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Abstract: Depending on the patients’ genotype, the same drug may have different efficacies or side
effects. With the cost of genomic analysis decreasing and reliability of analysis methods improving,
vast amount of genomic information has been made available. Several studies in pharmacology
have been based on genomic information to select the optimal drug, determine the dose, predict
efficacy, and prevent side effects. This paper reviews the tissue specificity and genomic information of
cancer. If the tissue specificity of cancer is low, cancer is induced in various organs based on a single
gene mutation. Basket trials can be performed for carcinomas with low tissue specificity, confirming
the efficacy of one drug for a single gene mutation in various carcinomas. Conversely, if the tissue
specificity of cancer is high, cancer is induced in only one organ based on a single gene mutation.
An umbrella trial can be performed for carcinomas with a high tissue specificity. Some drugs are
effective for patients with a specific genotype. A companion diagnostic strategy that prescribes a
specific drug for patients selected with a specific genotype is also reviewed. Genomic information is
used in pharmacometrics to identify the relationship among pharmacokinetics, pharmacodynamics,
and biomarkers of disease treatment effects. Utilizing genomic information, sophisticated clinical
trials can be designed that will be better suited to the patients of specific genotypes. Genomic
information also provides prospects for innovative drug development. Through proper genomic
information management, factors relating to drug response and effects can be determined by selecting
the appropriate data for analysis and by understanding the structure of the data. Selecting pre-
processing and appropriate machine-learning libraries for use as machine-learning input features is
also necessary. Professional curation of the output result is also required. Personalized medicine can
be realized using a genome-based customized clinical trial design.

Keywords: basket trial; clinical trial; genomic information; new drug development; umbrella trial

1. Background: Effective Clinical Trials Using Genomic Information

The human genome includes variants of DNA base sequences and epigenetic muta-
tions, including changes in DNA methylation and histone acetylation patterns. Genomic
variations, which include mutations in drug metabolism-related genes, can affect the phar-
macokinetics, pharmacodynamics, efficacy, and safety of drugs [1,2]. This review describes
the use of drug-related genomic information in drug development and clinical trial de-
sign. Personalized next-generation clinical trials, based on the individual genome, can be
designed to maximize drug efficacy and minimize side effects.

With the rapid development of genome analysis technologies and computer perfor-
mance, vast amounts of genomic information have been generated, which can be utilized
in precision medicine. Representative cancer-related genomic information includes epider-
mal growth factor receptor (EGFR) mutation in non-small cell lung cancer (NSCLC) [3,4],
ABL1 gene recombination in chronic myelogenous leukemia (CML) [5], and BRAF mu-
tations in melanoma [6–8]. Genomic information related to cancer induction is available
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in databases, such as The Cancer Genome Atlas (TCGA) [9], Internal Cancer Genome
Consortium (ICGC) [10], COSMIC [11], cBioPortal [12], OncoKB [13], MutaGene [14], and
Cancer Genome Interpreter [15].

Open cancer genome data are generated using high-throughput technology. Cancer
genome data published in TCGA include omics and clinical data of genomic variants,
RNA-seq, and DNA methylation [9]. In cBioPortal, which is a rapid user-friendly platform,
data on survival analysis related to variants, histological type, RNA-seq, or comparative
analysis with methylation information are available [12]. The number of breast cancer
patients is the largest in TCGA, in which variant information on 986 patients in 1097 clinical
cases was reported. However, clinical data from TCGA do not include information about
the drugs administered to the patients. There is no information on the effects and side
effects of the prescribed drugs for each type of cancer. The effects of drugs can be estimated
based on genomic information (mainly genomic variants) in individual clinical trials in
“Drug Resistance” database [16] in COSMIC and CancerDR [17], and clinical trial results
can be obtained from clinicaltrials.gov (accessed on 21 July 2022) [18].

The main objective of personalized medicine is to recommend treatment strategies and
select drugs suitable for individuals based on their genomic information. Patient-specific
clinical trials are necessary to realize the full potential of personalized medicine. Personal
genomic information should be included in the eligibility criteria (EC) for clinical trials.
The goal of this review is to provide indications on how to utilize genomic information in
clinical trial designs and new drug developments. The points of this review can help prevent
adverse drug reactions based on genetic information and find more effective patients.

2. Integrated Interpretation: Tissue Specificity and Environment of Cancer

Generally, carcinomas are caused by the accumulation of multiple genetic alteration
in somatic cells, and tissue-specific frequencies of variants have been observed in various
cancers. Tissue specificity of cancer is attributed to a variant of a specific cancer-related gene
that causes organ-specific cancer [19,20]. Variants in cancer-related genes cause various
types of carcinomas in different organs of the body. A genetic mutation in carcinomas with
high tissue specificity results in the cancer occurring in a specific organ.

In carcinomas with low tissue specificity, a single gene mutation can cause carcinogen-
esis in various organs. The body consists of various cells, tissues, and organs, and each cell
has the same genome sequence. The same genome sequence can perform diverse functions
in different cells, depending on the changes in the epigenetic information and on various
signaling mechanisms around the cell. Sensitivity to the cancer-causing factors also varies
according to the cell type [19,21]. Thus, even in the presence of the same cancer-causing
mutation, the probability of cancer occurrence may differ depending on the organ. Similarly,
the tissue specificity of cancer can be explained by the representative examples listed below.

