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Abstract: Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic
growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides
from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines
and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated
from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated
that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human
colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value
(618.9 µg/mL−1) lower than that of alginate (690 µg/mL−1). The production of reactive oxygen
species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest
that these compounds may trigger cell death via oxidative damage. The combination of fucoidan
with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by
the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal
polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by
DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together,
these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising
anticancer compounds, particularly when used in combination with vitamin C.

Keywords: fucoidan; alginate; apoptosis; reactive oxygen species; human colon cancer cells

1. Introduction

The marine environment is an exceptionally diverse reservoir comprised of nearly
250,000 species that produce numerous secondary compounds with extraordinary chemical
and pharmacological effects [1]. The growing interest in marine macroalgae as a sustainable
source of natural molecules is mainly due to their therapeutic effects against cancer [2].
Unlike toxic conventional chemotherapies, these marine products exert minimal side effects
on healthy tissues [2]. In recent years, there has been growing interest in the polysaccharides
present in cell walls of brown algae, including laminarins, alginates, and fucoidans, as these
compounds have high potential for biological applications in functional foods as well as
cosmeceutical and pharmaceutical bioproducts [3].

Fucoidans found in brown seaweeds cover a family of sulfated fucose-rich polysaccha-
rides. They are made up of a backbone of (1→3) and/or (1→4) α-linked L-fucopyranose
units [4]. Owing to their biofunctional properties, fucoidans are potent antitumor agents
with numerous pharmaceutical applications [5]. Fucoidans have shown strong cytotoxicity
against different cancer cell lines, including breast cancer (MCF-7), human skin melanoma
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(SK-MEL-28), and colon cancer (HCT-15, DLD1, WiDr) cells [6]. Fucoidans are also known
to significantly reduce the toxicity of chemotherapy in patients with advanced and recurrent
cancers [7] and are used as adjuvants in complex cancer treatments. Interestingly, dietary
fucoidans and those from other brown algal species were found to enhance the anticancer
effects of the chemotherapeutic drugs tamoxifen and lapatinib when used against a wide
range of cancer cells and in mouse models of cancer [8,9].

Alginates are one of the most exploited natural polysaccharides for manufacturing
value-added products and are widely used in the pharmaceutical industry [10,11], Alginates
are linear copolymers made of β-D-mannuronic acid (M) and α-L-guluronic acid (G) bound
in blockwise arrangements [12]. They have been shown to inhibit many cell lines including
cervical (HeLa), hepatocellular (HepG2), breast (MDA-MB-231), and colon (HCT-116 and
CaCo2) cancer cells [13–15]. Alginates were also found to protect human intestinal cells
from carcinogenesis via their antioxidant effects and their ability to chelate heavy metals
and toxins [16], and to act in combination with chitosan, bortezomib, and 5-Fluorouracil to
inhibit cell proliferation [17–19].

Combination therapy of natural molecules is considered to be a promising strategy to
boost the therapeutic efficacy of chemotherapeutics as well as reduce their toxicity and side
effects [20]. High-dose vitamin C is safely employed as a complementary treatment against
colon cancer [21]. Additionally, the combination of vitamin C with multiple standard drugs
and natural molecules resulted in significant inhibitory effects against cancer cell growth
and proliferation [22,23].

Studies on the Lebanese algae against cancer are very limited, and they mostly rely on
colorimetric methods [24–27]. C. sinuosa is a brown algae that was previously investigated
by our team, and the results confirmed an elevated carbohydrate content in the tissues of
this species [28]. The cytotoxic potential of fucoidans and alginates of C. sinuosa on different
cancer cells have never been examined, and the effects of their combination with vitamin C
remains unknown. Thus, we studied the chemical properties as well as the antitumor and
apoptotic potency of fucoidan and alginate from C. sinuosa alone and in combination with
vitamin C against different cancer cell lines including colon (HCT-116), breast (MCF 7), and
ovarian (HeLa) cancer cell lines.

2. Results
2.1. Physicochemical Properties and Monosaccharide Composition of Fucoidan and Alginate

The physicochemical characteristics of the extracted fucoidan and alginate of C. sinuosa
are presented in Table 1. There was very low percentage of protein and phenol contaminants
in the preparation of the isolated polysaccharides. To determine the degree of sulfation, the
barium-chloride method was adopted, and the results showed that fucoidan was highly
sulfated (18.8%) more than alginate (5.53%). Moreover, the percentage of D-glucuronic acid
was much higher in alginate (50%) than fucoidan (3.8%) (Table 1).

Table 1. Physicochemical characteristics of the purified fucoidan and alginate isolated from C. sinuosa.

Sample Yield (%) Protein (%) Sulfate (%) Phenol
(mg GAE/gDW)

D-Glucuronic Acid
(%)

Fucoidan 11.6 ± 0.3 1.88 ± 1.1 18.8 ± 2.1 0.045 ± 0.01 3.8 ± 0.5

Alginate 13.6 ± 0.4 2.63 ± 1.4 5.53 ± 2.6 0.043 ± 0.01 50 ± 0.7
Values are presented as mean ± SD (n = 3); DW: dry weight; GAE/gDW: gallic acid equivalent per gram of
dry weight.

