.139 3.4 0.015
Multivariate adjustedc 0.185 � 0.146 0.183 � 0.149 2.1 0.070
Food and multivariate adjustedd 0.378 � 0.143 �0.132 � 0.151* 2.5 0.023

Apple consumption (frequency) �0.5/wk �3/wk
No. of participants 90 102
Age and energy adjusted �0.217 � 0.105 0.241 � 0.099** 4.1 0.006
Multivariate adjustedc �0.145 � 0.119 0.143 � 0.110 1.0 0.270
Food and multivariate adjustedd �0.058 � 0.120 0.198 � 0.105 0.8 0.301

aResults are least-squared means � standard errors of the means (SEMs) by ANCOVA. Values that are significantly different from the values for low consumers are
indicated by asterisks as follows: *, P � 0.05; **, P � 0.01; **, P � 0.001; ***, P � 0.0001. A total of 247 participants were examined in this study.

bP values for trend. Significant values are shown in boldface type.
cThe multivariate-adjusted model includes the following variables: age at time of fecal collection; energy expended in physical activity; body mass index; and intakes
of yogurt, calories, protein, saturated fat, trans fat, carbohydrate, and fiber.

dIncludes adjustment for variables in the multivariate-adjusted model as well as adjustment for the other subclass-specific whole foods.
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other flavanol polymer-rich foods highlights the potential effect that flavanol polymer-
rich foods, generally, have on the community of 20 microorganisms that collectively
make up the flavonol polymer microbiome community score.

Due to the observational nature of this study, as well as the measurement error
associated with assessing flavonoid intake and microbiome composition, there is an
increased likelihood for type two statistical errors to occur, tending results toward the
null hypothesis of no association. Measurement error can also contribute to an under-
estimation of true effects, resulting in effect estimates that are smaller than what truly
occurs in the population. On the other hand, there is the chance that the lack of an
external validation cohort may contribute to an overestimation of the true magnitude
of effect. However, indications of specificity for certain foods, percent contribution of
whole foods to subclass intake not driving results, and significant results remaining
even after adjusting for other major whole-food subclass contributors, all point toward
a lack of bias and an absence of overestimation. Having said this, future studies
validating this model in a variety of populations will be useful in establishing population-
specific magnitude of effects.

Conclusion. Using an ecosystem-based model, we identified six microbial commu-
nities uniquely and independently associated with intakes of the six flavonoid sub-
classes, and the main foods that contribute to their intake. Strengthening our under-
standing of how diet alters the microbiome, we found that in this cohort of healthy
adult males, flavonoids were associated with microbial community assembly, indepen-
dent from effects of other dietary and lifestyle factors included in the multivariate-
adjusted model. In other words, the importance of the presented subclass-specific
microbial communities (SMCs) is that there is a pool of bacteria that variously assimilate
flavonoids, use by-products from assimilating bacteria, or are members of an impacted
ecological niche, that are notably different from other consumers and nonconsumers of
flavonoids. The driver of the ecological organization (a flavonoid compound ingested)
results in SMCs that are detected. By confirming the role of diet in influencing
microbiome structure in a population community-based setting, within a context of
numerous potential dietary and lifestyle confounders, we build upon seminal work by
David et al. (32), who established the role of diet in shaping the composition of the
microbiome in intervention studies.

In this cohort of generally healthy U.S. males, intakes of flavonoid-rich foods
explained a large proportion of total community variance. In fact, consuming tea at
least once per week explained 10.4% of the total variance in assembly of the 20 species
comprising the flavanol monomer microbial community score. The novel methodology
employed, necessitated by multidimensional microbiome data that consist of noninde-
pendent features that exhibit a wide range of distributions and mean values, has
considerable value beyond the presented work and addresses a major challenge in our
ability to understand associations of the microbiome in a wide range of clinical and
epidemiologic settings. Further work in this area is indicated to fully elucidate the
relation identified microorganisms have with human health.

MATERIALS AND METHODS
Population. The Men’s Lifestyle Validation Study (64, 65) was a 1-year substudy of the Health

Professionals Follow-up Study (66, 67) which included 51,529 U.S. health professionals whose diet,
lifestyle, and health was monitored every 2 years from 1986 to present day. Diet was assessed by a
validated semiquantitative food frequency questionnaire (SFFQ) every 4 years. Study protocol 22067–102
titled “Men’s Lifestyle Validation Study and Microbiome Correlation” was approved by the Harvard T. H.
Chan School of Public Health Institutional Review Board, and informed consent was obtained from all
participants.

