
INTRODUCTION

Adult mesenchymal stem cells (MSCs) are multipotent cells 
able to differentiate into several types of specialized mesen-
chymal cells, such as osteoblasts, chondrocytes, adipocytes, 
tenocytes, and others (Caplan, 1991). Human MSCs possess 
special self-renewal capacity, making them a suitable cell 
source for potential cell therapy and regeneration strategies 
(da Silva Meirelles et al., 2009). Specifically, in ex vivo culturing 
conditions, differentiation of MSCs into specific cell types can 
be guided by applying appropriate growth factors or chemicals 

(Pittenger et al., 1999). However, precise understanding of the 
regulatory mechanisms that mediate various biological events, 
including proliferation, targeted migration, and differentiation, 
as well as availability of high-quality input material are needed 
to utilize human MSCs safely in the clinical setting. Tradition-
ally, MSCs are isolated from tissues such as umbilical cord, 
endometrial polyps, menses blood, bone marrow, and adipose 
tissue, because it is easy to harvest MSCs from such prepara-
tions and sufficient quantities of cells can be reliably obtained 
for clinical and experimental applications (Ding et al., 2006, 
2007). In contrast, de novo reproduction of MSCs has been 
challenging because only a small number of cells could be 
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Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimu-
late proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto 
positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also in-
creased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 
3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody 
blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, 
cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incuba-
tion with Cripto protected MSCs from apoptosis caused by hypoxia or H2O2 exposure, and the level of caspase-3 decreased by 
the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of 
BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth fac-
tor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto 
activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation 
of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may 
benefit from positive effects of Cripto on their survival and biological properties.
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produced in practice. Thus, appropriate knowledge that would 
allow reliable manipulation of MSC reproduction would be a 
significant breakthrough in the clinical application of MSCs.

Cripto is a small glycosylphosphatidylinositol-anchored sig-
naling protein that regulates cell survival, proliferation, differ-
entiation, and migration during development upon its release 
from the membrane to which it is anchored (Kohlmeier et al., 
1992; Bianco et al., 2002; Minchiotti, 2005; Shen, 2007; Ander-
sson et al., 2008; Papageorgiou et al., 2009; Gray and Vale, 
2012). Previous studies have suggested that Cripto also fa-
cilitates epithelial-mesenchymal stem cell transition, promotes 
cell proliferation, and enhances reconstitution capacity (Klauz-
inska et al., 2014; Spike et al., 2014). As Cripto plays a critical 
role in regulating stem cell functions, it has been identified as 
a potential candidate for manipulations aimed to stimulate pro-
liferation of MSCs. In our study, we aimed to assess the effect 
of Cripto and its recently characterized molecular pathway on 
cell proliferation. Expression levels of GRP78, a Cripto binding 
protein, are known to increase in response to cellular stress. 
Up-regulation of GRP78 leads to enhanced cytoprotection and 
chemoresistance of cells in the tumor microenvironment (Li 
and Lee, 2006), promoting cell proliferation, survival, and re-
sistance to apoptosis (Misra et al., 2011; Li et al., 2013; Zhang 
et al., 2013). Previous studies also demonstrated that GRP78 
was required for the proliferation and survival of embryonic in-
ner cell mass cells that are precursors of pluripotent stem cells 
(Luo et al., 2006). In addition, it has been suggested that in re-
sponse to GRP78 activation, components of the JAK2/STAT3 
pathway become phosphorylated and induce the expression 
of various factors related to cell proliferation, vascularization, 
and angiogenesis (Lee et al., 2015a). Thus, in our study we 
sought to examine the precise mechanism by which GRP78 
and JAK2/STAT3 affect the Cripto pathway. We aimed to study 
the effects of Cripto on MSC activity and molecular signaling 
mechanisms mediating observed positive effect of Cripto on 
MSC proliferation.