The monosaccharide composition of the extracted polysaccharides showed that fucose
is the main sugar present in fucoidan (67.4%) (Table 2). We observed large differences
in the relative proportions of the different monosaccharides in fucoidan and alginate
polymers. The HPLC spectra of both fucoidan and alginate are shown in Supplementary
Figures S1 and S2.
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Table 2. Monosaccharides composition of fucoidan and alginate of C. sinuosa determined by HPLC-
RI analysis.

Sample Monosaccharide Composition (%)

Glucose Xylose mannose Arabinose Galactose fucose

Fucoidan 5.45 ± 2.97 2.62 ± 2.12 3.58 ± 1.34 3.4 ± 1.39 5.94 ± 3.88 67.4 ± 12.1
Alginate 2.67 ± 3.59 2.14 ± 2.48 5.11 ± 2.64 4.2 ± 3.67 4.98 ± 4.66 0.2 ± 0.34

Values are presented as mean ± SD (n = 3).

2.2. Brown Algal Polysaccharides Structural Analysis by FTIR

Fucoidan FTIR spectrum (Figure 1) revealed that the primary absorptive peaks were a
characteristic of glycosidic structures and were related to C-O and C-C stretching vibrations
of the pyranoid ring (1030 cm−1) and the anomeric C-H group (840 cm−1). The FTIR
spectrum of fucoidan also exhibited a broad peak at 3250–3500 cm−1 which was attributed
to a hydroxyl stretching vibration. The two peaks at 2910 and 2989 cm−1 corresponded to
the stretching vibration of the C-H bond of the pyranoid ring and the C-6 group of fucose.
The position of sulfate groups is contained in the ranges of 1500–700 cm−1. Furthermore, it
has been reported that the broad signal at 1240 cm−1 (-S-O asymmetric stretching vibration
of the sulfate group) is representative of the total sulfate esters in polysaccharides [29].
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Figure 1. FTIR spectrum of fucoidan isolated from the Lebanese C. sinuosa.

The FTIR spectrum of alginate (Figure 2) showed a broad peak at 3280 cm−1 and a weak
signal at 2910 cm−1, which are attributed to the stretching vibrations of hydroxyl groups
O–H and C–H, respectively. The two strong bands at 1620 and 1400 cm−1, are assigned
to asymmetric and symmetric stretching vibrations of carboxyl groups of alginates. The
band at 948 cm−1 corresponds to C–O stretching vibration of uronic acid residues and the
small band at 904 cm−1 corresponds to C–C of α-L guluronic acid. In spectral analysis, the
presence of a band at 1031 cm−1 was slightly more intense than the other band at 1085 cm−1

(M blocks), suggesting that the obtained alginate is slightly richer in guluronic residues.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 2. FTIR spectrum of alginate isolated from the Lebanese C. sinuosa. 

2.3. Structural Characterization of Algal Polysaccharides by NMR Spectroscopy 
1H NMR spectroscopy is the most reliable method used for the investigation of chem-

ical composition and structural patterns. The proton spectrum of fucoidan from C. sinuosa 

(Figure 3) contained chemical shifts ranging from 5 to 5.5 ppm, which are attributed to 

anomeric protons (H-1) of α-linked-L-fucose and β-linked sugars. The presence of intense 

peaks of the methyl groups were observed between 0.8 and 1.4 ppm. This chemical shift 

showed the specificity of methylated protons (CH3) at the C-6 position of L-fucose. Mon-

osaccharides generally do not have alkyl groups; therefore, the chemical shifts were in the 

range of 3.5–4.5 ppm instead of 1 ppm. The spectrum also contained resonance character-

istics of L-fucopyranose ring protons (H-2 to H-5) ranging between 3.5 and 4.5 ppm. These 

signals confirmed the presence of different types of fucose-sulfated groups with changes 

in glycosidic linkage positions and monosaccharide patterns. 

 

Figure 3. 1H NMR spectrum of the extracted fucoidan polysaccharide. 

To characterize the composition and M/G ratio of the extracted alginate, the approach 

of Grasdalen was adopted [30]. The relative areas of the peak I at 5.11 ppm (guluronic 

anomeric proton G-1), peak II at 4.71 ppm (mannuronic anomeric proton M-1 and the C-

5 of alternating blocks GM-5), and peak III at 4.50 ppm (H-5 guluronic residue G-5) en-

compass information on the uronic acid composition and fractions of nearest neighbors 

along the copolymer chain [30–32] (Figure 4). 

Figure 2. FTIR spectrum of alginate isolated from the Lebanese C. sinuosa.