Mutations in the adenomatous polyposis coli (APC) gene are the cause of most familial
adenomatous polyposis and colorectal cancer, but are rarely observed in other carcino-
mas [22]. Mutations in the Cadherin 1 (CDH1) gene are also a major cause of hereditary
diffuse gastric cancer [23]. Mutations in the BRCA1 gene are mainly observed in carcinomas
afflicting women, such as breast and ovarian cancer [24]. Typically, all patients with hairy
cell leukemia (HCL) harbor variants in the BRAF gene [25]. Approximately 50% patients
with melanoma and papillary thyroid carcinoma carry a variant of the BRAF gene [26,27].
On the other hand, approximately 10% of colorectal cancer patients harbor a variant of the
BRAF gene [28].

In contrast, mutations in the TP53 gene confer low tissue specificity [29]. These muta-
tions occur in most cancers, such as NSCLC, pancreatic ductal adenocarcinoma (PDAC),
colorectal cancer, breast cancer, and ovarian cancer. The TP53 gene is involved in immune
response and immunotherapy, and the wild-type p53 protein functions in mounting an
adequate innate immune response. In cancer, mutant forms of the p53 protein act as a
tumor antigen and induce a B-cell antibody response as well as a CD-8 killer T-cell response.
In cancer immunotherapy, autoimmune and inflammatory responses, neurodegeneration,
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senescence, epigenetic instability, immune response, pathways, and therapeutic strategies
targeting the TP53 gene and p53 protein have been discussed [29,30].

Tissue specificity of cancer is affected by various environmental factors such as
metabolic abnormalities caused by diabetes or high blood pressure, infection (bacteria,
viruses, parasites), and by immunocompetence [31–33]. These factors are classified as
macroenvironments and microenvironments.

The tumor macroenvironment includes changes in body fat content, blood pressure,
and blood sugar level caused by obesity, high blood pressure, and diabetes. A correla-
tion between the tumor macroenvironment and the incidence of cancer has been reported.
Pathologically and epidemiologically, the correlation patterns differ according to the type of
carcinoma [34–36]. In diabetes, insulinemia and hyperglycemia are induced, initiating car-
cinogenesis. Insulinemia activates insulin-like growth factor signaling, and hyperglycemia
supplies nutrients to the cancer cells, promoting acidification [33,36]. It also activates angio-
genesis and cell proliferation signals via a chronic inflammatory response [36,37]. In obesity,
an abnormal increase in the secretion of sex hormones derived from adipocytes, fibrosis
of certain organs, and steatosis are also observed [38,39]. Furthermore, excessive cytokine
secretion is induced owing to an abnormal inflammatory response, thereby increasing
treatment resistance. Therefore, it is necessary to classify carcinomas according to the tumor
macroenvironment influence.

The tumor microenvironment and oncogenic signaling are regulated by ligands that
affect cell differentiation and receptors [40]. The organ-specific tissue differentiation is
induced by stem cells in the adult tissues. This process is regulated by the epigenetic
patterns of the cells constituting the tissues, self-renewal factors, and external factors [41].
Stem cell differentiation has different patterns depending on the tissue. Mesenchymal cells
secret WNT proteins to maintain their stemness in the intestine. Epidermal interfollicular
stem cells express their own WNT ligands for self-renewal [42]. Stem cells in colorectal
cancers are maintained by secretion from activated myofibroblasts, whereas activated
WNT-related signals accelerate cancer differentiation [43].

The cancer microenvironment can be explained by tumor heterogeneity. Cancer is a col-
lection of malignant cells, cancer-associated fibroblasts, and tumor-associated macrophages,
along with their ecosystem [44]. Cancer cells can be classified into infiltrating endothelial,
hematopoietic, stromal, and other cell types, and their interactions have been studied [45,46].
Cancer cells evolved from a primary cancer, a concept known as cancer evolution [46,47].
Different cancer evolution patterns need to be observed accurately in individuals so that
personalized treatment can be made available. Single-cell RNA-seq (scRNA-seq) is a
technique that can be useful to better understand tumor heterogeneity. Specific gene ex-
pression levels for each cell type can be determined using scRNA-seq. Clustering and
visualization techniques with dimensional reduction (t-SNE) for each cell type can be
applied using scRNA-seq [48–50]. scRNA-seq has been applied in hepatocellular carci-
noma [49], NSCLC [50], and primary breast cancer [48] and helps in the stratification and
accurate classification of patients. This can maximize the sensitivity to appropriate drugs
by understanding the pathways based on the status of the carcinoma.

