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Abstract

Long lasting abusive consumption, dependence, and withdrawal are characteristic features
of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are
hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We
employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a
mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen
with AUD. This model has been shown to induce progressive ethanol consumption in
rodents. Brain CIE-responsive expression networks were identified by microarray analysis
across five regions of the mesolimbic dopamine system and extended amygdala with tissue
harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analy-
sis (WGCNA) was used to identify gene networks over-represented for CIE-induced tempo-
ral expression changes across brain regions. Differential gene expression analysis showed
that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure
only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, etha-
nol-responsive expression changes occurred mainly within the first 8-hours after removal
from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen
across multiple brain regions at early time-points, whereas co-expression modules related
to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-
points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was
identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and
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5 days following CIE, suggesting a possible role in mechanisms underlying long-term
molecular and behavioral response to CIE. Bioinformatics analysis of this network and sev-
eral other modules identified Let-7 family microRNAs as potential regulators of gene
expression changes induced by CIE. Our results suggest a complex temporal and regional
pattern of widespread gene network responses involving neuroinflammatory and neuroplas-
ticity related genes as contributing to physiological and behavioral responses to chronic
ethanol.

Introduction

Alcohol abuse and dependence have significant health and social consequences. Alcohol Use
Disorder (AUD) is characterized by chronic excessive alcohol consumption, often alternating
with periods of abstinence. Previous studies over the last two decades have suggested that neu-
roplasticity occurring in the brain’s reward and stress pathways contributes to the development
of AUDs, and that changes in gene expression may be an important molecular mechanism
underlying such neuroadaptations [1-4].

Genomic approaches involving microarrays or RNA-seq, together with scale-free network
analyses, have recently shown that gene networks of highly correlated expression patterns are
associated with acute or chronic ethanol exposure in brain tissue derived from animal models
and human autopsies [5-7]. Such networks often have conserved biological functions or regu-
latory mechanisms [8, 9] providing novel mechanistic information about the neural actions of
ethanol and other drugs of abuse [10]. Additionally, network topology analysis allows the iden-
tification of highly connected “hub genes” that have been shown to provide key regulatory
functions over expression networks [6, 8]. Applying such approaches to animal models of alco-
hol dependence could thus provide new understanding of mechanisms underlying associated
neuroplasticity, and identify new therapeutic targets for intervention in AUDs.

Although no animal model fully recapitulates the clinical characteristics of AUD, efforts to
more accurately reflect development of AUD have recently shown considerable progress in
providing predictive validation for new therapeutic targets [11, 12]. One such widely used
model is the chronic intermittent ethanol vapor (CIE) paradigm where rodents are exposed
intermittently to cycles of ethanol vapor such that they experience repeated cycles of exposure
and withdrawal [13-15]. Cycles of heavy use and withdrawal are seen in alcoholics [16] and are
thought to be an important component underlying the neuroplasticity that results in compul-
sive heavy abuse and frequent recidivism seen with AUD. The CIE model has been shown to
produce lasting increases in ethanol consumption as well as neurochemical, physiological and
synaptic structural changes [14, 17, 18]. However, the model obviously uses a much shorter
time frame for exposure (weeks-months) than seen in AUD, and oftentimes requires inhibitors
of alcohol metabolism so as to maintain higher blood alcohol levels [19]. Earlier genomic stud-
ies of CIE exposure in mice indicated brain regional and time-dependent changes in gene
expression that may contribute to the behavioral and physiological plasticity evoked by
chronic intermittent ethanol exposure [20]. However, a detailed network level analysis of gene
expression adaptations with CIE has not been performed. Such an approach could identify key
regulatory hubs that may play a significant role in mediating behavioral and physiological con-
sequences of CIE treatment.

Here we use the Weighted Gene Correlated Network Analysis (WGCNA) scale-free net-
work algorithm to analyze a detailed time-course study of CIE-evoked changes in gene
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expression across multiple brain regions comprising the mesolimbocortical dopamine and
extended amygdala pathways. These neural pathways are thought to have a pivotal role in the
development of excessive ethanol consumption associated with dependence [2, 3]. We found
both conserved and region-specific rapid waves of expression network changes occur across
multiple brain regions after ethanol withdrawal. However, following prolonged withdrawal (7
days), the hippocampus and the prefrontal cortex show persistent expression network alter-
ations. The functional and network topology analysis of such networks provides key targets for
future studies aimed at elucidating mechanisms of behavioral plasticity occurring with CIE. In
particular, we implicate a Bdnf-containing network in prefrontal cortex as a potentially impor-
tant contributor to the neurobiology of progressive ethanol consumption associated with
dependence.

Materials and Methods
Ethics Statement

All animal studies were approved by the Institutional Animal Care and Use Committee at the
Medical University of South Carolina (MUSC) and conducted in accordance with the guide-
lines outlined in the NIH Guide for the Care and Use of Laboratory Animals [21].

Animals and Chronic Intermittent Ethanol Exposure

Adult male C57BL/6] mice purchased from Jackson Laboratories (Bar Harbor, ME, USA) were
individually housed in an AAALAC-accredited animal facility under a 12-hour light/dark
cycle. Mice were given free access to food and water during all experimental procedures. After
a 2-week acclimation period, mice (n = 48) were exposed to chronic intermittent ethanol (CIE)
vapor or air in inhalation chambers, as previously described [14, 18, 19, 22]. Mice were divided
into two groups of 24. One group (CIE) received ethanol vapor exposure for 16 hours/day for 4
days while the other group was similarly handled but received only air exposure in the inhala-
tion chambers (Control; Ctrl). For CIE mice, ethanol was volatized by passing air through an
air stone submerged in 95% ethanol. Chamber ethanol concentrations were monitored daily
and air flow was adjusted to maintain ethanol concentrations within a range (10-13 mg/I air)
that has been shown to yield stable blood ethanol concentrations (175-225 mg/dl) in C57BL/6]
mice [14]. Before each chronic ethanol exposure cycle, intoxication was initiated in the CIE
group by administration of ethanol (1.6 g/kg), and blood ethanol concentration was stabilized
by injection of the alcohol dehydrogenase inhibitor pyrazole (1 mmol/kg). Both ethanol and
pyrazole were administered intraperitoneally (i.p.) in a volume of 0.02 ml/g body weight. Ctrl
mice were handled similarly, but administered saline and pyrazole (i.p.) prior to being placed
in control chambers that delivered only air (no ethanol vapor). Thus, all mice received the
same number and timing of pyrazole injections prior to final removal from the inhalation
chambers. Following 4 days in the inhalation chamber, mice underwent 7 days of complete
abstinence from ethanol. At the end of the abstinence period, mice were returned to the inhala-
tion chamber to begin the next cycle of CIE. This pattern of 4 days CIE (or control air) expo-
sure followed by 7 days abstinence was repeated for four complete cycles (Fig 1A). No animals
had visible signs of ill health and there was no animal mortality during the experimental
manipulations.

Tissue Harvesting and RNA Isolation

Immediately following the last cycle of air or ethanol exposure as above, mice were removed
from the inhalation chambers and euthanized at the appropriate time point by decapitation.
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Fig 1. Schematic representation of experimental design and analysis.

doi:10.1371/journal.pone.0146257.g001

Time points collected were 0, 8, and 72 hours (h) and 7 days (d), with n = 6 for each treatment/
time group (Fig 1A). Following decapitation, mouse brains were immediately extracted from
the skull, chilled on ice and dissected as described previously [20]. Tissue samples were frozen
on dry ice and stored at -80°C until processed for RNA isolation. Total RNA was isolated using
the RNeasy Mini Kit (Qiagen, Valencia, CA) exactly as described previously [20].

Gene Expression Microarrays

The MUSC ProteoGenomics Core Facility processed RNA samples for microarray analysis
using standard procedures as described by the manufacturer (Affymetrix, Santa Clara, CA).
Samples were processed as a group by brain region with treatment groups and time points ran-
domized to minimize batch effects. Gene expression was quantified with Affymetrix Gene-
Chip™ Mouse Genome 430A 2.0 arrays. Scanning data was stored in CEL file format using
Affymetrix Expression Console software, and these data files were transferred to Virginia
Commonwealth University (VCU) for further analysis. Raw data files (CEL files) and RMA
normalized expression values for all brain regions have been submitted to the Gene Expression
Omnibus (GEO) database under accession number GSE5217.