Molecules 2022, 27, 358 4 of 18

2.3. Structural Characterization of Algal Polysaccharides by NMR Spectroscopy
1H NMR spectroscopy is the most reliable method used for the investigation of chemi-

cal composition and structural patterns. The proton spectrum of fucoidan from C. sinuosa
(Figure 3) contained chemical shifts ranging from 5 to 5.5 ppm, which are attributed to
anomeric protons (H-1) of α-linked-L-fucose and β-linked sugars. The presence of in-
tense peaks of the methyl groups were observed between 0.8 and 1.4 ppm. This chemical
shift showed the specificity of methylated protons (CH3) at the C-6 position of L-fucose.
Monosaccharides generally do not have alkyl groups; therefore, the chemical shifts were in
the range of 3.5–4.5 ppm instead of 1 ppm. The spectrum also contained resonance char-
acteristics of L-fucopyranose ring protons (H-2 to H-5) ranging between 3.5 and 4.5 ppm.
These signals confirmed the presence of different types of fucose-sulfated groups with
changes in glycosidic linkage positions and monosaccharide patterns.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 2. FTIR spectrum of alginate isolated from the Lebanese C. sinuosa. 

2.3. Structural Characterization of Algal Polysaccharides by NMR Spectroscopy 
1H NMR spectroscopy is the most reliable method used for the investigation of chem-

ical composition and structural patterns. The proton spectrum of fucoidan from C. sinuosa 

(Figure 3) contained chemical shifts ranging from 5 to 5.5 ppm, which are attributed to 

anomeric protons (H-1) of α-linked-L-fucose and β-linked sugars. The presence of intense 

peaks of the methyl groups were observed between 0.8 and 1.4 ppm. This chemical shift 

showed the specificity of methylated protons (CH3) at the C-6 position of L-fucose. Mon-

osaccharides generally do not have alkyl groups; therefore, the chemical shifts were in the 

range of 3.5–4.5 ppm instead of 1 ppm. The spectrum also contained resonance character-

istics of L-fucopyranose ring protons (H-2 to H-5) ranging between 3.5 and 4.5 ppm. These 

signals confirmed the presence of different types of fucose-sulfated groups with changes 

in glycosidic linkage positions and monosaccharide patterns. 

 

Figure 3. 1H NMR spectrum of the extracted fucoidan polysaccharide. 

To characterize the composition and M/G ratio of the extracted alginate, the approach 

of Grasdalen was adopted [30]. The relative areas of the peak I at 5.11 ppm (guluronic 

anomeric proton G-1), peak II at 4.71 ppm (mannuronic anomeric proton M-1 and the C-

5 of alternating blocks GM-5), and peak III at 4.50 ppm (H-5 guluronic residue G-5) en-

compass information on the uronic acid composition and fractions of nearest neighbors 

along the copolymer chain [30–32] (Figure 4). 

Figure 3. 1H NMR spectrum of the extracted fucoidan polysaccharide.

To characterize the composition and M/G ratio of the extracted alginate, the approach
of Grasdalen was adopted [30]. The relative areas of the peak I at 5.11 ppm (guluronic
anomeric proton G-1), peak II at 4.71 ppm (mannuronic anomeric proton M-1 and the C-5 of
alternating blocks GM-5), and peak III at 4.50 ppm (H-5 guluronic residue G-5) encompass
information on the uronic acid composition and fractions of nearest neighbors along the
copolymer chain [30–32] (Figure 4).

Numerical values for the uronic acid composition, M/G ratio, and doublet frequencies
of the extracted alginate are presented in Table 3. The M/G ratio value of alginate was
0.41, indicating that alginate extracted from C. sinuosa has a higher fraction of guluronate
in comparison to mannuronate. Additionally, alginate exhibited a higher G monomer (0.71)
and dimer GG (0.65) than that of M monomer (0.29) and dimer MM (0.23) (a dimer is an
oligomer consisting of two monomers joined by bonds). The 1H and 13C NMR chemical
shifts of the purified alginate and fucoidan are shown in Supplementary Table S1.
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Table 3. Numerical values for the uronic acid composition, M/G ratio, and doublet frequencies of
alginate extracted from C. sinuosa.

Numeric Values FG FM M/G Ratio FGG FGM = FMG * FMM

Alginate 0.71 0.29 0.41 0.65 0.06 0.23
* FGM refers to the frequency of the dimer formed by guluronate-mannuronate; FGM refers to the frequency of the
dimer formed by mannuronate-guluronate.

2.4. C. sinuosa Polysaccharides Exhibited Antioxidant Activities

To evaluate the antioxidant activity of isolated polysaccharides, it is recommended
to use more than one assay [33]. 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay
was first used as it is an accurate, easy, and economic method to determine the radical
scavenging activity of antioxidants [34]. The activity of superoxide dismutase (SOD) was
also measured in the presence of fucoidan and alginate as this is one of the most important
and sensitive antioxidant enzymes [35]. Fucoidan and alginate both demonstrated dose-
dependent antioxidant activities, as shown in Figure 5.