The microenvironment of different cancers should also be considered in clinical trials.
In hospitals, biopsies are performed on cancer patients, and are subjected to pathological
analysis and genetic testing. Using a machine learning approach, patient information can be
integrated to provide rapid and simple insights of clinical relevance. Owing to the increase
in life expectancy and lack of exercise, complex variables related to chronic diseases affect
the diagnosis and prognosis of cancer. Using a machine-learning approach, the patient
information (genetic information, chronic disease status, and lifestyle) is pre-processed so
that the machine-learning library can diagnose the disease. Then, cancer occurrence and
prognosis-related factors can be processed using the machine-learning strategies, such as
pattern recognition, classification, and visualization of results. Appropriate services have
been suggested in clinical practice. Cancer type-wise genetic information is available in
databases such as TCGA and COSMIC, and can be visually checked using cBioPortal [12],
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which is a user-friendly system, based on the patient information, providing an optimal
treatment strategy is necessary. By analyzing these data, research and system developments
can provide rapid and accurate insights for clinical decision-making.

3. Deposition, Application, and Indexing of Genomic Variation Information

In 2001, the Human Genome Project [51] resulted in the release of the human reference
genome sequence, with new versions of the standard genome released in 2003, 2006, 2009,
and 2013. Variants found in the standard genome and in other cancer patients have been
stored in a database, with constant additions of information. Databases are used to predict
cancer occurrence and to select a treatment strategy. For example, cancer genome projects
such as TCGA [52] and ICGC [10] are publicly available, and the results of genome analysis
for various diseases as well as cancer are deposited at National Center of Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO). However, these databases present
challenges to clinical applications of datasets. To solve these challenges, web services that
summarize the analysis tools and results related to cancer genomes have been developed.
One of them, cBioPortal [12], allows users to search and analyze various cancer genome
data in a user-friendly manner. Various data, such as genome, transcriptome, epigenome,
and proteome data, obtained from cancer-derived tissues or cell lines, are collated and
organized. These data are then annotated, curated, and indexed to allow researchers to
analyze them. (Epi) Genetic changes according to cancer-derived samples, cancer-related
genes, and signal transduction information can be observed, visualized, and linked to
clinical information.

Distinguishing somatic and germline variants is important in identifying cancer-
related variants. In germline variants, different patterns appear by race [53,54]. Therefore,
for preventive medicine, it is critical to determine the proportion of cancer-related germline
variants. Thus, in the 1000 Genomes Project, the ratio of variants by race was deter-
mined [55]. Associations between somatic and germline variants in several carcinomas
have been confirmed using TCGA information [56–58]. This indicated the interaction of
germline-somatic variants in tumorigenesis and assisted in understanding the mechanisms
of cancer risk variants. The most representative cancer somatic variants database is COS-
MIC [59]. Most of the known mechanisms that induce carcinoma development include
somatic variants. Since COSMIC was released in 2004, there have been rapid developments
in next-generation sequencing (NGS) technology, computer analysis performance, and
throughput. Although COSMIC has been modified for approximately 20 years, a reference
database for appropriate comparisons with variants obtained in the clinical field is needed.
Information exchange with external resources such as Ensembl, HGNC, and RefSeq is
also insufficient; however, this is expected to be resolved by upgrading the annotation
system [59]. The two-hit hypothesis and the optimal treatment strategy can overcome the
limitations of COSMIC and maximize its advantages.

In the two-hit hypothesis proposed by Knudson in 1971, “in the dominantly inherited
form, one mutation is inherited via germinal cells and the second occurs in somatic cells.
In the non-hereditary form, both mutations occur in the somatic cells” [60]. There are
continuing debates regarding the role of somatic and germline variants in the development
of carcinoma. Whole-exome sequencing analysis of autism patients and their families
revealed that the number of de novo variants in germline cells increased with age [61]. This
was confirmed in a deCODE genetics study conducted in Iceland [62]. In summary, both
somatic and germline variants play important roles in carcinogenesis.

An optimal treatment strategy is one that is based on the integrated information
regarding the somatic and germline mutations, age, lifestyle, and the clinical information
of the patient [63,64]. To develop a patient-specific somatic-germline variant-based treat-
ment strategy, genomic information, along with patient information, must be collected
longitudinally. The collection of the family history of the patient and testing for germline
variants in the family are also important [65]. Recently, an integrated treatment strategy
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using machine learning and a prognosis prediction strategy were presented [66,67]. The
efforts and databases to realize personalized medicine are described below.

The germline/somatic variant subcommittee, a multidisciplinary research committee
of Clinical Genome Resource (ClinGen), was established in 2013 [68]. Somatic-germline
zygosity is an algorithm for predicting the homozygous versus heterozygous variants and
those of somatic versus germline origin, and was introduced by utilizing the sequence
information obtained from the carcinoma samples. Modeling with allele frequency (AF),
sequencing depth, tumor ploidy, and local copy number as inputs can assist in clinical
decision making [69]. In another study, germline and somatic variants were analyzed and
a model of cancer occurrence with age was generated, confirming that germline variants
cause early-onset cancer, whereas somatic variants induce late-onset cancer [70]. For future
generation of data that can be used for cancer diagnosis and clinical decisions, a two-hit
strategy is needed to simultaneously analyze somatic and germline variants in tumor tissue
and blood. Genomic data from various carcinomas or races have been collected that will
serve as a basis for future cancer diagnosis and treatment strategies.