Microarray Analysis

Affymetrix GeneChip®™ Mouse Genome 430 2.0 arrays were analyzed using The R Project for
Statistical Computing (http://www.r-project.org/). RNA degradation, average background, and
percent present probesets were used to assess array quality, and inspect for outlier arrays. Qual-
ity of each microarray was also assessed primarily by principal component analysis. Plots of
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first principal component by second principal component allowed for visual identification of
outliers and batch effects between arrays. Background correction and normalization were per-
formed using the affy package for R [23]. Due to batch effects noted in principal component
plots, microarrays were separated by RNA hybridization batch for initial normalization. Each
batch was background corrected with the Robust Multi-array Average (RMA) technique and
normalized by quantile normalization [24]. The second step involved subjecting all microar-
rays together to another round of quantile normalization. Finally, ComBat with hybridization
group as the batch effect was used to remove any remaining batch effects reflected in the data
[25]. The only exception to this procedure was the prefrontal cortex where repeat group was
used as only the batch effect correction factor.

CIE Responsive Genes

CIE regulated genes were identified using the limma package for R [26]. Comparisons were
made between CIE and Ctrl groups at each time point (0Oh, 8h, 72h, and 7d), and overall signifi-
cance was determined by ANOVA. The Benjamini and Hochberg false discovery rate method
(FDR) [27], was used to account for multiple testing. For the purposes of these studies, false
discovery rates equal to or less than 0.01 were considered indicative of significant differences in
gene expression between CIE and Ctrl mice.

Weighted Gene Correlated Network Analysis

Weighted Gene Correlated Network Analysis (WGCNA) was used for scale-free network
topology analysis of microarray expression data [8]. WGCNA was performed on each brain
region independently with the WGCNA package for R [28]. Probesets were selected for
WGCNA based on overall significance by ANOVA (FDRs equal to or less than 0.01). Any pro-
beset found to be significant by ANOVA in any brain region was included, resulting in a total
of 10,072 probesets used for WGCNA. Standard WGCNA parameters were used for analysis,
with the exceptions of soft-thresholding power and deep split. A soft-thresholding power of 6
was used for all brain regions; this power was selected using methods described by Langfelder
and Zhang [28]. WGCNA was performed with deep-split values of 0-3. Deep-split value was
selected based on a multi-dimensional scaling (MDS) plot, which displayed first and second
principal components. The criterion for deep-split value selection was that no modules showed
overlap with each other by the MDS plot. Deep-split values of 3 were selected for all brain
regions, except the nucleus accumbens, where a deep-split value of 2 was chosen. Modules
were validated by bioinformatics analysis for over-represented biological functions (see below)
and a statistical analysis based a permutation procedure outlined by Iancu et al. [29]. Briefly,
the average topological overlap of probesets assigned to each module was compared to the
average topological overlap of 100 bootstrapped modules comprised of randomly sampled pro-
besets. Z-scores of average topological overlap between probesets assigned to the module, and
modules comprised of random probesets were used to calculate p-values and false discovery
rates (FDR). Modules with FDR values < 0.2 were considered significant.

Overlap Analysis

Overlap was determined between WGCNA modules and genes differentially expressed, as indi-
cated by LIMMA FDR values equal to or less than 0.01 at each time-point. Fisher’s Test for
Count Data [30] was then used to quantify the significance of overlap. WGCNA modules with
Fisher’s Test for Count Data p-values < 0.005 combined with odds ratios greater than 3 were
determined to be significantly over-represented for differentially expressed genes at a certain
time-point.
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Bioinformatics

Modules identified by WGCNA were examined for function using publicly available bioinfor-
matics resources. The Functional Annotation Chart tool from DAVID (http://david.abcc.
ncifcrf.gov/) [25] was used to identify biological pathways highly represented by genes grouped
into each module. GeneMANIA (http://www.genemania.org/) was also utilized for functional
analysis through use of constituent genes in each module as query lists for validation in Gene-
MANIA derived networks driven by previously published biological data sources (microarray,
protein-protein interaction and others) [31]. The miRvestigator Framework application
(http://mirvestigator.systemsbiology.net/) [32] was then used to identify microRNAs that may
regulate modules that significantly overlap with differentially expressed genes at Oh and 7d in
the PFC and HPC. The PFC and HPC were chosen for microRNA target analysis because these
regions showed an appreciable level of regulation with CIE at 7d. A complete workflow of
microarray analysis from tissue collection through bioinformatics is represented in Fig 1B.

Candidate Gene ldentification

The prefrontal cortex and hippocampus were chosen for detailed candidate gene characteriza-
tion because these brain regions showed both immediate and long-term (7d) CIE induced
changes in gene regulation (Table 1). Previous studies have shown a sustained increase in etha-
nol consumption at 7d post multiple CIE cycles [14], indicating that expression differences
found at this time-point may contribute to the alteration in ethanol consumption. We reasoned
that prolonged ethanol exposure-induced changes in gene expression (0h) might induce long-
lasting structural or functional components of synaptic plasticity and contribute to elevated
ethanol consumption, even if those genes mRNA expression patterns decayed to baseline over
the 7d withdrawal period. Therefore, we restricted our detailed bioinformatics analysis and
candidate gene identification to genes that were included in WGCNA, and showed significant
differential gene expression by LIMMA at Oh or at 7d (FDRs equal to or less than 0.01). Genes
fitting these criteria were then ranked by scaled within module connectivity (kIM) as described
by Langfelder and Horvath [28].

Results
Time-Course Gene Expression with CIE

Gene expression analysis with LIMMA identified significant differential expression between
CIE and Ctrl groups. The majority of gene regulation in all brain regions was observed during
the first 8h after the final cycle of chronic intermittent ethanol. The prefrontal cortex (PFC) or
hippocampus (HPC) showed the greatest number of CIE-regulated genes at any particular
time point and they were the only regions to show expression changes at all time points. The

Table 1. Linear Models for Microarray Analysis of Gene Expression.

Brain Region CIE Oh vs. Air Oh CIE 8h vs. Air 8h CIE 72h vs. Air 72h CIE 7d vs. Air 7d

PFC 3277 1527 238 427
NAC 717 28 0 0
HPC 865 967 3 604
BNST 1079 251 195 0
CEA 62 79 0 1

Number of significantly differentially expressed probesets at each time-point (LIMMA FDR < 0.01).

doi:10.1371/journal.pone.0146257.t1001
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contrasting response in PFC and HPC was particularly striking at the 7d time point where they
each showed hundreds of post-CIE regulated genes while other brain regions were virtually
quiescent (Table 1, S1-S5 Tables). Interestingly, the number of CIE-responsive genes at 7d in
PFC and HPC were both greater than the numbers seen at 72h, suggesting a possible late with-
drawal response or an unmasking of chronic CIE regulated genes following recovery from
acute withdrawal. As an additional validation of the results from these current studies, we com-
pared geneset membership of various time points and brain regions with those from a previ-
ously published initial analysis of expression responses to CIE [20]. In that analysis, PFC was
also noted to have the most prominent responses at Oh following CIE, and HPC had significant
withdrawal responses at 8h. Of these genesets, 48/284 genes overlapped with the PFC Oh
responses in this current study (p = 0.00015) and 32/129 genes in HPC overlapped with the
HPC 8h geneset (p = 6.01x10) in this current study (see S7 Table vs. S2 and S3 Tables in
Melendez et al., 2011). This degree of cross-study validation is strong support for the impor-
tance of the network studies described below that were the major focus of this current work.