Fucoidan displayed a higher antioxidant capacity than alginate in both the DPPH
and SOD assays. Fucoidan treatment increased the antioxidant SOD activity, as evidenced
by the inhibition of water-soluble tetrazolium salt, to a greater extent (90.7 ± 4.4% at
750 µg/mL−1) than alginate (86 ± 0.7%) (Figure 5A). The SOD IC50 value of fucoidan was
lower than that of alginate (23.7 ± 1.1 and 41.34 ± 1.07 µg/mL−1, respectively). We then
compared the DPPH scavenging activity of fucoidan and alginate to the known antioxidant
compound gallic acid (Figure 5B). Fucoidan possessed a significantly higher scavenging
activity (89% ± 0.4% at 750 µg/mL−1) than alginate (61.6 ± 0.5%), and slightly lower
activity than gallic acid (97.2 ± 1.6%). The DPPH IC50 value of fucoidan was also lower
than that of alginate (46.2 ± 1.4 and 280 ± 1.2 µg/mL−1, respectively).
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2.5. C. sinuosa Polysaccharides Showed Potent Antitumor and ROS-Inducing Effects against
HCT-116 Colon Cancer Cells

First, we examined the antitumor properties of the extracted polysaccharides by
exposing colon HCT-116, cervical HeLa, and breast MCF 7 cells to different concentrations,
and then determined their effect on cell viability using MTT assay. We observed dose and
time inhibitory effects of both compounds on cell viability at 24 and 48 h (Figure 6).

There was a significant decrease in cell viability in HCT-116 cells treated for 24 h at
high concentrations of fucoidan (45% inhibition at 750 µg/mL−1, Figure 6A) in comparison
to low concentrations (11.5% cell inhibition at 100 µg/mL−1). Similar dose-dependent
inhibition patterns were observed upon treatment with alginates, with 37.1% inhibition
observed at 750 µg/mL−1 (Figure 6C). The viability of HCT-116 colon cancer cells treated
with 750 µg/mL−1 of fucoidan at 48 h was lower than MCF 7 and the HeLa cell lines
(Figure 6B). Similar results were obtained with alginate treatments on the selected cancer
cell lines (Figure 6D). Thus, the HCT-116 cell line was the most sensitive to the polysac-
charides, with fucoidan having an IC50 value (618.9 µg/mL−1) lower than that of alginate
(690 µg/mL−1) (Supplementary Table S2).

The induction of apoptosis by ROS is considered to be a central mechanism in cancer
therapy, and several recent approaches for colon cancer treatment are based on modulating
ROS levels [36]. To investigate mechanisms involved in cell death, we used the fluorescent
probe DCFDA to quantify ROS production in the most sensitive cell line HCT-116 upon
treatment with fucoidan and alginate. As shown in Figure 7, treatment with fucoidan and
alginate triggered a significant generation of intracellular ROS in comparison to control,
suggesting that the induction of ROS is an important event in the cell death mechanism
caused by these marine polysaccharides.
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Figure 7. Fucoidan and alginate isolated from C. sinuosa trigger an increase in DCFDA fluorescence
intensity, reflecting the enhanced ROS levels in HCT-116 colon cancer cells (mean ± SD; n = 3).
Significant differences are indicated as * p < 0.05 and ** p < 0.01 with respect to control.

2.6. Combination Treatment of Vitamin C and C. sinuosa Polysaccharides Significantly Increase the
Cytotoxic Activity against HCT-116 Cancer Cells

Since the purified fucoidan and alginate of C. sinuosa were mostly effective against HCT-
116 cells, we assessed their effects at two different concentrations (500 and 750 µg/mL−1)
in combination with 5 mM vitamin C at 24 and 48 h. We tested whether the combined
treatments resulted in enhanced cytotoxicity with respect to single treatments (Figure 8A,B).
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Figure 8. Influence of polysaccharides from C. sinuosa at two different concentrations and their com-
bination with vitamin C on HCT-116 cell viability after (A) 24 h and (B) 48 h incubation (mean ± SD;
n = 3). Significant differences are indicated as * p < 0.05 and ** p < 0.01 with respect to control.

As shown in Figure 8B, the combination of 5 mM vitamin C with 750 µg/mL−1 of
fucoidan at 48 h resulted in a significant reduction in cell viability (34.2%), in comparison
to either compound alone (45 and 57% decrease in presence of fucoidan or vitamin C,
respectively). The decrease in HCT-116 cell viability when treated with alginate and
vitamin C was almost similar (45% at 48 h) to alginate treatment alone (48.6%). Thus, the
combination of vitamin C with fucoidan appears to display a more potent antitumor effect
than combining vitamin C with alginate.

2.7. Combination of Vitamin C and Algal Polysaccharides Trigger Cell Cycle Regulation and
Morphological Alterations in HCT-116 Cells

To examine whether the inhibition of viability by the combination treatment was due
to cell cycle arrest and/or apoptosis, cell cycle analysis was performed using propidium
iodide (PI) staining of DNA followed by flow cytometry. Treatment of HCT-116 cells
with fucoidan and alginate alone or in combination with vitamin C yielded a significant
accumulation of cells in the sub G1 phase of the cell cycle in comparison to control (28.5%)
(Figure 9A).

The number of cells in the G1 phase decreased significantly from 35% in control
to almost 17% after treatment with fucoidan alone or its combination with vitamin C
(Figure 9A). The percentage of cells in the G1 phase also decreased post alginate treatment,
particularly when alginate was combined with vitamin C. These results indicate that
fucoidan and alginate (alone or in combination with vitamin C) induce cell death in HCT-
116 cancer cell line. Separation and gating of the different phases of the cell cycle are given
in Figure S3.