To select genomic variants for clinical trials, it is important to determine the ratio of
variants by race. The cohort project carried out in several countries and the UK Biobank
project are representative examples. Using the ratio of variants in each nation, it is possible
to determine the variants crucial for the occurrence of a specific cancer. Large-scale cohort
studies conducted in several countries have been listed in Table 1. Health and genetic
indicators found in specific races for diseases, including cancer, can be explained using
national variant data and risk factors. Rare variants showing a race-specific pattern can
explain the genetic contribution to disease development, unlike common or de novo
variants [71].

PharmGKB [72] and DrugBank [73] provide information relating to pharmacoge-
nomics and the associations between known genotypes and drugs. These databases suggest
that resistance and sensitivity are related to drug responses in clinical trials. Large volumes
of genomic information related to drug responses have been produced and evidence for
the clinical use of drugs has been presented [17,74,75].

Data on cancer-related gene expression and variants are provided in datasets such as
the NCBI GEO and ArrayExpress. These data can be used preliminarily to identify variants
and gene expression related to drug sensitivities and their side effects. For example, when
“cancer drug sensitivity resistance” is queried in GEO, GSE102787 dataset is highlighted.
Using GEO2R, researchers can select genes that are differentially expressed based on drug
sensitivities. The omics information based on differences between two groups proposes the
possibility of its clinical application.

To date, omics data based on the results of many clinical trials related to drug sensitivity
and resistance have been published and further work is ongoing. Genomic and clinical
data related to clinical trials are big data, and further processing is required to make clinical
decisions under the regulation of bioethics laws. Moreover, appropriate indexing and
cleaning processes for the stored and collected data are required. Thus, when a researcher
uses the stored data, incorrect decisions can be prevented through excluding unnecessary
or unstandardized data. In addition, data modeling and decision curation are required
(Figure 1).
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[77] 
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[80] 
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Netherlands 
The Genome of the 
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on 21 July 2022) 

[82] 
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[83] 
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Table 1. Large-scale cohort cases for the realization of precision medicine by nation.

Nation Project Name Data Size Link Ref.

Multi-national
consortium 1000 Genomes Project 4974 people

https:
//www.internationalgenome.org
(accessed on 21 July 2022)

[55]

USA Precision Medicine Initiative
cohort program (All-of-Us)

1M people (To be
completed in 2022)

https://allofus.nih.gov (accessed
on 21 July 2022) [76]

England The 100,000 Genomes Project 5M people (To be
completed in 2023)

https://www.england.nhs.uk/
genomics/genomic-research/10
0000-genomes-project (accessed
on 21 July 2022)

[77]

Iceland deCODE Genetics 100K people
(Completed)

https://www.decode.com
(accessed on 21 July 2022) [78]

Finland FinnGen Research Project 50K (To be completed)
https://www.finngen.fi/en/for_
researchers (accessed on
21 July 2022)

[79]

Korea Korea Bio-resource
Information System 500 people https://www.kobic.re.kr/kobis

(accessed on 21 July 2022) [80]

Korea Clinical & Omics Data Archive 780 people https://coda.nih.go.kr (accessed
on 21 July 2022) [81]

Netherlands The Genome of the Netherlands
project (GoNL)

150K people
(Completed)

https://www.nlgenome.nl
(accessed on 21 July 2022) [82]

Singapore Genome Institute of
Singapore (GIS)

1M people (To be
completed in 2028)

https://www.a-star.edu.sg/gis
(accessed on 21 July 2022) [83]

4. Basket and Umbrella Trials

The development of genome analysis technology has enabled integrated analysis
of various carcinomas. Advances in cancer research can now help to identify cancers
with the shared biological mechanisms in different anatomical locations as well as cancers
with different biological pathways in the same anatomical location. These advancements
have transformed the paradigm that cancers originating from different anatomical organs
have different biological mechanisms. Thus, the new cancer classification is based on
molecular, cellular, and signaling mechanisms. Although derived from different anatomical
organs, cancers with the same signaling mechanism may be subjected to the same treatment
strategy. A drug modulating a specific signaling mechanisms can be applied to cancers
originating from various anatomical organs that share that particular signaling mechanism;
this clinical trial strategy is called a basket trial. Conversely, cancers originating from

https://www.internationalgenome.org
https://www.internationalgenome.org
https://allofus.nih.gov
https://www.england.nhs.uk/genomics/genomic-research/100000-genomes-project
https://www.england.nhs.uk/genomics/genomic-research/100000-genomes-project
https://www.england.nhs.uk/genomics/genomic-research/100000-genomes-project
https://www.decode.com
https://www.finngen.fi/en/for_researchers
https://www.finngen.fi/en/for_researchers
https://www.kobic.re.kr/kobis
https://coda.nih.go.kr
https://www.nlgenome.nl
https://www.a-star.edu.sg/gis
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the same anatomical organ can be caused by different signaling mechanisms. Drugs that
control different signaling mechanisms in the same cancer can be administered in a strategy,
called an umbrella trial. These clinical trial strategies can help optimize the efficacy of new
drugs (Figure 2).
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In basket clinical trials, a single anticancer drug is tested against various carcinomas
harboring the same genetic variant, whereas in umbrella clinical trials, several anticancer
drugs are tested against a single carcinoma according to various genetic variants [84]. An
example of a basket clinical trial is the phase II clinical trial of vemurafenib in 122 patients
harboring a BRAF V600E mutation [85]. Vemurafenib, an inhibitor of BRAF V600 kinase,
has been established to treat various carcinomas by an appropriate basket trial. Prior to the
development of basket clinical trials, vemurafenib was effective in approximately 50% of
patients with metastatic melanoma harboring the BRAF V600E mutation.