Comparison of overlaps in CIE-regulated gene sets either across time points within a brain
region or across brain regions within a single time point revealed patterns of co-regulation. In
all brain-regions, the greatest amount of overlap across time periods was seen between Oh and
8h, but these patterns largely decayed by 72h in most brain regions (56 Table). Only PFC
showed significant temporal overlaps across all time points. In both the PFC and HPC, there
were over 100 probesets with overlapping regulation at both Oh and 7d, indicating that many
genes responding to CIE showed persistent changes following a prolonged withdrawal period
(Fig 2, S6 Table). Across brain regions, there was overlap in gene sets most prominently at the
0 and 8h time points (Fig 2). However, across brain-regions at 7d, only three genes overlapped
between the PFC and HPC and one gene between PFC and CEA (Fig 2). This finding shows
long-term gene regulation after CIE is specific to individual brain regions. There was also no
overlap seen between the PFC and BNST at 72h, suggesting that gene expression changes dur-
ing late withdrawal were also brain-region specific (Fig 2). Thus, four cycles of CIE induced
robust changes in gene expression across multiple brain regions that largely decay over a 72h
withdrawal period, except for PFC and HPC where region-specific persistent changes were
seen.

Weighted Gene Correlated Network Analysis

WGCNA identified expression modules in each of the 5 brain regions studied. Similar to differ-
ential gene expression analysis, the PFC (n = 31) and HPC (n = 27) had the largest number of
modules and CEA (n = 18) the least (Fig 3 and S1-S5 Figs). Module sizes varied from over
3000 probesets to less than 35 (Fig 3, S7 and S13 Tables). The vast majority of these modules
were validated by statistical comparison of topological overlap versus randomly permuted gen-
esets of the same size as an individual module (see Methods; S13 Table) or by bioinformatics
analysis for biological over-representation (see below). As expected, the “grey” module in each
brain region showed no statistical significance since these modules only contain genes not
gathered into other modules. However, HPC was an exception, where only 15/26 modules
(excluding grey module) reached statistical significance at an FDR <0.2.

We next evaluated all modules for over-representation of genes regulated by CIE in the
LIMMA analysis described above. Across all brain regions, 31 modules were significantly over-
represented with genes regulated by CIE at Oh, 23 at 8h, 9 at 72h, and 13 at 7d (Fig 3, and S13
Table). Importantly, of the 13 modules in hippocampus that were over-represented with CIE-
regulated genes at some time interval, only two (cyan and orange) had module topological
overlap significance scores with FDR > 0.2 (S13 Table). When genes within modules were
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Fig 2. Overlap between CIE- regulated probesets at each time-point across brain regions. Table documents number of probesets significantly
regulated by CIE (FDR < 0.01) at each time point within individual brain regions (shaded cells) and overlap with same timepoints across other brain regions.

doi:10.1371/journal.pone.0146257.9002

summarized as “eigengenes” (first principal component of expression patterns for all genes in
the module), a variety of temporal profiles were identified (Fig 4, S1-54 Figs). The topology of
kinetic profiles was most diverse in PFC and HPC while other brain regions mainly displayed
module eigengene profiles that decayed to control levels by 8 or 72h post withdrawal (Fig 4).
PFC and HPC were the exception with some modules displaying persistent or de novo expres-
sion changes at 7d in CIE-treated animals.

Commonly Occurring Biological Processes

Modules that significantly overlapped with differentially expressed genes at the Oh and 7d time
points were chosen to discuss further bioinformatics analyses because these time points repre-
sent the initial and sustained responses to chronic ethanol exposure (Fig 3, S7 Table). However,
over-representation analysis of all modules for all brain regions is contained in S8-S12 Tables.
At the Oh and 7d time points, a number of gene ontology categories showed significant over-
representation (p < 0.05) across modules in multiple brain regions. This suggests more global
functional changes produced by CIE being elicited at those time points. Gene Ontology catego-
ries were considered “commonly occurring” if they showed significant overlap with 10% or
more of all WGCNA modules across brain-regions (>12 modules). 10 GO categories were rep-
resented in 12 or more modules, and all of these were represented in all brain-regions studied
(Table 2, S14 Table). Functionally, these 10 fell into 4 general categories: RNA processing
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Fig 3. Overlap between CIE-regulated probesets and modules identified by WGCNA. Cell numbers
indicate number of overlapping probe-sets, Cell color indicates significant overlap. Significant overlap: p-
value < 0.005 and Odds Ratio > 3. Names and number of genes for each module are listed at far left
columns within each brain region.

doi:10.1371/journal.pone.0146257.g003

(GO:0006397~mRNA processing, GO:0008380~RNA splicing), DNA damage response
(G0O:0006511~ubiquitin-dependent protein catabolic process, GO:0010942~positive
regulation of cell death, GO:0006974~cellular response to DNA damage stimulus,
GO:0006457~protein folding), development and differentiation (GO:0045596~negative regu-
lation of cell differentiation, GO:0048732~gland development, GO:0051301 ~cell division),
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Fig 4. Representative kinetic profiles for module eigengenes. Module eigengene expression vs. time plots for the black, greenyellow, blue, and magenta
modules in PFC, pink module in NAC, salmon module in CEA, darkturquoise module in BNST, and turquoise module in HPC. (detailed discussion of module
functions in Results section). Triangle = CIE, Circle = Ctrl.

doi:10.1371/journal.pone.0146257.g004

and chromatin (GO:0000785~chromatin) (Table 2). Of note, ubiquitination and RNA-spicing
were two gene ontology functional categories identified in our earlier global study of CIE-reg-
ulated gene expression [20]. The two categories related to RNA processing contained several
DEAD box proteins (S8-S12 and S14 Tables). These proteins are known to function as RNA
helicases [33]. Serine/arginine matrix proteins (Srrml, Srrm2, Srrm3) were also represented in

these categories. Functionally, serine/arginine matrix proteins are involved in mRNA splicing
[34-36]. These three genes have also been found to be regulated by ethanol in multiple brain-

Table 2. Commonly Occurring Gene Ontology Categories.

GO Number

G0:0006397~mRNA processing
G0:0006457~protein folding
GO:0008380~RNA splicing
G0:0000785~chromatin
G0:0051301~cell division

G0:0006974~cellular response to DNA damage stimulus

G0:0010942~positive regulation of cell death
G0:0048732~gland development

G0:0006511~ubiquitin-dependent protein catabolic process
G0:0045596~negative regulation of cell differentiation

Number Modules

17
16
15
14
14
13
12
12
12
12

Gene Ontology categories seen in > 10% of modules across all brain-regions.

doi:10.1371/journal.pone.0146257.t1002

Number Brain-regions

[¢)]
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regions in mice and human alcoholics or correlated with ethanol consumption in previous
genomic studies [6, 7, 37]. Many genes were represented within in the categories related to
DNA damage. Uspl, Ube2d3, and Tecbl are just a few examples of genes within these catego-
ries that have also been found to be regulated by ethanol in cultured cells, mice, and rats [5,
38-40]. These results may in part be indicative of the genotoxic effects seen with high-dose
ethanol exposure [41].

Prefrontal Cortex. Overlap analysis between WGCNA modules and CIE-regulated gene
sets revealed 9 modules enriched for genes regulated by chronic intermittent ethanol at Oh in
PFC (Fig 3). Many of these modules contained genes involved in regulation of the cell cycle
and apoptosis (S8 Table). The salmon and green modules showed several GO hits related to
neuronal development, differentiation, and neuronal function. Genes within these GO catego-
ries included Bdnf, c-fos, Beor, Ppp2r3a, Hdac9 (green module), and Notchl, Sox21, Sema3f,
Gata2, Hdac2, Bmprla, Mkks (salmon module) (S7 and S8 Tables). A highly significant num-
ber of genes in the green module contained potential base pairing motifs (68% with 8 base
motif; 92% with 6 base-pairing match) for mmu-let-7c-1 (Fig 5a and 5b). Bdnf occupied a
highly interconnected central position in the green module (Fig 5b), while showing significant
expression changes only at the Oh time point (Fig 5¢). The salmon module similarly had 68% of
the genes with 8 base-pairing motifs for sequences within the miR-181 family and the let-7
family (S15 Table). These motifs were also contained in miR-543, miR-318, and miR-539-3p.