To investigate the cell death mechanism by fucoidan and alginate, we analyzed the
morphological changes observed in the nuclei of treated HCT-116 cells using DAPI staining
(Figure 9B). Apoptosis is known to cause different morphological changes in cells, which
include cell shrinkage, cytoplasm, nuclear and chromatin condensation, and nuclei degra-
dation into discrete particles [37]. Apoptotic features were observed in microscopic images
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of HCT-116 cells after 24 h of treatment with 750 µg/mL−1 fucoidan, alginate, and vitamin
C (5 mM) combinations. Both polysaccharides caused cellular changes which included cell
shrinkage, discrete particles, and chromatin and cytoplasmic condensations (Figure 9B).
Thus, flow cytometry analysis and DAPI staining both suggested the possible induction of
apoptosis in HCT-116 cells in response to fucoidan and alginate treatment.
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Figure 9. Cell cycle and morphological analysis of HCT-116 colorectal cancer cells treated with
fucoidan, alginate, and their combination with vitamin C (A) Flow cytometry analysis shows the
effects of fucoidan, alginate, and their combination on the cell cycle progression at 24 h; (B) DAPI
micrographs of HCT-116 cells indicated that nuclear fragmentation and chromatin condensation
occurred in vitamin C, fucoidan, and alginate-treated cells alone or with vitamin C combination.
Nuclei were counterstained with DAPI (blue), scale bars = 50 µm. Significant differences vs. control
cells, comparing cell cycle phases (SubG1, G0/G1, S, G2/M), are indicated as * p < 0.05 and ** p < 0.01
with respect to control.

3. Discussion

Marine polysaccharides have numerous anticancer properties that make them inter-
esting candidates for integration in drug discovery and biomedical applications [38]. In
our previous study, the elemental, organic composition, and phenolic content of C. sinuosa
extract was determined [28]. The apoptotic effects of the crude phenol-rich extracts of
this algae were then tested against colon cancer [39] without characterizing the chemi-
cal structure of the components. Considering that the polysaccharides of C sinuosa are
the most abundant components [28], we hereby characterized the fucoidan and alginate
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polysaccharides present in this algae and studied their anticancer activity alone and in
combination with vitamin C against a panel of solid tumors. Alginates and fucoidans are
known to be safe to normal cells, as they are also available in dietary supplements [40]. To
our knowledge, fucoidans and alginates extracted from C. sinuosa and their combination
with vitamin C have never been evaluated for their anticancer activity. Previous studies
documenting the cytotoxic effects of polysaccharides from Lebanese brown algae were
only based on MTT assays rather than on mechanistic biological approaches that could
allow meaningful comparisons. Thus, this is the first report that documents the use of the
Lebanese macroalgal polymers as natural medicinal sources of anticancer biomolecules in
combination with vitamin C.

Since structural variations play a major role in determining the biological properties of
a polymer, we first studied the structure of the isolated polysaccharides from the Lebanese
C. sinuosa [10]. The FTIR spectra revealed two strong bands at 1620 and 1400, assigned
to asymmetric and symmetric stretching vibrations of carboxyl groups of alginates. The
anomeric region of this carbohydrate, between 950 and 750 cm−1, is the most discussed in
the literature [41]. The presence of a band at 815 cm−1 in the alginate spectrum is attributed
to mannuronic acid residues [42]. The guluronic units showed a band at approximately
1031 cm−1, higher than that of mannuronic units at 1085 cm−1 [43].

It is also well known that sodium alginate is a linear macromolecule composed of poly-
β-1, 4-d-mannuronic acid (unit M) and α-1,4-l-glucuronic acid (unit G) [44]. Interestingly,
the alginates isolated from C. sinuosa were richer in guluronic than mannuronic acid,
indicating that these alginates can form strong and heat-stable hydrogels. This is because
the guluronate blocks allow a high degree of divalent ion coordination, which is essential
for enhancing gelling properties [45]. However, it must be noted that the structure of
the alginate extracted from the Lebanese C. sinuosa is slightly different from alginates
present in brown algae of other species in the same region. For instance, the alginate
we extracted had lower M/G ratio (0.41) than those extracted from Sargassum vulgare
(0.78) and Stypopodium schimperi (0.96) [46,47]. Additionally, most fucoidans of brown
seaweeds consist mainly of sulfated L-fucose (about 34–44%) [48], which is in parallel
with our physicochemical analysis showing the elevated levels of fucose. The structure of
fucoidan was further validated by the IR spectra indicating that the isolated fucoidan had
close structural similarity to commercial fucoidan [49,50]. The profiles of the proton NMR
spectrum of fucoidans from C. sinuosa were similar to several other fucoidans extracted
from different origins and were comparable to fucoidans reported in Stypopodium schimperi
growing on the Lebanese coast [47,51–53].