In various genomic information-based cancer studies, such as those based on TCGA,
the BRAF V600E mutation was found in various cancers, such as NSCLC and colorectal
cancer. Therefore, a basket clinical trial was conducted in patients harboring BRAF V600E
mutations and cancers in tissues other than those of melanoma patients. This basket trial
consisted of a total of 6 + 1 cohorts, with cohorts of patients with six types of cancer:
NSCLC, ovarian cancer, colorectal cancer, cholangiocarcinoma, breast cancer, and multiple
myeloma. The cancer progressed in the cohorts of patients with different types of cancer.
Additionally, it progressed in patients with Erdheim–Chester disease and Langerhans cell
histiocytosis. The results showed that the efficacy of vemurafenib was not the same in all
cancers, with a response rate of 42% in NSCLC and 43% in Erdheim–Chester disease or
Langerhans cell histiocytosis.

Unlike basket clinical trials, umbrella clinical trials test various treatment methods on
the same carcinoma. Umbrella clinical trials can screen various treatment methods for a
patient group or carcinoma for which there is no clear biomarker.

5. Companion Diagnosis: From the Genomics Point of View

Companion diagnosis (CDx) is a diagnostic method or diagnostic tool that is a “com-
panion” for selecting disease-causing factors for targeted therapy [86]. Only diagnostic
methods permitted by regulatory agencies can be used for specific targeted therapeutics.
Clinical validity of the diagnostic and treatment methods used in CDx must be confirmed
through clinical trials [87]. The CDx cases are presented in Table 2.
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To use diagnostic tools for specific therapeutic agents, clinical evidence for interpreting
diagnostic results must be considered [86]. Evidence-based recommendations are available
for selecting drugs and clinical methods. The technical and environmental factors of differ-
ent laboratories must also be correlated [88]. In 2014, the US Food and Drug Administration
presented guidelines for mandatory CDx when developing targeted therapies. Similarly, in
2015, the Korean Ministry of Food and Drug Safety announced the ‘Guidelines for Approval
and Review of In Vitro Companion Diagnostic Devices’.

Various factors can induce carcinoma formation, such as breast cancer, colorectal
cancer, lung cancer, stomach cancer, pancreatic duct cancer, and melanoma. However,
the same factors (EGFR or TP53 genes) also cause carcinoma in various organs [3,4,29,30].
Therefore, if the underlying mechanism is the same, a common therapeutic strategy can
be used.

In the 1970s, the therapeutic effect of tamoxifen (Nolvadex), a breast cancer therapeutic
agent, varied depending on the status of the estrogen receptor (ER) expression in patients
with breast cancer. In the 1980s, it became known that the therapeutic effect on breast
cancer varied depending on the HER2 gene mutation. Trastuzumab (Herceptin), a HER2
antagonist, was developed in the 1990s. As the therapeutic effect differs among patients
depending on their genotype, considering patient genotype while selecting a specific drug
and establishing a treatment strategy has attracted attention. In the 2000s, the research
findings on signal transduction of cancer-causing factors were evaluated, and drugs that
inhibit mutation-induced cancer-causing factors were developed. Representative drugs
include gefitinib (Iressa) and erlotinib (Tarceva), which inhibit EGFR signaling, and ima-
tinib (Gleevec), which is used for CML treatment [89]. These targeted anticancer agents
selectively detect and inhibit specific targets expressed in the cancer cells. Therefore, the
therapeutic effect is improved with reduced side effects (Figure 3).

In the 2010s, CDx was used for the development of an immune checkpoint inhibitor.
Ipilimumab (Yervoy), approved as the first immune checkpoint inhibitor in 2011, inhibits
the activity of CTLA-4, which is expressed on the surface of T cells and suppresses their
function. In the mid-2010s, drugs inhibiting PD-1, which plays a similar role as CTLA-4,
were developed. Pembrolizumab (Keytruda) and nivolumab (Opdivo) selectively inhibit
PD-1 in NSCLC and melanoma. These immune checkpoint inhibitors maximize T cell
activity by inhibiting suppressing molecules, such as CTLA-4, PD-1, and PD-L1. In the
case of pembrolizumab and nivolumab, health insurance is offered in Korea if patients
having stage IIIB or higher disease test positive for PD-L1 expression and who have not
responded to previous platinum-based chemotherapy without treatment with a PD-1
inhibitor (Figure 3).

The targeted cancer drugs discussed in this paper act only on cancer cells with specific
biomarkers, and if used in individuals without the specific targets, they can cause side
effects. Therefore, a process of detecting a specific target based on the patient’s genetic or
clinical information is necessary. In this case, the regulatory body must approve the process
of screening the specific target.