MATERIALS AND METHODS

Cell culture
MSCs derived from human adipose tissue were obtained 

from the American Type Culture Collection (ATCC; Manas-
sas, VA, USA). MSCs were confirmed to be pathogen- and 
mycoplasma-free; they expressed cell surface markers, such 
as cluster of differentiation (CD) 73 and CD105, but not CD31, 
and exhibited adipogenic and osteogenic differentiation poten-
tial when cultured in specific differentiation media. MSCs were 
cultured in α-minimum essential medium (Hyclone, Logan, 
UT, USA) supplemented with 10% (v/v) fetal bovine serum 
(Hyclone), 100 U/mL penicillin, and 100 μg/mL streptomycin. 
MSC cultures were grown in a humidified incubator in the at-
mosphere of 95% air and 5% CO2 at 37°C.

MSC differentiation
For MSC differentiation, cells were grown in StemPro ad-

ipogenic, osteogenic, or chondrogenic culture medium (Ther-
mo Fisher Scientific, Waltham, MA, USA). Cells were grown 
in the adipogenic medium for 1 week, osteogenic medium for 
1 weeks, and chondrogenic medium for 2 weeks. Adipocytes 
were stained with oil red O (Sigma-Aldrich, St. Louis, MO, USA) 
for 10 min, osteoblasts were stained with alkaline phosphatase 

stain kit (Sigma-Aldrich) for 10 min, and chondrocytes were 
stained with Safranin O (Sigma-Aldrich) for 5 min. The samples 
were visualized by inverted microscopy (Nikon, Tokyo, Japan).
Cell proliferation assay

Cell proliferation was examined by 5-bromo-2′-deoxyuridine 
(BrdU) incorporation assay. MSCs were cultured in 96-well 
cultured plates (3,000 cells/well). MSCs were exposed to Crip-
to (0, 1, 10, 50, 100, 200 ng/mL) for a fixed period of 24 h or to 
100 ng/mL Cripto for 12, 24, or 48 h. BrdU incorporation into 
newly synthesized DNA of proliferating cells was assessed by 
an enzyme-linked immunosorbent assay (ELISA) colorimetric 
kit (Roche, Germany). To perform ELISA, 100 μg/mL BrdU 
was added to MSC cultures and incubated at 37°C for 3 h. An 
anti-BrdU antibody (100 μL) was added to MSC cultures and 
incubated at room temperature for 90 min. Then, 100 μL of 
substrate solution was added and 1 M H2SO4 was used to stop 
the reaction. Light absorbance of the samples was measured 
by a microplate reader (BMG labtech) at 450 nm.

Single-cell cultivation assay
MSCs were trypsinized to prepare single cell suspensions 

in growth media. A limiting dilution assay was used to aliquot 
single MSCs into individual wells of 96-well culture plates. 
Briefly, cell suspensions containing 1×103 cells in 10 mL of 
growth media were diluted tenfold, and 100 μL of the diluted 
sample (approximately 1 cell/100 μL) was seeded into 96-well 
plates. Control MSCs and MSCs transfected with STAT3 short 
interfering RNA (siRNA) in the presence or absence of 100 
ng/mL Cripto were then cultured in a humidified incubator for 
10 days.

siRNA transfection
MSCs were grown up to 70% confluence in 60-mm cultured 

plates and washed twice with phosphate buffered saline (PBS). 
MSCs were transfected for 48 h with SMART pool siRNAs (100 
nM) specific for STAT3 or BCL3 mRNA or scramble siRNA by 
using Lipofectamine 2000 reagent (Thermo Fisher Scientific) 
in serum-free αMEM media according to the manufacturer’s 
protocols and then were treated with 100 ng/mL Cripto.

Propidium iodide/annexin V flow cytometry analysis
The proportion of apoptotic cells was determined by flow cy-

tometry analysis. After MSCs were treated with 200 μM H2O2 
for 6 h or exposed to hypoxic (2% O2, 5% CO2, and 93% N2) 
conditions at 37°C for 96 h in the presence or absence of Cripto 
and BCL3 siRNA, the cells were stained with annexin V-FITC 
and propidium iodide (PI) (FITC Annexin V Apoptosis Detec-
tion Kit; BD Pharmingen, Franklin Lakes, NJ, USA), and evalu-
ated using a Cyflow Cube 8 FACS instrument (SysmexPartec, 
Görlitz, Germany). Data were analyzed using standard FSC 
Express software (De Novo Software, Los Angeles, CA, USA).