Establishing consistent bioactivities for fucoidan and alginate is a challenge because of
variations in extraction methods, species-related structural diversity, growth conditions,
harvest season, among other factors [54]. To a large extent, the bioactivity of these biopoly-
mers is correlated with their structural characteristics. Alginate is recognized as an ideal
candidate for chemical functionalization, and this is mainly due to the free hydroxyl and
carboxyl groups distributed along the backbone, which allows the polymer to be modified
and improve physicochemical and biological features [55]. It is known that the antioxidant
potential of acidic polysaccharides is strongly related to their uronic acid content [56]; thus,
the strong antioxidant activity of the extracted alginate could be attributed to their higher
uronic acid content. Based on the literature, a higher sulfation degree has been tightly
correlated with augmented bioactivity responses, including antioxidant potential [57]. The
sulfate content of C. sinuosa fucoidan (18.8%) appeared to be higher than that of commercial
fucoidan (14.4%), sargassum (4.7%), and padina (8.8%), but slightly lower than that of
turbinaria species (19.4%) [58]. Thus, the stronger antioxidant potential of fucoidans of
C. sinuosa could be attributed to their higher sulfate content. When comparing the isolated
fucoidan in this study to those extracted from different algal species elsewhere, we found
that fucoidans of C. sinuosa had the highest DPPH scavenging potential [59–62].

Previous in vitro and in vivo studies have shown that algal polysaccharides exert
antitumor effects, and suppress growth, angiogenesis, and metastasis in a range of cancer
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cells [63]. The cytotoxic potential of fucoidan and alginates isolated from S. schimperi re-
vealed lower cytotoxicity on colon cancer cell lines compared to extracts from C. sinuosa [47].
Moreover, fucoidans of Lebanese origin isolated from Dictyopteris and Sargassum species
exerted significant cytotoxic potential on human melanoma cells [64]. In this study, alginate
and fucoidan of C. sinuosa were tested against different types of solid tumors, and the colon
cancer HCT-116 cell line was found to be the most sensitive.

Furthermore, the ROS levels in HCT-116 cells were elevated upon treatment with
polysaccharides from C. sinuosa. This increase in ROS was more pronounced upon fu-
coidan treatment (1.7-fold). This is in accordance with other studies that have shown that
fucoidans from different algal species induce apoptosis in cancer cells via ROS-mediated
cell signaling [65–68]. In addition, the combination of alginate with vanadyl [69] or with
tamoxifen [70] was found to induce ROS-dependent cell death in cancer cells.

Many investigations have highlighted the importance of marine polysaccharides as
candidates for combination therapy [8,71]. However, so far, only one study has investigated
the effect of a mixture of dietary fucoidan from Japanese Mozuko seaweed with sodium
ascorbic acid, and the results confirmed that this combination had strong antioxidant
activity which was associated with an enhanced inhibition of fibrosarcoma tumor invasion
in vitro [72]. In our study, the combination of vitamin C with fucoidan and alginates
(IC50 437.4 and 453.3 µg/mL−1, respectively) acted synergistically to significantly increase
cytotoxicity against colorectal cancer cells. This combination significantly decreased the
IC50 of the isolated fucoidan to lower levels than fucoidans isolated from other regions and
sources [6].

To unravel the mechanisms of cell death induced by the polysaccharides of C. sinuosa,
their effects on the morphology and cell cycle regulation of HCT-116 cells were evaluated
by flow cytometry and DAPI staining. Apoptosis is a major control mechanism in living
organisms, and its deregulation results in cancer development; thus, the induction of
apoptotic cell death in cancer cells is an effective strategy for cancer cell eradication [73].
Fucoidan, alginate, and their combination with vitamin C revealed a significant increase
in the proportion of cells present in the sub G1 phase. This reflects a typical cell death
pattern [74], which was confirmed to be apoptosis by the morphological changes and
apoptotic features revealed by DAPI staining. Other studies have shown that fucoidans
extracted from different origins induced similar cell cycle alterations in MCF 7, HCT-116,
and Caco cancer cell lines, as evidenced by the increase in the proportion of cells in the sub
G1 phase and apoptosis induction via ROS-dependent mechanisms [68,75,76].

In conclusion, this study provides new insights for the use of marine polysaccharides
from Lebanese brown algae as natural medicinal sources. Fucoidan and alginates from
C. sinuosa appear to have promising antitumor activity against different human cancer cell
lines. Their combination with vitamin C caused enhanced cell cycle alterations, ROS gener-
ation, and apoptotic cell death in HCT-116 colon cancer cell line. Henceforth, fucoidans
and alginates could be used in combination with vitamin C as dietary supplements or as
adjuvant treatments against cancer.

4. Materials and Methods
4.1. Sample Collection

C. sinuosa samples were collected in July, from the Al Qalamoun area of the North
Lebanese coast of the Mediterranean at a depth of 3–5 m. Fresh seaweed was rinsed, air
dried, and ground to a fine powder. A voucher specimen (No.20181102A) was deposited in
the Doctoral School of Science and Technology, Lebanese University, Tripoli, Lebanon.

4.2. Extraction of Polysaccharides from C. sinuosa

C. sinuosa was extracted in absolute ethanol overnight in order to remove pigments,
fatty acids, and oligoelements. The mixture was centrifuged at 3000 rpm for 20 min, and the
residue was washed thoroughly with ultrapure water. This residue was re-extracted with
diluted hydrochloric acid (HCl 0.01 M) twice at 60 ◦C for 3 h for further depigmentation
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and centrifuged at 3000 rpm for 20 min. The supernatant (1) obtained was used for fucoidan
extraction, while the residue (2) was used for the isolation of alginates [47].