Given the potential role of Bdnf in mediating long-term plasticity underlying increased eth-
anol consumption after CIE [20, 42, 43], we performed further network analysis of the green
module (Fig 6). Strikingly, while many genes in the green modules show significant changes in
expression at the Oh time point (as seen with Bdnf—see Fig 5¢), there was also a group of genes
that showed changes at Oh and 7d (Fig 6b). Looking solely at genes within the green module
that were significantly regulated at 7d, network connectivity analysis within control vs. CIE
samples showed that this group had decreased a striking increase in connectivity in the CIE
samples at 7d versus Oh, or compared to the control samples at Oh or 7d (Fig 6a). Module
eigengene expression values for the green module genes significantly regulated at 7d reflected
the bimodal pattern, with decreased expression in CIE samples versus control at Oh and 7d
(Fig 6C).

Two additional modules, lightyellow and yellow, were enriched for genes that showed sig-
nificant differential expression between CIE and Ctrl at both the Oh and 7d time-points, but
not at 8h or 72h (Fig 3, S1 Fig). This functional overlap mirrors the overlap between the Oh and
7d time points seen with gene lists by LIMMA analysis (Fig 2, S6 Table). Contained in the light-
yellow module were genes involved in cell cycle regulation, nerve cell development, and organi-
zation of cell projections (S8 Table). The yellow module also included several genes related to
cell cycle regulation and vesicular trafficking. The latter group included Syn2, Syn3, Syt7, and
Syt11 (S6 Fig) [44-47]. These modules may thus include biological pathways relevant to both
immediate and long-term neuroplasticity resulting from CIE exposure, but not the physiologi-
cal effects of withdrawal, since there was no overlap with genes regulated at the 8h and 72h
time points that cover the interval of peak withdrawal [48, 49]. The PFC yellow module also
contained a high percentage of genes (70%) with 8 base-pairing motifs for mmu-let-7c-1-3p,
another let-7 family microRNA (S15 Table).

A total of 13 modules from PFC were enriched for genes regulated at the peak withdrawal
time-points of 8 and 72h post-CIE (Fig 3, S7 and S13 Tables). Only 3 of these modules were
enriched for genes significantly regulated both at 8h and 72h. These findings indicate that gene
expression functional patterns changed significantly as withdrawal progressed. Those modules
enriched for genes regulated at both withdrawal time-points contained genes involved in regu-
lating cell proliferation and cell death (S8 Table). The black module, one of the modules
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Fig 5. Bioinformatic analysis of PFC green module containing Bdnf. A) miRvestigator results of top miRNA motifs with complementary binding
sequences in the PFC Green module. B) Network representation of the PFC Green module based on adjacency. Edge transparency indicates Pearson
correlation coefficient. Node size reflects within-module connectivity determined by WGCNA. Node color indicates log-ratio of gene expression at 5 days CIE
vs. Ctrl. Genes with mmu-let-7c-1 complementary sequences are highlighted. C) Average RMA value (log2 scaled, £S.E.) expression of Bdnf at each time-

point and treatment condition in the prefrontal cortex. (* = LIMMA FDR < 0.05).

doi:10.1371/journal.pone.0146257.9005

significantly enriched at 8h but not 72h, contained genes involved in stress hormone response
and hypothalamic-pituitary-adrenal signaling such as Sgk1, Sgk3, and Nfkbia. These genes were
also regulated by acute ethanol in our prior studies [5, 6]. Three modules, lightgreen, magenta,
and tan, were over represented at both the 72h and 7d time-points. The tan and lightgreen
modules showed significant overlap (p-value < 0.05) with GO categories related to T-cell
mediated immunity (S8 Table), including I12, Il4, Igh-6, IGH-V]558 and Cebpg. Regulation of
these genes by ethanol has been demonstrated in mice and humans previously [7, 37]. These
modules may thus reflect biological processes having longer lasting regulation by withdrawal,
or they may represent long-term functional adaptations to chronic ethanol exposure that are
only apparent in the absence of ethanol. If the latter is the case, then such immunoregulatory-
laden modules could have an important role in long-term behavioral consequences of CIE.
Finally, 8 modules in the PFC were significantly overrepresented for genes differentially reg-
ulated only at 7d after the final cycle of CIE (Fig 3, S7 Table). All these modules contained
genes associated with neurodevelopment or neurotransmitter release (S8 Table). The greenyel-
low, lightyellow, pink, and red modules also had several gene ontology (GO) hits related to cal-
cium binding, and cytoskeletal organization and control. Similarly, GO hits related to the cell
cycle and cell proliferation were identified in the pink, red, tan, and yellow modules. Finally,
biological processes related to immune response were identified in the greenyellow and light-
green modules. The gene co-expression networks identified by WGCNA in PFC and regulated
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by CIE, therefore appear to represent both the lasting neuroplasticity and neuroinflammatory
responses to chronic ethanol exposure.

Nucleus Accumbens. Significant differences in gene expression between CIE and Ctrl
mice in NAc were only found immediately after the final cycle of CIE exposure (Oh) and during
acute withdrawal (8h) (Table 1). Seven WGCNA modules were enriched for genes expressed at
the Oh time-point (Fig 3, S2 Fig). Several of these modules showed overlap with GO categories
related to cellular stress response, metabolism, chromatin structure and regulation of gene
expression (S9 Table). For example, the salmon module contained genes significantly differen-
tially expressed at Oh in the NAC (Fig 3) and was over-represented for functions involved in
chromatin structure (S9 Table). Several genes in this general functional group of the salmon
module (Bptf, MysmI and Ube2b) all were previously shown to respond to acute ethanol in
mice [6]. The brown module also showed significant expression changes at the Oh time point
and had a striking enrichment for genes involved in RNA splicing and processing (S9 Table).

Hippocampus. Hippocampus showed the second greatest amount of differential gene
expression between Ctrl and CIE mice. This brain region was also the only one, besides the
PFEC, to show significant differential gene expression at both Oh and 7d (Table 1). Furthermore,
the HPC had the largest number of genes showing differential expression at 7d (604) with the
vast majority of these residing within the turquoise module (408/604; see Fig 3). Overall, 27
modules were identified by WGCNA in the HPC, and 5 of these were significantly overrepre-
sented for genes regulated by CIE at 7d (Fig 3, S7 and S13 Tables, S3 Fig). All 5 of these mod-
ules were statistically significant on topological overlap analysis (513 Table). Furthermore,
there was a highly significant overlap of genes regulated at Oh or 7d in HPC. The Oh and 7d
time points showed 796 and 556 genes, respectively, significantly regulated by CIE at FDR<
0.01 (Fig 3). These gene sets showed an overlap of 104 genes (p< 2.2 x 10-16; Fisher’s Exact
Test), with 89 of these residing in the turquoise module (Fig 3, S7 Table).

The turquoise module in HPC was enriched for CIE-regulated genes at both the Oh and 7d
time points and contained over 3000 genes, producing a complex bioinformatics analysis.
Gene ontology analysis of the entire module showed strong over-representation for several
functional groups potentially relevant to long term synaptic plasticity (S10 Table). These
included extended groups of genes functioning in chromatin modification (Fig 7) such as his-
tone acetylation (including Baz2a, Brd8, Hdac4, Hdac6, and Myst3), histone/DNA methylation
(Kdméb, Kdm5c, Suv38H1, Suv420H1, and Dnmt3a), chromatin remodeling (Baz1b, Smarca4,
Smarca5, SmarcaLl, SmarcCl, SmarcEl), and histone/nuclear protein ubiquitination (Ube2b,
Ube2n, Ubnl, Usp16, and Usp22). Similar results were found on over-representation analysis of
only the genes showing CIE regulation (p< 0.05) at the 7d time point (S10 Table). Network
connectivity analysis identified several highly connected hub genes in the HPC turquoise mod-
ule, as discussed further in the Candidate Gene Identification section below.

Other HPC modules over-represented for genes regulated by CIE at 7d included the brown
module, the only other module containing genes regulated at both Oh and 7d (Fig 3). This mod-
ule contained genes related to immunity and cellular stress responses, including several genes
encoding components of the major histocompatibility complex (S10 Table). Three HPC mod-
ules, magenta, tan, and yellow, were enriched for genes regulated by CIE at only the 7d time-
point. The magenta module contained genes functioning in neurodevelopment, neuroplastic-
ity, and synaptic transmission. These include Vegfc, Notchl, Ppap2b, Scg2, and several Sox fam-
ily genes (S7 Fig) [50-54]. The yellow module also included genes known to be involved
synaptic transmission such as glutamate receptors (Grial, Grik2) and the D1 dopamine recep-
tor gene (S7 and S10 Tables) [3, 55-57].