To promote CDx, each entity involved in new drug development requires that phar-
maceutical companies need to personalize clinical trial designs based on the patients’
genotypes. Diagnostic companies will need to discover factors related to cancer-causing
signaling from the results of basic science research, such as cellular- and molecular-level
signaling mechanisms, and design a method to rapidly and accurately screen them. Regu-
lators will need to strengthen the supervision, direction, and guidance of efficient and safe
patient-specific clinical trial designs. Health insurance entities will also need to optimize
an appropriate fee for diagnosis and examination to use a specific drug and pay according
to efficacy. CDx can present clinical evidence for the use of drugs for a specific target and
can increase cancer treatment efficiency by applying personalized treatments to patients.
Additionally, it can contribute to the financial security of the National Health Insurance by
reducing the indiscriminate or incorrect use of targeted anticancer drugs.
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Table 2. Cases of companion diagnosis.

Gene/Protein Anticancer Agent Indications Biomarker Routine Testing Ref. Papers Ref. CT

ALK Crizotinib, ceritinib, alectinib,
lolatinib, brigatinib NSCLC ALK translocation FISH, IHC [90,91] NCT00932451

AR Abiraterone, enzalutamide,
dalurotamide, apalutamide Prostate cancer AR expression IHC [92] NCT02485691

BCL-2 Venetoclax CML
BCL-2 protein expression,
BCL-2 amplification/
translocation

IHC (FISH, DNA/RNA
sequencing), PCR [93] NCT03552692

BCR/ABL Imatinib, dasatinib, nilotinib,
bosutinib, ponatinib CML BCR/ABL1 fusion IHC, PCR, DNA

sequencing [5] NCT00070499

BRAF
Dabrafenib+trametinib,
vemurafenib+cobimetinib,
encorafenib+binimetinib

Melanoma, NSCLC, ATC,
HCL BRAF V600E/K mutations IHC, PCR, DNA

sequencing [6–8] NCT01597908

C-KIT, PDGFR Imatinib GIST c-KIT Exon 9 and 11
mutations, PDGFR mutations IHC, DNA sequencing [94] NCT00117299

PDGFRB Imatinib Myelodysplastic/
myeloproliferative syndromes PDGFRB rearrangement FISH [95] NCT00038675

BRCA Olaparib, talazoparib, rucaparib Breast cancer, ovarian cancer,
prostate cancer

Germline/somatic BRCA 1/2
mutations DNA sequencing [96] NCT03286842

CTLA-4 Ipilimumab Melanoma DNA sequencing, PCR [97] NCT01216696

ER/PR Tamoxifen, raloxifene,
fulvestrant, toremifine Breast cancer ER/PR expression IHC [98,99] NCT00066690

erBB2/HER-2
Trastuzumab, pertuzumab,
ado-trastuzumab, emtansine,
neratinib

Breast cancer, gastric cancer HER-2 protein expression,
HER-2 amplification IHC, FISH [100] NCT01702558

EGFR

Gefitinib, erlotinib, afatinib,
dacomitinib NSCLC

EGFR exon 19 deletion, exon
21 L858R mutation DNA sequencing, PCR

[4] NCT01955421

Osimertinib EGFR T790M mutation [3] NCT02474355
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Table 2. Cont.

Gene/Protein Anticancer Agent Indications Biomarker Routine Testing Ref. Papers Ref. CT

FGFR2/3 Erdafitinib Bladder cancer FGFR3 mutations, FGFR2/3
fusions DNA sequencing, FISH [101] NCT05052372

FLT3 Midostaurin, gilteritinib AML FLT3 mutations DNA sequencing, PCR [102] NCT04027309

IDH1/2 Ivosidenib, enasidenib AML IDH1/2 mutations IHC, DNA sequencing [103] NCT02632708

MET Crizotinib NSCLC MET amplification, MET exon
14 alterations

FISH, DNA/RNA
sequencing [104] NCT00585195

MSI-H or dMMR
Pembrolizumab MSI-H or dMMR solid tumors MLH1, MSH2, MSH6, PMS2

protein expression, MSI high
IHC, DNA sequencing,
PCR

[105] NCT04082572

Nivolumab and ipilimumab Colorectal cancer [106] NCT04008030

NTRK Larotrectinib, entrectinib Solid tumors with NTRK
fusions

NTRK protein expression,
NTRK fusion

IHC, FISH, DNA/RNA
sequencing [107] NCT02576431

PI3KCA Alpelisib Breast cancer PI3KCA mutation DNA sequencing [108] NCT02437318

PI3KCA (alpha
and delta) Copanlisib FL PI3K mutation DNA sequencing [109] NCT01660451

PI3K (delta
and gamma) Duvelisib CLL, SLL PI3K mutation DNA sequencing [110] NCT01476657

RAS Cetuximab, panitumumab CRC KRAS/NRAS wildtype DNA sequencing [111] NCT04117945

RET LOXO-292 NSCLC, MTC RET fusion, RET mutation FISH, DNA/RNA
sequencing [112] NCT03157128

ROS1 Crizotinib, entrectinib NSCLC ROS translocation FISH, DNA/RNA
sequencing [113] NCT04603807