4.2.1. Fucoidan Isolation

The supernatant (1) was neutralized, rotavapored, and then dialyzed overnight to
remove impurities using dialysis cellulose tubing (Sigma, St. Louis, MO, USA, MW cutoff:
1200 KDa). Dilute HCl was added to precipitate mannularin and the hydrolysate was
centrifuged (3000 rpm, 20 min). The obtained residue was discarded, and the supernatant
containing the crude fucoidan was lyophilized [47].

4.2.2. Alginate Isolation

Residue (2) was extracted with sodium bicarbonate (Na2CO3) for 8 h, diluted to
1.5% Na2CO3, and extracted for another 8 h. After centrifugation, the supernatant was
rotavapored and dialyzed overnight. Alginic acid was precipitated with ethanol (1:1, v/v)
and again centrifuged to obtain the pellet of interest. This pellet was then dissolved in
ultrapure water, and 5 drops of 0.01 M HCl was added. Sodium alginate was obtained by
adding a few drops of NaOH to reach pH 8. This process was followed by dialysis and
lyophilization to obtain sodium alginate [47].

4.2.3. Fucoidan and Alginate Purification

The purification step was adopted and slightly modified from Sari-Chmayssem et al.
(2016). Briefly, fucoidan and alginate were dissolved in 0.3 M HCl and heated at 50 ◦C for
3 h. After cooling, the mixture was centrifuged at 5000 rpm for 10 min and the supernatant
was neutralized with 1 M NaOH and poured over 10 mL of ethanol. Finally, the precipitate
was dissolved and lyophilized [46].

4.3. Physicochemical Properties

The yield of each purified polysaccharide was determined by weighing the mass after
purification and lyophilization. Next, the total phenolic content (TPC) of each polysac-
charide was estimated using the Folin-Ciocalteu method [77]. The absorbance values of
polysaccharides were compared with gallic acid standard. The TPC was expressed as mg
of gallic acid equivalents (GAE) per gram of powder on a dry weight (DW) basis. The
percentage of proteins was estimated using the DC protein Lowry method according to
the manufacturer instructions (BioRad kit), with bovine serum albumin used as a standard.
The sulfate content was further determined turbidimetrically by adopting the barium
chloride-gelatin method and potassium sulfate as a standard [78]. The glucuronic acid
content was assessed spectrophotometrically using D-glucuronic acid as the standard [79].

4.4. Monosaccharide Composition

For the determination of monosaccharide content by HPLC, fucoidan and alginate
were hydrolyzed with 2 M trifluoroacetic acid (TFA) at 121 ◦C for 4 h in glass tubes
sealed under nitrogen air. After reaction, the liquid fraction was neutralized to pH 7 and
then dried under nitrogen air flow. Samples were then injected into the HPLC system,
equipped with a refraction-index (RI) detector. LC-NH2 column (Sigma) was used for the
chromatographic separation of reducing sugars [80]. Glucose, galactose, fucose, mannose,
xylose, and arabinose (Sigma) were used as standards.

4.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

FTIR spectra of fucoidan and alginate were acquired using a SHIMATZU instrument
(MIRacle 10 series, total reflectance method). For this analysis, the samples with no ad-
ditional treatments (2 mg) were analyzed. The frequency of the spectra set to analysis
was between 4000 and 150 cm−1 wave number, and the vibration spectra were recorded
graphically. The M/G ratio of alginate was estimated from specific absorption bands at
approximately 1030 and 1090 cm−1 [42,81].
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4.6. Nuclear Magnetic Resonance (NMR) Spectroscopy
1H and 13C NMR spectra of alginate and fucoidan were recorded at 70 ◦C on a

Bruker500 MHz spectrometer. Lyophilized samples of fucoidan and alginate (10 mg, pH 7)
were dissolved in deuterium oxide (D2O).

G and M quantitative analysis in alginate:
Quantitatively, the mole fraction of G and the doublet frequency FGG are related to the

areas (A) of the respective peaks (I, II, and III) by the following relationships [46]:

FG =
AI

AII + AIII
(1)

FGG =
AIII

AII + AIII
(2)

The mole fraction of M was then calculated from the equation:

FG + FM = 1 (3)

The M/G ratio is given by the following:

M
G

=
(1 − FG)

FG
(4)

Doublet frequencies (FGG and FMM) were obtained from the following equations:

FG = FGG + FGM (5)

FM = FMM + FMG (6)

For high-molecular-weight alginate (DP > 20), we considered that:

FMG = FGM (7)

4.7. Preparation of Polysaccharides

Ultrasound sonication is an effective approach to decrease the viscosity of isolated
polysaccharides with minor structural destruction [82]. To reduce the viscosity and molec-
ular weight of the isolated polysaccharides from C. sinuosa, fucoidan and alginate stock
solutions were prepared and sonicated. They were then dissolved in phosphate buffer
saline (PBS 1X) and sonicated in a water bath (Bioruptor® Plus sonication) for 3 h at 50 ◦C.