Western blot analysis
Total protein was extracted from MSCs using RIPA lysis 

buffer (Thermo Fisher Scientific). Cell lysates (20 μg protein) 
in sample buffer were separated by electrophoresis in 8-12% 
sodium dodecyl sulfate-polyacrylamide gel and transferred 
to nitrocellulose membranes for probing with antibodies. Af-
ter washing with Tris-buffered saline/Tween-20 buffer (0.05% 
Tween-20, 150 mM NaCl, 10 mM Tris–HCl; pH 7.6), mem-
branes were blocked with 5% bovine serum albumin for 1 h at 
room temperature and then incubated with primary antibodies 
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against phosphorylated JAK2, STAT3, phosphorylated STAT3, 
c-Myc, cyclin D1, GRP78, BCL3, cleaved caspase-3, vascu-
lar endothelial growth factor (VEGF), fibroblast growth factor 
(FGF), hepatocyte growth factor (HGF), and β-actin (all from 
Santa Cruz Biotechnology, Dallas, TX, USA). After incubation 
of the membranes with peroxidase-conjugated secondary an-
tibodies (Santa Cruz Biotechnology), bands were detected 
using enhanced chemiluminescence reagents (Amersham 
Biosciences, Little Chalfont, UK) in a dark room.

Detection of human growth factors
Concentrations of VEGF, FGF, and HGF in MSC lysates 

were determined using a commercially available ELISA kit 
(R&D Systems, Minneapolis, MN, USA) according to the man-
ufacturer’s recommendations. MSC lysates were quantified 
using the bicinchoninic acid assay (Thermo Fisher Scientific). 
Three hundred micrograms of total protein from MSC lysates 

was used for these experiments. Triplicate measurements 
were performed for all ELISA assays. Expression levels of 
growth factors were quantified by measuring absorbance at 
450 nm using a microplate reader (BMG Labtech, Ortenberg, 
Germany).

Statistical analysis
All data are expressed as the mean ± standard error of the 

mean (SEM). All experiments were analyzed by one-way anal-
ysis of variance (ANOVA). If a significant effect of treatment 
was revealed by one way ANOVA in comparisons involving ≥ 
3 groups, Bonferroni-Dunn post hoc tests were used to reveal 
inter-group differences. Differences were considered statisti-
cally significant if p<0.05.
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Fig. 1. Effect of Cripto on MSC differentiation and proliferation. (A) MSCs were differentiated into adipocytes, osteocytes, and chondrocytes 
in the presence of Cripto, and examined by Oil Red O, alkaline phosphatase, and Safranin O staining, respectively. Scale bar=200 μm. 
Concentration- (B) and time- dependent (C) effects of Cripto on BrdU incorporation are illustrated. MSCs were incubated with Cripto at dif-
ferent concentrations (0-200 ng/mL) for 24 h or with 100 ng/mL Cripto for variable time periods (0–48 h) and then, BrdU incorporation was 
examined using light absorbance measurements (n=3). (D) Representative image of a 96-well culture plate of a single cell assay with prolif-
erating MSCs stained with Giemsa stain. MSCs were treated with 100 ng/mL Cripto for ten days. (E) Plot of the number of proliferating cells 
per 96-well plate (n=3). (F) Representative image of a single cell assay for 1 to 10 days in 96-well plate stained with Giemsa stain. Scale 
bar=100 µm. (G) The number of cells per field of view in each well of a 96-well plate is plotted. The number of dividing cells was significantly 
higher in MSCs exposed to Cripto than in MSCs treated with vehicle (n=3). Data are expressed as the mean ± SEM of three independent 
experiments each performed in triplicate dishes. ANOVA followed by post hoc Bonferroni-Dunn test was used for multiple group compari-
sons. *p<0.05, **p<0.01 vs. control.
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RESULTS