FISH: Fluorescence in situ hybridization, ISC: Immunohistochemistry, NSCLC: non-small cell lung cancer, CML: Chronic myeloid leukemia, ATC: anaplastic thyroid cancer, HCL: hairy
cell leukemia, GIST: Gastrointestinal stromal tumor, AML: Acute myeloid leukemia, MSI-H: Microsatellite instability high, dMMR: DNA mismatch repair deficiency, CRC: Colorectal
cancer, MTC: medullary thyroid cancer, FL: Follicular lymphoma, CLL: Chronic lymphocytic leukemia, SLL: small lymphocytic lymphoma.
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6. Genomic Information and Pharmacometrics

Pharmacometrics identifies and predicts the relationship among pharmacokinetics,
pharmacodynamics, biomarkers, and therapeutic properties through mathematical and
statistical models. The interaction between drugs and patients is quantitatively analyzed
by constructing and simulating a mathematical model to assess the effects of treatment and
adverse effects according to drug concentration. This is intended to accurately identify the
drug exposure–response relationship of individuals and groups by reflecting individual
differences, intra-individual variability, and various errors.

In econometric pharmacology, parameters relating to pharmacology, physiology, and
pathology are used. Recently, genotypes or epigenotypes have also been included as
parameters. Systems pharmacology analyzes the diversity of individual drug responses
by synthesizing these parameters, thus enabling a holistic approach to determine drug
responses by parsing the various elements constituting individual drug responses. The
systems pharmacology was developed by the following three factors: the increasing number
of samples with well-analyzed patient characteristics, the development of omics technology,
and the increasing analysis networks based on omics data.

Genotyping of high-throughput sequencing results obtained using DNA chips or
NGS techniques is necessary for subjects participating in clinical trials. If the phenotype
is considered safe and efficacious, the related genotype should be extracted, thereby elab-
orating on the ramifications of the patient group according to genotype. For statistical
processing and machine learning analysis, patient-specific labeling should be accurately
performed, and the individual characteristics of the patients should be well described.
Recent evidence suggests that both genetic and epigenetic factors, such as gene expression
and DNA methylation, are related to drug responses. Correlation, eQTL, and multi-omics
approaches can be used to extract relevant parameters related to drug response.

Attempts to incorporate genotypes into drug response modelling are ongoing. In
a clinical trial of simvastatin, modeling using seven genotypes known to be related to
drug metabolism was attempted [114]. Modeling was attempted using the change in
DNA methylation level caused by the EGFR inhibitor gefitinib as a parameter, and it was
confirmed that epigenotypes, such as DNA methylation patterns, can also be the subject of
modeling [115].

7. Challenge: Genomic Information Management

Peter Drucker said, “If you can’t measure it, you can’t manage it [116].” Currently,
technologies that can measure genomic information have been developed [117]. Hospitals
are accumulating patient-derived NGS data for the diagnosis and selection of appropriate
drugs or treatments [118]. A system for the quality control of the measured results and
the supervision of the regulatory agency on the results was established. Although the
results of treatment progress along with patient-derived laboratory data are accumulated
along with the genotype, it is necessary to establish a system for decision-making and
selecting appropriate treatment strategies for specific diseases in actual clinical practice.
An optimal management strategy that includes appropriate storage, indexing, and ethical
considerations for accumulating genomic information is required. The topic of the “genomic
information management” strategy requires further evaluation (Figure 4) [119].

The primary goal for implementing the genomic information management strategy is
to obtain the necessary insights to perform research on existing public omics data (Table 3).
Omics data, such as in NCBI GEO and ArrayExpress, require data analysis, visualization,
and extraction insights. The web-based databases presented in Table 3 can be used, and the
genome information can be appropriately managed using machine learning.
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Table 3. Cases of extracting new insights through public omics data.

Case Query Source Output Accessibility Ref.

DBATE Gene symbols 13 large RNA-seq from human healthy
and disease tissues from NCBI GEO

Expression values that can be visualized in
several ways

http://bioinformatica.uniroma2.it/DBATE
(accessed on 21 July 2022) [120]

MENT Gene symbols or conditions of
genomic data NCBI GEO and TCGA

Patterns and gene list of DNA methylation,
gene expression and their correlation in
diverse cancers

https://mgrc.kribb.re.kr:8080/MENT/
(Unconnected) [121]

GEM-TREND Gene symbols GEO, ArrayExpress,
researchers’ websites

GEO series and platform ID, series title,
similarity score, and p-value are displayed,
network visualization

https://openebench.bsc.es/tool/gem-trend/
(accessed on 21 July 2022) [122]

GeneXX Gene symbols NCBI GEO, transcriptome data Stratified by exercise type, training status, sex,
and time point postexercise

https://genexx.shinyapps.io/genexx (accessed
on 21 July 2022) [123]

GeneATLAS GWAS catalog no. UK Biobank
A large database of associations between
hundreds of traits and millions of variants
using the UK Biobank cohort

http://geneatlas.roslin.ed.ac.uk (accessed on
21 July 2022) [124]

GliomaDB Gene symbols

NCBI GEO, TCGA, CGGA,
MSK-IMPACT, US FDA, PharmGKB of
Genomic, transcriptomic, epigenomic,
clinical information

Kaplan-Meier plot. The interactive heatmap
visualization of the multi-omics data

http://cgga.org.cn:9091/gliomasdb (accessed
on 21 July 2022) [125]

Metamex Gene symbols Oligo package, limma package, DESeq2
package, NCBI GEO.