4.8. Antioxidant Assays
4.8.1. DPPH Free Radical Scavenging Assay

The DPPH antioxidant assay is based on the reduction of DPPH in the presence of
a proton-donating compound and is used to evaluate the antioxidant activity of natural
compounds [83]. The scavenging effects of samples for DPPH radical were monitored
according to the method of a previous report [84]. Fucoidan and alginate were aliquoted
into a range of concentrations (100, 250, 500, and 750 µg/mL−1). The absorbances were
measured at 517 nm. All tests were performed in triplicates.

4.8.2. Superoxide Dismutase (SOD) Inhibition Assay

SOD is an important antioxidative enzyme which catalyzes the dismutation of the
superoxide anion (O2

−) into hydrogen peroxide and oxygen. SOD activity represented the
percentage of the inhibition of water-soluble tetrazolium salt (WST-1) [85]. This inhibition
was measured in fucoidan and alginate according to the manufacturer instructions using a
commercial kit of SOD (19160) (Sigma-Aldrich, St. Louis, USA), and the absorbances were
determined at 450 nm. All tests were performed in triplicates.
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4.9. Cell Lines and Culture

Human colon cancer (HCT-116), human breast cancer (MCF 7), and human cervical
cancer (HeLa) cell lines were purchased from the American Type Culture Collection (ATCC).
Cells were cultured in DMEM at 37 ◦C in a humidified atmosphere of 5% CO2 and 95%
air. Media were supplemented with 1% Penicillin Streptomycin (100 µg/mL−1) and 10%
heat-inactivated fetal bovine serum (FBS).

4.10. Cell Viability Assay

The cell growth assay is a dimethyl thiazolyldiphenyltetrazolium (MTT)-based method
that measures the ability of metabolically active cells to convert tetrazolium salt into a
blue formazan product [86]. Cells were seeded in a 96-well plate at a density of 104

overnight and then cells were treated with various concentrations of fucoidan and alginate
(100–750 µg/mL−1). After 24 and 48 h, treatments were removed, and cells were washed
prior to MTT incubation for 2 h at 37 ◦C. The mean absorbance values of three experiments
were expressed as a percentage of viability relative to the control untreated cells. The most
sensitive cell line was further subjected to another MTT experiment to test fucoidan and
alginate combinations with 5 mM vitamin C. The absorbance was recorded at 570 nm.

4.11. Quantitative Determination of ROS

Intracellular ROS generation was quantified using CM-H2DCFDA. This method is
based on the formation of highly fluorescent 2′,7′-dichlorofluorescein (DCF) from non-
fluorescent CM-H2DCFDA. Hydrogen peroxide (20 µM H2O2) was used as a positive
control to induce ROS production. Cells were treated with alginate and fucoidan at a
concentration of 750 µg/mL−1 and incubated for 4 h at 37 ◦C. At the end of the treatment
period, cells were incubated with 20 µM of dye, in a serum and phenol red free medium for
30 min. The fluorescence intensity was detected using a microplate fluorometer TriStar2S
LB942 (Brethold, Bad Wildbad, Germany) at an excitation wavelength of 485 nm and an
emission wavelength of 528 nm.

4.12. Cell Cycle Analysis

Dead and viable cells were collected 24 h post-treatment with 750 µg/mL−1 of the
algal polysaccharides and 5 mM vitamin C combinations. The pellets were washed with
ice-cold PBS, fixed with 70% ice-cold ethanol, and stored at −20 ◦C overnight. Cells were
then washed twice with PBS and incubated with 200 µg/mL−1 of RNAse A for 1 h at
37 ◦C before staining with 0.625 µg/mL−1 of PI for 30 min. The fluorescence intensity was
measured by flow cytometry using a fluorescence-activated cell sorter (FACS) and analyzed
using Cell Quest.

4.13. DAPI Staining

Morphological changes of the nuclei of treated cells were investigated under a con-
focal laser scanning microscope using DAPI staining. Briefly, the cells were treated with
750 µg/mL−1 of fucoidan, alginate, and their combination with vitamin C. After 24 h,
cells were washed with 1× PBS, then fixed and stored overnight at −20 ◦C. Cells were
stained with DAPI in the dark. DAPI-stained cells were photographed with a fluorescence
microscope using a blue filter (40 and 20×magnifications).

4.14. Statistical Analysis

All statistical analysis (t-test and one-way ANOVA) were performed using GraphPad
Prism 7 (version 7.0, GraphPad Software Inc., San Diego, CA, USA). Probability values
below 0.05 (* p < 0.05) were considered significant and values below 0.01 (** p < 0.01) were
considered highly significant. All quantitative variables were reported as mean ± SD.

Supplementary Materials: Figure S1: Alginate monosaccharide spectrum by HPLC analysis coupled
to RI detector, Figure S2: Fucoidan monosaccharide spectrum by HPLC analysis coupled to RI
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detector, Figure S3: Cell cycle gating of HCT-116 treated with fucoidan and alginate isolated from
C. sinuosa, together with their combinations with vC, Table S1: 1H and 13C NMR chemical shifts of
purified (A) alginate and (B) fucoidan recorded at 70 ◦C, Table S2: Fucoidan and alginate IC50 against
different cancer cell lines (HCT-116, MCF7, and HeLa) at 24 and 48 h.
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