Effect of Cripto on MSC differentiation and proliferation 
There was no significant difference in MSC differentiation 

when cells were cultured with Cripto, as determined by Oil Red 
O (adipogenesis), alkaline phosphatase (osteogenesis), and 
Safranin O (chondrogenesis) staining (Fig. 1A). MSCs were 
incubated with Cripto at different concentrations (0-200 ng/
mL) for 24 h or with 100 ng/mL Cripto for varying time periods 
(0-48 h) to reveal concentration- and time dependent effects 
of this protein on cell proliferation. As shown in Fig. 1B and 
1C, the maximum increase in the level of BrdU incorporation 
was observed after 24-h incubation with 100 ng/mL Cripto. To 
assess the effects of Cripto on the division of individual cells, 
we first seeded individual MSCs onto a culture plate, and then 
confirmed cell division in a time-dependent manner for 0-10 
days. To assess the effects of Cripto on MSC viability and pro-
liferation, the Giemsa stain was used. As shown in Fig. 1D 
and 1E, treatment with 100 ng/mL Cripto increased cell pro-

liferation, with the number of single cell divisions increasing 
after seven days of incubation with Cripto (Fig. 1F, 1G). These 
results suggested Cripto has a strong potentiating effect on 
MSC proliferation.

Involvement of GRP78-dependent JAK/STAT3 pathway 
activation and cell cycle regulatory protein expression in 
MSC proliferation

To assess the role of GRP78 and related pathways in the 
potentiation of MSC proliferation by Cripto, we examined 
whether Cripto induced the expression of cell cycle regulatory 
proteins, and GRP78 in MSCs. As seen in Fig. 2A, 100 ng/
mL Cripto significantly increased the levels of phosphorylated 
JAK, phosphorylated STAT3, c-Myc, and cyclin D1. In addi-
tion, Cripto significantly increased the expression of GRP78 
(Fig. 2B). However, the levels of phosphorylated JAK, phos-
phorylated STAT3, cyclin D1, and c-Myc decreased signifi-
cantly following pretreatment with a GRP78 neutralizing an-
tibody (Fig. 2C). These results showed that Cripto-mediated 
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Fig. 2. Effects of Cripto on the expression levels of cell cycle regulatory proteins and phosphorylation of JAK2 and STAT3 are dependent 
on GRP78. MSCs were treated with 100 ng/mL Cripto for 0–24 h. (A) Total protein was extracted and immunoblotted with antibodies against 
phosphorylated JAK2, phosphorylated STAT3, c-Myc, and cyclin D1. Amounts of β-actin were used as internal loading controls. Panel on 
the right illustrates mean normalized levels (± SEM) of phosphorylated JAK2, phosphorylated STAT3, c-Myc, and cyclin D1 (n=3). Statisti-
cal significance of differences is indicated as follows: *p<0.05, **p<0.01 vs. control. (B) Total protein was extracted and immunoblotted with 
antibodies against GRP78. Amounts of β-actin were used as internal loading controls. Panel on the right illustrates mean normalized levels (± 
SEM) of GRP78 (n=3). Statistical significance of differences is indicated as follows: *p<0.05, **p<0.01 vs. control. (C) MSCs were pretreated 
with a neutralizing antibody against GRP78 (100 ng/mL) for 24 h before the treatment with 100 ng/mL Cripto for another 24 h. Total protein 
was extracted and immunoblotted with antibodies against phosphorylated JAK2, phosphorylated STAT3, c-Myc, and cyclin D1. Amounts of 
β-actin were used as internal loading controls. Panel on the right illustrates mean normalized levels (± SEM) of phosphorylated JAK2, phos-
phorylated STAT3, c-Myc, and cyclin D1 (n=3). Statistical significance of differences is indicated as follows: *p<0.05, **p<0.01 vs. control, 
#p<0.05, ##p<0.01 vs. Cripto alone.
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GRP78 expression was important for the expression of cell 
cycle-related proteins.

Effect of Cripto on MSC proliferation through STAT3
To elucidate the role of the STAT3 pathway in MSC prolif-

eration induced by Cripto, MSCs were pretreated with STAT3 
siRNA prior to the incubation with Cripto and then, cell prolifer-
ation and western blot assays were carried out. As seen in Fig. 
3A, pretreatment with STAT3 siRNA reduced the observed in-
crease in the levels of phosphorylated STAT3, c-Myc, and cy-
clin D1 caused by Cripto. In addition, pretreatment with STAT3 
siRNA inhibited the increased rates of BrdU incorporation (Fig. 
3B), cell proliferation (Fig. 3C, 3D), and single cell division (Fig. 
3E, 3F) induced by Cripto. This result suggested that STAT3 
plays an important role in the effect of Cripto on MSCs.