In 2012, we randomly selected a subset (247 included in analysis) of Health Professionals Follow-up
Study participants aged 45 to 80 years, from all geographical regions of the United States, who had
completed the 2006/2007 cohort SFFQ, had previously provided blood samples, and had access to the
Internet. Men with a history of coronary heart disease, stroke, cancer, or major neurological disease were
excluded, as were participants with SFFQ total daily energy intakes of �600 kcal or �3,500 kcal, or with
more than 70 blank SFFQ items. Over the 1-year duration of the Men’s Lifestyle Validation Study,
participants provided up to four stool samples (64). The third fecal sample, collected approximately 6
months into the study, was used in all analyses presented in this paper, as it yielded the greatest number
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of participants with complete fecal sample and dietary assessment for inclusion in this study (247 out of
308). Methods for fecal sample collection, nucleic acid extraction, and taxonomic profiling have been
previously described (64, 65).

Flavonoid intake assessment. Participants completed a SFFQ to indicate habitual dietary intake
over the year preceding sample collection. From this, habitual daily intake, in milligrams/day, of total
flavonoids and flavonoid subclasses was estimated using previously described methods (9, 68). Flavonoid
subclasses in this analysis include the following: (i) flavonols; (ii) flavanol monomers (including catechins
and epicatechins and excluding proanthocyanins); (iii) flavanol polymers (including proanthocyanins,
theaflavins, and thearubigins); (iv) flavones; (v) flavanones; and (vi) anthocyanins. Frequency of consump-
tion of flavonoid-rich foods were recorded as the number of servings per day, week, or month (68).

Covariate assessment. At enrollment, participants reported date of birth, height, geographic
location, ethnicity, and smoking status. Other measures, such as Bristol stool score, and the use of
acid-lowering and antibiotic medications, were collected via questionnaire at the time of fecal sample
collection. Weight and height at enrollment were used to calculate body mass index (BMI) (in kilograms/
square meter), calculated as weight divided by the square of height.

Identification of flavonoid-metabolizing bacteria. Limiting the search to bacteria, we searched the
BRENDA database (47) for enzymes with substrates containing the text substrings outlined in Appendix A. A
dietitian then curated the results to include only those reactions involving dietary flavonoid compounds.

Statistical analysis. (i) Creation of the subclass-specific microbial community scores. Alpha
diversity, membership, was assessed using the Shannon H’ index. We removed all taxonomic features
with a relative abundance of less than 10�4 (0.01%) in greater than 10% of all samples. After applying
this statistical filter, 140 species remained and were included in the subsequent subclass-specific
canonical discriminant analyses. The species data were normalized via arcsine square root transforma-
tion. To ensure that all species had the opportunity to contribute equally to the canonical models, the
values were also standardized across participants (mean, 0; standard deviation, �1). For this species
identification step, intakes of each of the six flavonoid subclasses were divided into three groups based
on the level of subclass consumption; low consumers (quintiles 1 and 2 of subclass intake), moderate
consumers (quintile 3), and high consumers (quintiles 4 and 5 of subclass intake).

To identify the subclass-specific microbial communities (SMCs), the following analyses were con-
ducted separately, once for each flavonoid subclass. To reduce the impact of data artifacts influencing
which species were included in the SMCs, the cohort data were bootstrapped with 500 resamples. For
each bootstrap resample, species were omitted from the analysis if either total or within-group variance
equaled zero. In each bootstrap resample, to identify the pattern of species that differentiated low from
high subclass consumers, we implemented a canonical discriminant analysis model of subclass intake
(low versus high, excluding moderate consumers) against all detected species, without any knowledge
of intakes of other flavonoid subclasses or potentially confounding variables. Within each bootstrap
resample, species were then ranked by their positive and inverse discriminatory capacity using the
canonical coefficients.

For each flavonoid subclass, we then pooled data from each bootstrap resample and summed the
species rankings. In order to identify the species that, when considered as a community, are present in
greater relative abundance in high subclass consumers compared to low subclass consumers, we
identified positive discriminators as defined as the species in the top ten of pooled positive discrimina-
tory rankings of the canonical coefficients. Conversely, the species that, as a whole, are present in lower
relative abundance in high subclass consumers than low consumers, are defined as the inverse discrim-
inators and represent the species in the top ten of pooled inverse discriminatory rankings of the
canonical coefficients. These positive and inverse discriminators were then used to calculate the SMC
scores using the method outlined in equation 1 (35). The subclass-specific microbiome profile score was
computed as follows:

microbiome profile score �
1

n�i�1

n�10

hi �
1

n�i�1

n�10

li (1)

where h is the relative abundance of species with the greatest pooled positive discriminatory rankings and
l is the relative abundance of species with the greatest pooled inverse discriminatory rankings. The value of
ten species was selected as we have previously shown this value to provide superior discriminatory capacity
and validity to other manifestations of equation 1. We repeated this analysis, altering the number of bootstrap
resamples, and results were not dramatically altered. To enable comparisons across subclasses, each SMC
score was standardized to a mean of 0 and a standard deviation of 1. As a sensitivity analysis, we repeated
the bootstrap resamples by changing the number of resamples and the value of the seed.