Skeletal muscle transcriptional responses to
different modes of exercise and an online
interface to readily interrogate the database

https://metamex.serve.scilifelab.se (accessed
on 21 July 2022) [126]

Oncopression Gene symbols
NCBI GEO, ArrayExpress, ICGC,
ExpressionAtlas, cBioPortal, ExAc
Browser, oncomine (Rhodes)

Sample statistics of oncopression, Validity of
dataset integration, Use of oncopression in
cancer research

http://www.oncopression.com (accessed on
21 July 2022) [127]

RefEx Gene symbols, disease names ESTs, Affymetrix GeneChip, CAGE,
RNA-Seq, NCBI gene ID

Integration of publicly available gene
expression data, visualize with BodyParts3D,
extraction of genes with tissue-specific
expression patterns, gene expression
visualization of the FANTOM5 CAGE data

https://refex.dbcls.jp (accessed on 21 July 2022) [128]

ReGEO Gene symbols
GEO, NCBI, Search by keyword, GSE
Accession, Pubmed ID, Experiment
Type, Organism, Disease, Timepoints

Identify and categorize data for their
integrative data analysis https://regeo.org (accessed on 21 July 2022) [129]

GEO: Gene Expression Omnibus. GEO series and platform ID are start as “GSE” and “GPL”, respectively.

http://bioinformatica.uniroma2.it/DBATE
https://mgrc.kribb.re.kr:8080/MENT/
https://openebench.bsc.es/tool/gem-trend/
https://genexx.shinyapps.io/genexx
http://geneatlas.roslin.ed.ac.uk
http://cgga.org.cn:9091/gliomasdb
https://metamex.serve.scilifelab.se
http://www.oncopression.com
https://refex.dbcls.jp
https://regeo.org
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Figure 4. A comprehensive model of genomic information management with clinical data. Two omics data, gene expression and DNA methylation patterns could be
changed by aging. The genomic data and clinical data of an individual are continuously collected over time. We aim to develop a model that can predict disease
prediction, provide appropriate lifestyle habits, or present evidence that can be used in clinical practice by discovering genomic data that predicts changes in health
status based on the collected data and applying machine learning to each data. Strategies for presenting insights based on patient-derived genomic information.
Hospitals track and accumulate clinical information for chronic disease patients. Clinical information explains the maintenance of health, deterioration of the health
state, and recovery of health over time. Integrate clinical and genomic information to find factors related to maintaining healthy states. The optimal combination is
presented through machine learning, disease detection, lifestyle suggestion, and clinical decision basis.
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Machine learning is used to discover rules from data, recognize patterns, and classify
them based on the characteristics of the data content [66,67]. In order for the machine-
learning analysis library to recognize the data well, the structuring of the data (categorical,
continuous, and ranked) and pre-processing should be performed initially. To extract factors
relating to optimal clinical trials and the safety and efficacy of personalized drugs, a clear
definition of the data structure is necessary. It is necessary to properly classify the genotype
into categorical and phenotypic information on pharmacokinetic parameters, efficacy, and
safety into categorical and continuous types and accurately predict the structure of the data
to be performed.

Traditionally, hospitals have obtained clinical laboratory data and disease diagnosis
results from patients. Recently, NGS-based genetic information from patients and image
information, such as from PET and CT, have been stored in the hospital’s computer network
in a common data model. These data are appropriate for selecting personalized medicine
and patient-specific treatment strategies. However, the structure and characteristics of each
data must be accurately understood and used as input features for the machine learning
library. It is also necessary to select appropriate machine learning library inputs that present
the optimal treatment strategy as the output. Patient information in hospitals is personal,
and regulatory agencies and IRB reviewers must be confident that the research and clinical
trial design protect patient privacy.

8. Perspectives and Conclusions

A large amount of genetic information can be quickly retrieved, and patient-derived
clinical data can be stored in hospitals. Machine learning techniques are becoming more
sophisticated for discovering combinations, recognizing patterns, and classifying clinical
data. Computer performance and data storage are improving. These data can assist with
developing new drugs and designing optimal clinical trials. In this review, new drug
development and clinical trial designs using genomic information are discussed. The three
most important points are as follows: firstly, the appropriate clinical data for analysis must
be selected, and the structure of the data must be understood; second, a machine learning
input feature and a machine learning library should be selected as inputs; third, appropriate
curation of the output result is required.

In the future, hospitals will continue to accumulate patient-derived genomic and
clinical data, and advances in computer performance and sophisticated machine learning
libraries will continue. Collaborative research with research institutes and companies
that can analyze the data accumulated in hospitals is necessary. Appropriate access to
anonymized patient information and legal regulations and measures to protect patients’
personal information are required. Thus, patient-specific treatment will become increasingly
sophisticated, the effects of treatment will increase, and the side effects of treatment will
continue to decrease.
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