Cripto potentiates MSC survival via up-regulation of BCL3 
expression and inhibition of caspase-3 levels

STAT3 is usually translocated to the cell nucleus, where it 
acts as a transcription activator (Akira et al., 1994). To inves-
tigate the effect of STAT3 activation by Cripto on cell survival, 
we examined the level of the survival factor BCL3 in MSCs. 
Cripto increased the level of BCL3, which was inhibited by 
pretreatment with STAT3 siRNA (Fig. 4A, 4B). As Cripto in-
creased BCL3 level apparently through the up-regulation of 
STAT3, we hypothesized that incubation with Cripto could 
have a protective effect against H2O2- or hypoxia-induced cell 
death that can be prominent because of oxidative stress in 
various diseases. We therefore explored whether the increase 
in BCL3 expression induced by Cripto affected caspase-3 
levels augmented by the oxidative stress induced by H2O2 or 
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hypoxia. We also determined the efficiency of BCL3 siRNA 
transfection using a BCL3 western blot (Fig. 4C). As shown in 
Fig. 4D and 4E, Cripto reduced the increase in caspase-3 lev-
el induced by exposure to H2O2 and hypoxia. Notably, in both 
cases, the effects of Cripto were inhibited by pretreatment with 
BCL3 siRNA. The extent of cell death in response to H2O2 or 
hypoxia was monitored by using the annexin V/PI apoptosis 
assay and flow cytometry measurements. As shown in Fig. 
4F and 4G, both incubation with H2O2 and hypoxic conditions 

increased the proportion of apoptotic MSCs. However, a pre-
treatment with Cripto rescued MSC viability from detrimental 
effects of H2O2 and hypoxia. As in the case with caspase-3 dy-
namics, this effect of Cripto was inhibited by the pretreatment 
with BCL3 siRNA. These results suggested that up-regulation 
of BCL3 expression caused by Cripto has a key role in the 
protection against MSC apoptosis induced by oxidative stress.
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Cripto up-regulates expression of vascularization factors 
in a STAT3-dependent manner

It has been known that translocation of STAT3 into the nu-
cleus can affect factors related to angiogenesis, such as VEGF 
(Tan et al., 2016) , FGF (Xue et al., 2017), and HGF (Lee et 
al., 2016b). We found that exposure to Cripto increased ex-
pression levels of VEGF, FGF, and HGF (Fig. 5A, 5C, 5E). 
Furthermore, a pretreatment with STAT3 siRNA significantly 
suppressed the increase in the levels of VEGF, FGF, and HGF 
induced by Cripto (Fig. 5A, 5C, 5E). To confirm vascularization 
factors expression after Cripto treatment, we assessed the ex-
pression of human VEGF, human FGF, and human HGF. Crip-
to increased expression levels of VEGF, FGF, and HGF (Fig. 
5B, 5D, 5F). Furthermore, a pretreatment with STAT3 siRNA 
significantly suppressed the increase in the levels of VEGF, 
FGF, and HGF induced by Cripto (Fig. 5B, 5D, 5F).

DISCUSSION

In the present study, we demonstrated that Cripto strongly 

potentiated proliferation and survival of MSCs by activating 
JAK2/STAT3 signaling pathway in a GRP78-sensitive manner. 
In particular, exposure to Cripto augmented expression levels 
of cell cycle regulatory proteins, an anti-apoptotic protein, and 
several vascularization-related proteins. 