Of the HPC modules significantly overlapping with genes regulated by CIE only at Oh or 8h,
most represented Gene Ontology hits seen in other brain regions such as immunity, cellular
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Fig 7. GeneMANIA analysis of genes from HPC turquoise module related to chromatin modification.
Chromatin modification genes were identified from Gene Ontology analysis of the HPC turquoise module
(S10 Table) and submitted to the GeneMANIA resource (www.genemania.org) for identification of network
interactions using default criteria and databases.

doi:10.1371/journal.pone.0146257.g007

stress response, RNA splicing, transcription, and cell proliferation (S10 Table). Of note, our
prior initial genomic analysis of CIE responses in hippocampus showed very prominent
expression changes during acute withdrawal (8h) that included over-representation of genes
involved in RNA splicing [20].

Bed Nucleus of the Stria Terminalis. The BNST was the only brain region other than
PFC that showed significant gene regulation at 72h post-CIE (Fig 3, 54 Fig). Three modules
were significantly overrepresented for genes regulated at only the 72h time-point. Two of these
modules, tan and lightgreen, contained several genes related to neurodevelopment, and synap-
tic transmission (S7 and S8 Figs). These included Ndrgl, a myelin-related gene identified as an
acute ethanol-responsive gene in our prior studies [5, 6, 58], (S7 and S11 Tables). The third
72h module, darkturquoise, contained genes related to the Ras GTPase intracellular signaling
cascade. An additional 6 modules in the BNST (black, brown, green, midnightblue, pink, and
yellow) were overrepresented for genes regulated by CIE at Oh, 8h, or both times (Fig 3, S4 Fig).
Functionally, these modules contained genes overlapping with GO categories related to
immune response, chromatin organization, transcription regulation, cell cycle control, and
development (S11 Table).

Central Nucleus of the Amygdala. The CEA showed the least amount of differential
expression between CIE and Ctrl mice at all time-points (Table 1) and, subsequently, fewer
modules were identified by WGCNA than in the other brain regions (Fig 3, S7 Table). The
CEA magenta and salmon modules were significantly enriched for genes expressed at both Oh
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and 8h post-CIE (Fig 3, S2 Fig). Bioinformatics analyses revealed that the magenta module
contained genes related to immune response, particularly those encoding components of the
major histocompatibility complex (S12 Table). Analysis of the salmon module identified sev-
eral GO hits related to cell proliferation through negative regulation of programmed cell death.
NF-«B was also identified as binding partner to multiple genes within the salmon module (S12
Table). Thus, NF-kB represents a possible target for network modulation in the CEA (S10 Fig).

The CEA yellow module was overrepresented for genes regulated at the Oh time point only.
This module contained multiple genes related to neurodevelopment and synaptic transmission.
Individually, only Kiflb was significantly regulated by CIE treatment in the CEA, but multiple
other yellow module genes (including Myo5a, Als2, Digap1, Egr3, Agtpbp1, Stx4a, Mecp2,
Mylk2, Cacnb2, Lin7a, Psenl, Gria2, Trim9, Ssyn2, Chrna7, Ppp3ca, Bdnf, Grm5, Dlg4, Ncs1,
Adrala, and Lgil) were contained in 4 Gene Ontology categories related to synaptic transmis-
sion (S12 Table).

Two modules, pink and tan, were overrepresented for genes regulated by CIE only at the 8h
time point, a time of peak withdrawal. The tan module was enriched with genes related to cellu-
lar stress response, many of which have been previously been associated with ethanol response
in mice and humans (Hsp5a, Cebpb, Dnajb9, Herpudl, Hes5, Creld2) [5, 7, 37]. Analysis of the
pink module also identified biological pathways representing cellular stress response, and
included several genes previously identified as ethanol-responsive in brain, such as Tsc22d3,
Arrdc2, Htral, Gelm, and Mt1 [7, 37] (S7 and S12 Tables).

Candidate Gene Identification

To identify candidate genes for future study as major regulators of CIE-associated increased
ethanol consumption, we focused attention on PFC and HPC where CIE-responsive genes
(FDR<0.05) were identified at 7d after removal from the vapor chambers. Furthermore, we
identified hub genes having the highest scaled intramodular connectivity (kIM) (Tables 3 and
4, S17 Table), to focus on potential major regulators of network function [59].

Genes regulated by CIE in PFC at 7d and within the top 30 highest KIM scores, included
Myoz1 and Sgsh (S17 Table, Fig 8), with the former only becoming significantly different from
Ctrl at the 72h and 7d time points. This strongly supports a possible role for MyozI in longer
term adaptations resulting from CIE. Previous studies from this laboratory have shown Myoz1
expression correlates with individual variation in ethanol consumption in C57BL/6 mice [60].
Mpyoz1 is most highly expressed in skeletal muscle but brain microarray databases suggest
widespread lower expression in brain (www.genenetwork.org). The protein associates with the
actin cytoskeleton and may play a role in determining cell shape [61]. Sgsh has also been corre-
lated with ethanol behaviors in previous studies [37, 62] and found to have altered expression
in alcoholic brain postmortem tissue [7]. Sgsh is involved in glycosaminoglycan degradation
and mutations in the gene cause mucopolysaccharidosis IIIa. As two of the most highly con-
nected genes within their respective modules, MyozI and Sgsh may represent important regula-
tory proteins within a biological pathway induced by chronic ethanol exposure.

In the HPC, 1352 of the 10,072 probesets used for WGCNA were regulated by CIE (FDR<
0.05) at 7d. Interestingly, 60% (19/30) of the top 30 most highly connected genes in the HPC
were within the turquoise module (S17 Table), even when within-module connectivity was
scaled by the number of total genes in the module. The highly connected genes in the turquoise
module represent a variety of biological functions from DNA processing to vesicle trafficking
(Table 4, and S10 Table). Among the most highly connected genes in any HPC module were
Vegfa, Parp9, and Dnmt3a (S17 Table, Table 4, Fig 8b). All these genes have previously been
associated with ethanol responses in the literature [20, 62, 63]. Perhaps most strikingly
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Table 3. Prefrontal Cortex Candidate Genes.

ProbesetlD Gene Symbol Within Module Connectivity FDR CIE 7 days vs. Air 7 days
1439113_at 2410018L13Rik 1.000 0.003
1460202_at Myoz1 1.000 0.003
1455946_x_at Tmsb10 1.000 0.007
1422988 _at Sgsh 1.000 0.010
1436556_at A930027H06Rik 1.000 0.011
1417711 _at 0610012D09Rik 1.000 0.020
1418694 _at Kemf1 1.000 0.033
1433996_at Suv39h2 1.000 0.034
1425943_at Nmur2 1.000 0.042
1432306_at Rapgef5 0.985 0.013
1428006_at Scfd1 0.979 0.044
1432615_at Wdr37 0.976 0.001
1421837_at Rps18 0.971 0.000
1430764 _at 1700023F06Rik 0.931 0.014
1431466_at 4930553D19Rik 0.918 0.003
1446239_at 4921522A10Rik 0.908 0.001
1416893_at Fam107b 0.898 0.033
1422166_at Clec2i 0.895 0.005
1454088 _at 5330411013Rik 0.893 0.001
1443872_at March2 0.892 0.034
1445578 _at Elovl6 0.887 0.005
1459149_at Zfp809 0.881 0.013
1416154 _at Srp54 0.873 0.012
1459941 _at 4933402J24Rik 0.871 0.017
1447850_x_at Tex27 0.866 0.001
1432346_a_at Cdh23 0.863 0.034
1423618_at Bin1 0.857 0.005
1441289_at Clorf54 0.842 0.000
1445973_at C79461 0.839 0.001
1431332_a_at Terf1 0.833 0.039

Top 30 most highly connected genes significantly differentially expressed 7 days (LIMMA FDR adjusted p-values < 0.01) in the prefrontal cortex. Scaled
module connectivity = within module connectivity/maximum number of connections possible as determined by WGCNA.

doi:10.1371/journal.pone.0146257.1003

regarding the highly interconnected turquoise module was the large subgroup of genes
involved in chromatin modification (S10 Table). Fig 7 illustrates an external validation of this
subnetwork, where the chromatin modification-related genes of the turquoise module were
analyzed using the GeneMania bioinformatics tool (www.genemania.org) to illustrate connec-
tivity between these genes using external data sources.