To test the association of individual microbes comprising the communities, we conducted partial
Spearman rank correlation analyses. In line with variables differing between high and low total-flavonoid
consumers outlined in Table 1, this model corrected for the following: age at time of fecal collection;
energy expended in physical activity; body mass index; and intake of yogurt, total calories, protein,
saturated fat, trans fat, carbohydrate, and fiber.

(ii) Structure of relations between subclass intake and subclass-specific microbial community
scores. We then implemented a structural equation model that simultaneously regressed subclass intake
against its corresponding SMC score (in a multivariate-adjusted model), while concurrently adjusting for
any significant cocorrelation in the dependent and independent variable matrices. Intakes of flavanol
monomers and flavanol polymers were highly correlated (Pearson correlation coefficient � 0.94). As
such, a monomer/polymer latent variable was constructed to represent the shared covariance in intakes
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of flavanol monomers and flavanol polymers. This latent construct was then used as the independent
variable for the flavanol monomer and flavanol polymer subclass-specific association tests.

To observe the proportion of variance in the SMC score that is directly attributable to intake of its
corresponding flavonoid subclass, we presented results as the B estimate � standard error, T value, and
P value.

(iii) Relation of whole-food intake with subclass-specific microbial communities. As a means of
examining the robustness and translatability of the SMC scores, for each flavonoid subclass, we identified
the three major whole-food contributors to subclass intake. Frequency of consumption of each of the
whole foods was first trichotomized into three groups based on tertiles of consumption frequency. We
then implemented age- and energy-adjusted and multivariate-adjusted analyses of covariance (ANCOVA)
models to test whether the value of the SMC score differed across tertiles of whole-food intake.

To observe the proportion of variance in the SMC that is directly attributable to intake of its
corresponding flavonoid subclass, we presented results as the mean (� standard error of the mean) of
the SMC score, the partial R2 (coefficient of partial determination), and the P value.

All analyses were performed with SAS 9.2 statistical package.
Data availability. Sequence data have been deposited in the Sequence Read Archive under

BioProject ID PRJNA354235. Data from the Health Professionals Follow-up Study (HPFS), including
metadata not included in the current manuscript but collected as a part of the Men’s Lifestyle Validation
Study (MLVS), can be obtained through written application. As per standard controlled-access procedure,
applications to use HPFS resources will be reviewed by our External Collaborators Committee for
scientific aims, evaluation of the fit of the data for the proposed methodology and verification that the
proposed use meets the guidelines of the Ethics and Governance Framework and the consent that was
provided by the participants. Investigators wishing to use HFPS or MLVS cohort data are asked to
submit a brief (two pages) description of the proposed project (“letter of intent”) to E. B. Rimm
(erimm@hsph.harvard.edu).

APPENDIX A
Text substrings utilized in the BRENDA database search. The following text

substrings were utilized in our prespecified BRENDA database search strategy: cyanidin;
flavylium; ideain; kuromanin; keracyanin; delphinidin; malvidin; malvin; pelargonidin;
peonidin; petunidin; pigment; pinotin; vitisin; butein; chalcone; phloretin; phloridzin;
myricetin; quercetin; astilbin; catechin; flavanone; flavane; taxifolin; distylin; cinnamtan-
nin; tetramer d; flavin; bonannione; mimulone; naringenin; flavanone; bavachin; did-
ymin; eriodictyol; hesperetin; hesperidin; xanthohumol; prunin; narirutin; eriocitrin;
chrysin; pinocembrin; poncirin; sakuranetin; flavone; luteolin; citrifolioside; apigenin;
vicenin; vitexin; apiin; baicalein; chrysoeriol; eupatorin; diosmin; cirsimaritin; cirsili-
neol; scutellarein; skrofullein; diosmetin; gardenin; geraldone; hispidulin; rhoifolin;
jaceosidin; orientin; scolymoside; nepetin; nobiletin; pebrellin; rhoifolin; tangeretin;
scutellarein; sinensetin; kaempferol; galangin; rhamnetin; jaceidin; kaempferide; trifolin;
astragalin; nicotiflorine; morin; patuletin; avicularin; hyperoside; hyperin; quercitrin;
quercetrin; rutin; reynoutrin; spiraeoside; spinacetin; genisteol; neochanin; pratol; daid-
zin; genistin; glycitin; genistein; pratensol; biochanin; daidzein; daidzeol; formononetin;
prunetol; sophoricol; glycitein; flavonoid; flavonol; flavanol; anthocyan.
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