Although human MSCs have considerable potential to con-
tribute significantly to therapeutic transplantation of malfunc-
tioning tissues or organs, approved protocols that exploit such 
adaptability have not been worked out. The main limitation for 
mass production and use of MSCs as therapies is their low 
availability in human tissues. Thus, several previous studies 
sought to discover molecular pathways that could potentially 
stimulate reproductive induction of MSCs ex vivo for clinical 
purposes (Ball et al., 2007; Le Blanc et al., 2008; Bernardo 
et al., 2011). Accumulating evidence in the scientific literature 
suggests that Cripto and its numerous downstream molecules 
could enhance survival of diverse types of cells (Zhang et al., 
2010). However, the key role of the Cripto-STAT3-BCL3 path-
way, revealed by us in the present study, has not been report-
ed in studies of Cripto downstream signaling (Bianco et al., 
2002; Gray and Vale, 2012; Yao et al., 2015). Thus, the novel 
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protocol for the induction of MSC proliferation and survival 
by activating Cripto-mediated signaling, uncovers another 
potential way in which MSC preparations could be optimized 
for better therapeutic interventions. It has been shown pre-
viously that Cripto/GRP78 modulation of the TGF-β pathway 
enhanced stem cell proliferation, indicating that it could be an 
attractive therapeutic strategy for disease treatment (Gray and 
Vale, 2012). However, to the best of our knowledge, our study 
has demonstrated for the first time that Cripto can stimulate 
proliferation of MSCs through a novel signaling pathway. Our 
data showed that Cripto increased proliferation of MSCs in 
a concentration- and time-dependent manner. These results 
confirmed our hypothesis about the role of the Cripto pathway 
in the induction of MSC proliferation and indicated that Cripto 
may be a convenient target for modulation in mass production 
of MSCs ex vivo, allowing stem cell therapy to be a more ef-
fective clinical intervention.

It has been suggested that the effects of Cripto on cellu-
lar properties depend on the interaction of Cripto with GRP78 
on the cell surface (Shani et al., 2008; Kelber et al., 2009). 
Although GRP78 is primarily targeted to endoplasmic reticu-
lum, it can also be localized in the plasma membrane, where 
it performs a receptor-like function associated with enhanced 
cellular proliferation and survival (Gonzalez-Gronow et al., 
2009; Sato et al., 2010; Ni et al., 2011). In our study, we found 
that exposure to Cripto significantly increased GRP78 lev-
els, consistent with a previous study (Gray and Vale, 2012). 
In addition, we were able to discover that GRP78 is one of 
the membrane receptors for Cripto. It is known that GRP78 
overexpression not only induces cell proliferation and surviv-
al, but also influences other signal molecules related to cell-
proliferation and cell survival (Sato et al., 2010; Spike et al., 
2014). This suggests that Cripto regulates MSC proliferation 
and survival through enhancing the expression of GRP78. 
Treatment with a neutralizing anti-GRP78 antibody inhibited 
Cripto-induced increase in the expression levels of c-Myc, 
cyclin D1, phosphorylated JAK, and phosphorylated STAT3, 
suggesting that GRP78 is critical for the action of Cripto on cell 
proliferation pathways. It has been shown that overexpression 
of GRP78 increased its membrane expression and enhanced 
the amount of phosphorylated STAT3 as an immediate down-
stream effector (Yao et al., 2015). That finding suggested that 
STAT3 phosphorylation is an important event that potentially 
transduces the effects of Cripto-GRP78 interaction on the ex-
pression levels of phosphorylated STAT3, c-Myc, and cyclin 
D1. In our study, consistent with previous reports, we showed 
that STAT3 plays a critical role in the effect of Cripto on MSC 
proliferation: Cripto induced up-regulation of c-Myc and cyclin 
D1, downstream cell cycle regulatory proteins in the Cripto-
GRP78-Jak/STAT3 activation pathway, that was reduced by 
the pretreatment of MSCs with STAT3 siRNA. In addition, cell 
division, cell proliferation, as well as BrdU incorporation were 
all inhibited by STAT3 siRNA, further confirming the key role 
of STAT3 in the effect of Cripto on MSCs. Other components 
of the novel Cripto-STAT3 pathway discovered by us need to 
be revealed in future studies. In addition, it will be of interest to 
determine whether this pathway is operational in other types 
of cells.