Discussion

The investigation described in this manuscript employed a network-centric approach to iden-
tify brain region and time specific gene expression regulation by multiple cycles of chronic
intermittent ethanol vapor exposure, an experimental model known to cause increased ethanol
consumption [14, 15, 64]. Prior genomic studies have been conducted using similar vapor
exposure models in mice and rats [20, 65], but this is first detailed network analysis to be
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Table 4. Hippocampus Candidate Genes.

ProbesetiD

1428941 _at
1423065_at
1448940_at
1426964 _at
1416897 _at
1429537 _at
1420909_at
1451941_a_at
1447903_x_at
1436343_at
1439300_at
1445499_at
1460426_at
1456316_a_at
1438069_a_at
1437638_at
1440375_at
1456110_at
1430599_at
1434055_at
1435477 _s_at
1420402_at
1438929_at
1423184 _at
1451564 _at
1456262_at
1427401 _at
1458147_at
1438476_a_at
1434020_at

Gene Symbol Within Module Connectivity FDR CIE 5 days vs. Air 7 days
Zmym2 1.000 0.027
Dnmt3a 1.000 0.007
Trim21 1.000 0.046
3110003A17Rik 1.000 0.034
Parp9 0.991 0.006
Srrp130 0.974 0.030
Vegfa 0.968 0.045
Fegr2b 0.968 0.004
Ap1s2 0.967 0.027
Chd4 0.966 0.014
Chict 0.962 0.020
Zc3h13 0.961 0.016
9430063L05Rik 0.957 0.018
Acbd3 0.956 0.008
Rbm5 0.955 0.018
Srrm2 0.950 0.004
5730419109Rik 0.949 0.016
3010027A04Rik 0.947 0.018
Myti1l 0.943 0.006
Galnt9 0.942 0.038
Fegr2b 0.942 0.004
Atp2b2 0.937 0.028
Actria 0.935 0.009
Itsn2 0.935 0.010
Parp14 0.935 0.041
Rbm5 0.934 0.023
Chrna5 0.933 0.005
Mamdc1 0.933 0.020
Chd4 0.926 0.005
Pdap1 0.924 0.010

Top 30 most highly connected genes significantly differentially expressed 7 days (LIMMA FDR adjusted p-values < 0.01) in the hippocampus. Scaled
module connectivity = within module connectivity/maximum number of connections possible as determined by WGCNA.

doi:10.1371/journal.pone.0146257 1004

performed on the time course of gene expression changes in this powerful behavioral model.
Network analysis with WGCNA revealed modules of co-expressed genes regulated by CIE that
showed remarkable time and brain-region specific expression patterns, with PEC and HPC
showing the largest and most persistent expression changes. Functionally, chronic intermittent
ethanol exposure and withdrawal caused time- and region-specific gene expression changes
reflecting neuroplasticity, neuroimmunity, and neuroendocrine signaling responses to chronic
ethanol. Additionally, our analysis suggests that possible mechanisms underlying persistent
expression changes following chronic ethanol may involve regulation by miRNA and chroma-
tin remodeling.

The prefrontal cortex and hippocampus were most affected by chronic ethanol, both in
terms of number of differentially expressed genes at all 4 time-points, and as indicated by sus-
tained gene expression changes at 7d post-CIE (Table 1; S1 and S17 Tables). Indeed, it was
somewhat surprising that areas such as the BNST, CEA and particularly NAC did not show
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Fig 8. Expression patterns for representative candidate genes. A) Average RMA value (log2 scaled)
expression of candidate genes at each time-point and treatment condition in the PFC cortex. (* = LIMMA
FDR < 0.05, ** = LIMMA FDR < 0.01) B) Average RMA value (log2 scaled) expression of candidate genes
at each time-point and treatment condition in the HPC. (* = LIMMA FDR < 0.05, ** = LIMMA FDR < 0.01).

doi:10.1371/journal.pone.0146257.9g008

persistent changes induced by CIE. These regions did show strong responses at 0-8h after
removal from the vapor chambers, particularly in regard to stress/inflammation-related func-
tions (see below) and it is certainly possible that these mRNA expression changes evoked long-
lasting translational or post-translational alterations that were relevant to long-lasting behav-
iors, but this will require additional study at the protein, structural or functional level to con-
firm such a hypothesis.

The findings presented in this study strongly implicate prefrontal cortex and hippocampus
as brain regions most robustly influenced in terms of genomic regulation by CIE exposure,
both at immediate time-points (Oh) and after long-term abstinence (7d). The long-term
changes in gene expression (Table 1, S1-S5 Tables) were of most interest because these possibly
underlie behavioral responses to repeated chronic intermittent ethanol exposure, such as esca-
lation of voluntary consumption observed in previous studies [14, 15]. Chronic heavy, and
even moderate, ethanol intake has been shown to impair memory and hippocampal neurogen-
esis in humans and rodents [66, 67]. The hippocampus has also been implicated in withdrawal
seizures, though there are mixed findings about the relationship between hippocampal atrophy
with chronic heavy drinking, and onset and severity of withdrawal seizures [68-73]. Gene
expression changes in the prefrontal cortex in response to both acute and chronic ethanol
exposure have been demonstrated in mice and humans [5, 20, 65-67]. The prefrontal cortex's
involvement in impulse control is hypothesized to underlie the ethanol seeking behaviors,
increased consumption, and lack of control over intake associated with alcohol use disorders
[74-76].

In contrast to the long lasting changes noted for PFC and HPC gene expression, chronic
ethanol exposure and acute withdrawal, represented by tissue collected at 0-72h, affected all
brain regions studied (Figs 2 and 3, Table 1). The greatest amount of overlap in differential
gene expression, across all brain regions, also occurred at 0 and 8h (Fig 2). Functional over-
representation studies showed, across all brain regions, an over-representation of genes
involved in development, cell stress, programmed cell death, and immune responses at the Oh
time point (S8-S12 Tables). The CIE magenta module, in particular, showed striking over-
representation for genes related to MHC class 1 antigen responses with an over 2-fold up-regu-
lation of H2-K1 and H2-L at Oh (S12 Table). The HPC brown module showed similar results
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(S10 Table). While many of these responses resolved as withdrawal proceeded to 72h and 7d,
both HPC and PFC had persistent regulation of genes relating to immune responses at 7d. The
strong presence of immune response genes across time points and brain regions in this study
on CIE is consistent with observations from expression profiling of human autopsy brain mate-
rial from alcoholics and subsequently validated in animal models [77]. Additionally, multiple
recent studies have reported that intermittent ethanol exposure in adolescent animals can
induce persistent changes in ethanol behaviors, including in adulthood, and that neuroinflam-
matory responses are a critical aspect of these responses to ethanol [78]. Together, these studies
have suggested that ethanol-evoked activation of brain inflammatory responses may not just be
a toxic response to ethanol, but could also play an important role in neuroadaptations leading
to compulsive consumption. Neuroimmune responses have previously been implicated in
other forms of experience-induced or developmental plasticity [79].

A priori, it was assumed that CIE would regulate networks of genes related to synaptic func-
tion, plasticity or development as part of the molecular events leading to progressive ethanol
consumption following CIE. Indeed, gene modules over-represented with such functional
groups were detected and showed regulation by CIE particularly at early time points (S8-S12
Tables). The PFC salmon module was significantly enriched for immediate early genes at the
Oh time-point and several gene ontology hits related to neurodevelopment (S8 Table). Notchl,
Sox2, and Bmprla are among the genes in the PFC salmon module with known roles in neuro-
development. In particular, these genes have been shown to be important for the process of
adult neurogenesis [50, 80-82]. Neurogenesis continues to occur into adulthood in the lateral
ventricles and the dentate gyrus of the hippocampus [83, 84]. Studies examining adult neuro-
genesis occurring in other areas of the brain, including the medial prefrontal cortex (mPFC),
have had mixed results [85-91]; but it has been shown that chronic stress and chronic alcohol
exposure lead to observable structural and functional changes in the mPFC [92-98]. The PFC
salmon module in this data set, therefore, may represent the effect of CIE on neurogenesis in
the PFC of adult mice.

The PFC green module also contained genes related to neuroplasticity, notably Bdnf. Bdnf
has previously been studied as a potential candidate gene for the genesis of alcohol use disor-
ders. Previous studies have shown that Bdnf regulates neurodevelopment [99], synaptic plastic-
ity [100], and is regulated by several drugs of addiction including ethanol [5, 101-105]. In
looking more closely at the time-course of Bdnf expression in the PFC after CIE, Bdnf was sig-
nificantly down regulated with CIE at Oh, in agreement with several prior studies on either CIE
or intermittent oral ethanol consumption [20, 42, 43]. However, between 8h and 72h, Bdnf
mRNA levels returned to control levels such that at 7 days, Bdnf gene expression was not signif-
icantly different between CIE and Ctrl mice (Fig 5¢, S1 Table). This does not exclude the possi-
bility that changes in BDNF protein might persist for more prolonged withdrawal periods
[106]. Additionally, we found that a subgroup of genes in the PFC green module (not contain-
ing Bdnf) did show altered expression at both 0h and 7d post-CIE (Fig 6b). This subgroup of
PFC green module genes also showed network level increases in connectivity at 7d post-CIE
(Fig 6a). This may be further evidence for the role of a Bdnf-related gene network in the long-
term neuroadaptive events leading to increased ethanol consumption following CIE exposure.

Studies by two separate laboratories using the vapor chamber CIE model in rats [43] or the
intermittent ethanol consumption model in B6 mice [42], recently showed that chronic inter-
mittent ethanol down-regulates mPFC Bdnf expression via increasing expression of select
microRNA species, with resultant increases in ethanol consumption. Using a 7-week ethanol
vapor exposure model, Tapocek et al. showed that reduced Bdnf expression in mPFC was
accompanied by region-selective persistent increases in expression of miR-206 and that viral
vector over-expression of miR-206 could, in itself, decrease mPFC Bdnf, with subsequent
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increases in ethanol consumption. Darcq et al. showed similar results in a mouse chronic inter-
mittent binge ethanol model, including transient upregulation of miR-1. The miR-1 miRNA
family includes miR-206. However, Darcq et al. also found involvement of miR-30a-5p, includ-
ing that inhibition of miR-30a-5p action could reverse the increased consumption caused by
intermittent ethanol access [42]. In our own analysis of miRNA binding site over-representa-
tion among genes of the PFC green module, binding sites for both miR-30a (p = 0.003) and
mmu-miR-1a/mmu-miR-206 (p = 0.04) showed nominally significant potential binding motifs
among genes in the PFC green module using MiRvestigator Framework (S15 Table), suggesting
that these miRNA families may be involved in regulation of green module genes beyond Bdnf
alone. Future direct studies will be needed to confirm such i# silico findings.

Additionally, our studies suggested that the PFC green module was over-represented with
binding sites for the let-7c-1 group of miRNA, with 6 base motifs for let-7c-1 being found in
over 90% of the green module genes (p< 0.00024; Fig 5). MiRvestigator Framework web-soft-
ware also revealed that 12 differentially regulated modules in the PFC and HPC were enriched
for potential let-7 family target genes (Fig 5; S15 and S16 Tables). Let-7 was one of the earliest
microRNA's discovered, and is highly conserved in function across species [107]. In the brain,
in addition to being a key regulator of cell differentiation in early development, previous stud-
ies have shown that let-7 expression is regulated by several types of neurodegenerative pro-
cesses, from prion disease to ischemic brain injury [108-111]. We thus suggest that CIE
exposure may increase long-term consumption through a miRNA-dependent regulation of the
green module genes, including a role for the le-7 miRNA family, which could impact CIE regu-
lation of other modules as well. This hypothesis complements the prior direct work on Bdnf
and suggests that mechanisms underlying regulation of the green module by chronic ethanol
could be a novel target for future therapeutic approaches in treatment of alcohol use disorders.
Confirmation that let-7c- I regulates genes of the PFC green module in vitro and in vivo is
required before such a hypothesis could be tested and is the subject of ongoing studies.

Long-term gene expression and behavioral changes resulting from CIE exposure require a
mechanism for persistence in the absence of further ethanol vapor exposure. Epigenetic mecha-
nisms have lately been implicated as a causal factor for long-term functional and behavioral
changes evoked by ethanol and other drugs of abuse [112, 113]. It is certainly possible that syn-
aptic reorganization caused, for example, by miRNA-driven alterations in Bdnf expression,
could subsequently produce persistent changes in synaptic function and behaviors. Our time
course analysis of expression changes following CIE provided strong preliminary evidence for
additional epigenetic mechanisms possibly influencing persistent changes in ethanol consump-
tion following CIE exposure. The striking over-representation for chromatin modification (Fig
7) in hippocampal turquoise module genes regulated by ethanol, suggests a mechanism for
long-lasting shifts in transcriptional adaptations to CIE in hippocampus. Our candidate gene
analysis for hub genes further emphasized the potential importance of these chromatin modifi-
cation genes in CIE-associated expression network structure (Fig 8, Table 4, S17 Table). Ongo-
ing studies in our laboratories seek to identify such epigenetic signatures amongst
hippocampal networks showing long-lasting expression changes following CIE.

The discussion above regarding our findings must be taken with several possible experimen-
tal confounds in mind. First, the studies here did not employ ethanol consumption as part of
the design. While the CIE protocol of repeated ethanol vapor chamber exposure has been
shown to increase subsequent ethanol consumption, we cannot definitively say that any partic-
ular expression network is related to ethanol consumption since this wasn’t tested. Secondly,
there are several factors that could have influenced brain gene expression on their own or by
interacting with ethanol. These include possible general metabolic factors triggered by the
repeated ethanol vapor exposures. While there was no lethality or obvious toxicity from the
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treatment protocol for the animals in this experiment, we did not directly test factors such as
possible hypothermia, circadian rhythm disturbances, stress hormone factors or metabolic
abnormalities (e.g. liver dysfunction). The use of pyrazole to maintain stable blood alcohol lev-
els has been widely reported with the CIE model in mice and control animals also had identical
pyrazole exposure. However, we cannot eliminate the possibility that some interaction between
pyrazole and ethanol could have contributed to the brain gene expression patterns we report.
Finally, the expression networks identified here might influence or be related to behavioral
aspects of chronic ethanol other than progressive consumption. Although prior reports [14]
have suggested that increased ethanol consumption after CIE is not due to an ethanol-depriva-
tion effect [114], neuroadaptations related to ethanol withdrawal, rather than chronic ethanol
per se, might contribute both the expression networks observed here and the increased ethanol
consumption seen following CIE. Overall, however, the characteristic time course of expression
changes seen in this work strongly suggests that many of the gene networks highlighted here
are directly related to chronic ethanol exposure and withdrawal.

In conclusion, differential gene expression and scale-free network analysis has revealed
region-specific correlated changes in gene expression with chronic intermittent ethanol expo-
sure in the mesolimbocortical dopamine and extended amygdala pathways. Our bioinformatics
investigation has shown some conservation of functional groups, both across brain regions and
time points, among the differentially regulated networks. In general, neuroinflammatory
responses were seen across multiple brain regions at early time points, while genes involved in
development, neuroplasticity, and chromatin remodeling where found to be over-represented
at 3-7d post ethanol vapor. Remarkably, PFC and HPC were the only regions of the five sur-
veyed that showed expression changes at 7d after removal from the vapor chamber model of
chronic ethanol exposure. Since animals offered oral ethanol intake at that time will show
increased consumption, these PFC and HPC networks may have a significant mechanistic role
in the neuroplasticity underlying progressive ethanol consumption. The Bdnf-containing green
network from PFC is a major target for future confirmatory studies since other investigators
have previously implicated a miRNA-directed regulation of Bdnf consequent to chronic etha-
nol exposure in the mechanisms of progressive ethanol consumption. Importantly, however,
our studies suggest that members of the green network other than Bdnf may also be involved in
the long-lasting molecular mechanisms underlying increased ethanol consumption. Finally,
our discovery of a striking subgroup of genes involved in chromatin modification having
altered expression in HPC at 7d post ethanol vapor suggest future studies on chromatin struc-
ture as an important regulatory event contributing to long-term abusive ethanol consumption
patterns as seen in alcoholism. Taken together, these findings provide novel and significant
insight to the molecular neurobiology contributing to abusive alcohol consumption, and could
thus eventually lead to development of new therapeutic strategies for AUD.