A potential anti-apoptotic and pro-survival role for BCL3, 
which interacts with Cripto and STAT3, has been previously 
described (Lee et al., 2015a), although a variety of STAT3-
dependent signaling molecules act on cell survival and anti-

apoptosis (Zhou et al., 2015; Xu and Tang, 2017). Our previ-
ous study suggests that BCL3 is the key factor that protects 
MSCs from death due to oxidative stress (Lee et al., 2015a). 
Thus, our study focused on Cripto’s beneficial effects on cell 
survival via STAT3-dependent BCL3 and its ability to block 
downstream apoptotic signaling molecules. Our results were 
consistent with the notion made by previous studies that 
phosphorylated STAT3 could act as a transcription factor that 
regulates the level of BCL3, thereby preventing hypoxia-in-
duced apoptosis mediated by the activation of pro-apoptotic 
caspase-3. Caspase-3 has been known as an “effector cas-
pase” that when activated, cleaves other protein substrates to 
trigger apoptosis (Cohen, 1997). In contrast, BCL3 was found 
to exhibit anti-apoptotic properties (Ahmed and Milner, 2009). 
We created hypoxic environment by incubating cells with H2O2 
to enhance cellular caspase-3 level, and determined whether 
Cripto-BCL3 induction protects MSCs from apoptosis. West-
ern blot results demonstrated that upon exposure to Cripto, 
BCL3 levels in MSCs increased in a time-dependent manner, 
whereas caspase-3 levels were negatively correlated with the 
levels of BCL3. This finding indicated that BCL3 affected the 
level of downstream caspase-3 in the cell, which resulted in 
the prevention of apoptosis and prolonged survival of MSCs. 
In addition, when STAT3 level was reduced by the transfection 
of STAT3 siRNA, BCL3 protein levels, as well as anti-apoptotic 
effects of Cripto, were decreased in MSCs, suggesting that 

MSCsG
R

P
7
8

JAK2

STAT3

P

P

Cells
proliferation

Vascularization Cells
survival

c-Myc FGF

Cyclin D1 VEGF HGF BCL3

Cripto

Fig. 6. Schematic representation of the putative mechanisms by 
which Cripto increases proliferation, survival, and enhances se-
cretion of growth factors in MSCs. Exposure to Cripto increases 
the proliferative potential of MSCs via the activation of the JAK2/
STAT3 pathway and production of growth factors, such as FGF, 
VEGF, and HGF. In addition, Cripto promotes MSC survival by 
augmenting BCL3 expression in a STAT3-dependent manner.
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STAT3-mediated modulation of the BCL3 pathway is central to 
Cripto functions. The observed relationships between Cripto, 
p-STAT3, BCL3, and caspase-3 confirmed the notion about 
the involvement of Cripto in cell apoptotic pathways. It has 
been shown that the translocation of STAT3 into the nucleus 
triggers the production of FGF, VEGF, and HGF, which are 
major inducers of vascularization in MSCs (Niu et al., 2002; 
Dudka et al., 2010; Gorin et al., 2016; Xue et al., 2017). Such 
data prompted us to examine whether the levels of these vas-
cularization factors would be sensitive to the modulation of 
the Cripto-STAT3 pathway activity. Because the treatment with 
STAT3 siRNA attenuated the increase in VEGF, FGF, and HGF 
expression levels caused by Cripto, we concluded that Cripto 
affected the expression of vascularization factors through the 
STAT3 pathway. In our previous studies, we elucidated that 
an increase in VEGF, FGF, and HGF by external stimuli in-
duces vascularization of stem cells in an ischemic and hypoxic 
model (Lee et al., 2015a, 2015b, 2016a; Han et al., 2016). Al-
though our study does not explicitly show the effects of Cripto 
on vascularization, it sufficiently shows that VEGF, FGF, and 
HGF induced by Cripto could increase the differentiation and 
regeneration of the stem cells. Delivery of tissue constructs 
with adult stem cells into injured and ischemic tissues has 
emerged as a potential therapeutic option for tissue repair and 
regeneration. Thus, enhanced vascularization may consider-
ably improve clinical efficiency of MSC-based therapies.

In summary, our study revealed a novel method to improve 
the quality of MSC clinical preparations by using the ability of 
Cripto to enhance cell proliferation, survival, and vasculariza-
tion via a novel pathway that involves Cripto, GRP78, STAT3, 
and BCL3. According to our results, Cripto through its effects 
on stem cell proliferation and protection could yield better 
outcomes in degenerative and congenital disease treatment 
via stem cell therapy, drug delivery, and tissue engineering 
(Fig. 6). Moreover, given that practical and efficient ex novo 
generation of MSCs is essential for their clinical applications, 
modulation of the activity of this novel MSC-stimulating path-
way may bolster the efficacy of MSC replantation therapy.
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