Supporting Information

S1 Fig. Multi-dimensional scale plots of the first and second principal component of each
module identified by WGCNA in the prefrontal cortex (PFC); hierarchical cluster dendro-
gram using the module eigengenes (first principal component) of each PFC module; and
line graphs of average module eigengene expression in Ctrl and CIE samples at each time-
point.

(PDF)

$2 Fig. Multi-dimensional scale plots of the first and second principal component of each
module identified by WGCNA in the nucleus accumbens (NAC); hierarchical cluster den-
drogram using the module eigengenes (first principal component) of each NAC module;
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and line graphs of average module eigengene expression in Ctrl and CIE samples at each
time-point.
(PDF)

S3 Fig. Multi-dimensional scale plots of the first and second principal component of each
module identified by WGCNA in the hippocampus (HPC); hierarchical cluster dendro-
gram using the module eigengenes (first principal component) of each HPC module; and
line graphs of average module eigengene expression in Ctrl and CIE samples at each time-
point.

(PDF)

S4 Fig. Multi-dimensional scale plots of the first and second principal component of each
module identified by WGCNA in the bed nucleus of the stria terminalis (BNST); hierarchi-
cal cluster dendrogram using the module eigengenes (first principal component) of each
BNST module; and line graphs of average module eigengene expression in Ctrl and CIE
samples at each time-point.

(PDF)

S5 Fig. Multi-dimensional scale plots of the first and second principal component of each
module identified by WGCNA in the central nucleus of the amygdala (CEA); hierarchical
cluster dendrogram using the module eigengenes (first principal component) of each CEA
module; and line graphs of average module eigengene expression in Ctrl and CIE samples
at each time-point.

(PDF)

S6 Fig. Network representation of the PFC Yellow module based on adjacency. Edge
transparency = Pearson correlation coefficient. Node size = within module determined by
WGCNA. Node color = Log-ratio of gene expression at 5 days CIE vs. Ctrl. Genes involved in
neurotransmitter release at the synapse highlighted. Network representation built using the
Cytoscape resource (http://www.cytoscape.org).

(PDF)

S7 Fig. Network representation of HPC Magenta module based on adjacency. Edge
transparency = Pearson correlation coefficient. Node size = within module determined by
WGCNA. Node color = Log-ratio of gene expression at 5 days CIE vs. Ctrl. Highlighted genes
indicate genes involved in neurodevelopment. Network representation built using the Cytos-
cape resource (http://www.cytoscape.org).

(PDF)

S8 Fig. Network representation of BNST Lightgreen module based on adjacency. Edge
transparency = Pearson correlation coefficient. Node size = within module determined by
WGCNA. Node color = Log-ratio of gene expression at 72 hours CIE vs. Ctrl. Network repre-
sentation built using the Cytoscape resource (http://www.cytoscape.org).

(PDF)

S9 Fig. Network representation of BNST Tan module based on adjacency. Edge
transparency = Pearson correlation coefficient. Node size = within module determined by
WGCNA. Node color = Log-ratio of gene expression at 72 hours CIE vs. Ctrl. Network repre-
sentation built using the Cytoscape resource (http://www.cytoscape.org).

(PDF)

$10 Fig. Network representation of CEA Salmon module based on adjacency. Edge
transparency = Pearson correlation coefficient. Node size = within module determined by
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WGCNA. Node color = Log-ratio of gene expression at 0 hours CIE vs. Ctrl. Highlighted genes
indicate genes shown to interact with NF-kB. Network representation built using the Cytos-
cape resource (http://www.cytoscape.org).

(PDF)

S1 Table. Detailed results of linear models for microarray analysis (LIMMA). Results include
log-ratios (called coefficients), t-statistics, p-values, FDR adjusted p-values, F-statistics from
ANOVA, F-statistic p-values, F-statistic FDR adjusted p-values, and RMA values. Data for PFC.
(XLSX)

$2 Table. Detailed results of linear models for microarray analysis (LIMMA). Results
include log-ratios (called coefficients), t-statistics, p-values, FDR adjusted p-values, F-statistics
from ANOVA, F-statistic p-values, F-statistic FDR adjusted p-values, and RMA values. Data
for NAC.

(XLSX)

$3 Table. Detailed results of linear models for microarray analysis (LIMMA). Results
include log-ratios (called coefficients), t-statistics, p-values, FDR adjusted p-values, F-statistics
from ANOVA, F-statistic p-values, F-statistic FDR adjusted p-values, and RMA values. Data
for HPC.

(XLSX)

$4 Table. Detailed results of linear models for microarray analysis (LIMMA). Results
include log-ratios (called coefficients), t-statistics, p-values, FDR adjusted p-values, F-statistics
from ANOVA, F-statistic p-values, F-statistic FDR adjusted p-values, and RMA values. Data
for BNST.

(XLSX)

S5 Table. Detailed results of linear models for microarray analysis (LIMMA). Results
include log-ratios (called coefficients), t-statistics, p-values, FDR adjusted p-values, F-statistics
from ANOV A, F-statistic p-values, F-statistic FDR adjusted p-values, and RMA values. Data
for CEA.

(XLSX)

S6 Table. Time point comparisons of CIE-regulated genes within brain regions. Columns
display the number of genes overlapping for the indicated timepoint comparisons within brain
regions.

(DOCX)

S$7 Table. Connectivity measures, RMA-values, LIMMA log-ratios, WGCNA module
assignments, and LIMMA FDR adjusted p-values of 10,072 probesets used for WGCNA.
(XLSX)

S8 Table. DAVID bioinformatics results obtained from each WGCNA module identified
in the PFC.
(XLSX)

S9 Table. DAVID bioinformatics results obtained from each WGCNA module identified
in the NAC.
(XLSX)

S$10 Table. DAVID bioinformatics results obtained from each WGCNA module identified
in the HPC.
(XLSX)
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S11 Table. DAVID bioinformatics results obtained from each WGCNA module identified
in the BNST.
(XLSX)

S$12 Table. DAVID bioinformatics results obtained from each WGCNA module identified
in the CEA.
(XLSX)

$13 Table. Results of overlap analysis between WGCNA modules and LIMMA significant
results including number of overlapping genes, p-values, odds ratios, and representation
factor. Also contains statistical verification of all modules by topological overlap analysis ver-
sus permuted random modules.

(XLSX)

$14 Table. Count of number of WGCNA modules in each brain-region significantly over-
lapping with Gene Ontology categories (DAVID p-value < 0.05 and number of overlap-
ping genes between 3 and 300).

(XLSX)

$15 Table. miRvestigator results for PFC modules significantly overlapping with genes sig-
nificantly differentially expressed at 0 hours or 7 days (significantly differentially
expressed = LIMMA FDR < 0.01, significantly overlapping = Fisher’s Exact test, p-

value < 0.005 and odds ratio > 3).

(XLSX)

$16 Table. miRvestigator results for HPC modules significantly overlapping with genes sig-
nificantly differentially expressed at 0 hours or 7 days (significantly differentially
expressed = LIMMA FDR < 0.01, significantly overlapping = Fisher’s Exact test, p-

value < 0.005 and odds ratio > 3).

(XLSX)

S$17 Table. Connectivity measures, RMA-values, LIMMA log-ratios, WGCNA module
assignments, and LIMMA FDR adjusted p-values of probesets significant at 7 days
(FDR < 0.01) in the PFC (tab 1) and HPC (tab 2).

(XLSX)
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