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Abstract: The present study reported biofabrication of flower-like SnO2 nanoparticles using Pometia
pinnata leaf extract. The study focused on the physicochemical characteristics of the prepared SnO2

nanoparticles and its activity as photocatalyst and antibacterial agent. The characterization was
performed by XRD, SEM, TEM, UV-DRS and XPS analyses. Photocatalytic activity of the nanoparticles
was examined on bromophenol blue photooxidation; meanwhile, the antibacterial activity was
evaluated against Klebsiella pneumoniae, Escherichia coli Staphylococcus aureus and Streptococcus pyogenes.
XRD and XPS analyses confirmed the single tetragonal SnO2 phase. The result from SEM analysis
indicates the flower like morphology of SnO2 nanoparticles, and by TEM analysis, the nanoparticles
were seen to be in uniform spherical shapes with a diameter ranging from 8 to 20 nm. SnO2

nanoparticles showed significant photocatalytic activity in photooxidation of bromophenol blue as
the degradation efficiency reached 99.93%, and the photocatalyst exhibited the reusability as the
degradation efficiency values were insignificantly changed until the fifth cycle. Antibacterial assay
indicated that the synthesized SnO2 nanoparticles exhibit an inhibition of tested bacteria and showed
a potential to be applied for further environmental and medical applications.

Keywords: antibacterial; green synthesis; nanoparticles; photocatalyst; tin oxide

1. Introduction

Recently, green processing in chemical reactions and environmental applications have
increasingly attracted attention. Within these schemes, studies on nanotechnology, in-
cluding the exploration of synthesis, characterization, modification and application, were
developed [1,2]. The enhanced physicochemical properties with more intense activities
for efficiencies were achieved by nanomaterials in many areas of applications such as in
wastewater treatment, biomedical, optics, sensor, antibacterial and electrochemical applica-
tions [3–5]. For example, metal oxide nanoparticles have been widely used as more effective
photocatalysts and antibacterial agents compared to the bulk form. The size and morphol-
ogy of the low dimensional metal oxide nanostructures govern the unique chemical and
optical properties, and are intensively studied and give opportunity for better effective-
ness. Metal oxide nanoparticles such as TiO2, ZnO, SnO2 and ZrO2 and their combination
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with other metal/metal oxides were demonstrated to be effective photocatalysts in water
treatment processes, including for pharmaceutics and dye-containing wastewaters [6–9].
The complete removal of organic dyes under mild conditions has been demonstrated with
these nanoparticle photocatalysts. The more effective interaction between light as a photon
source and the nanoparticle surface facilitated the faster reduction–oxidation reactions
which take place at the particle’s interfaces [10–14]. By this mechanism, oxidation can also
occur concerning bacteria or viruses, leading to potential application of semiconductor
metal oxide nanoparticles as antibacterial, antiviral or antifungal agents for medical and
sanitation technologies.

From the perspective of green synthesis, the utilization of plant extracts along with the
intensified process was also considered a more reliable, low-cost and eco-friendly method.
Amongst the different biomaterials, plant extracts consisting of leaves, bulbs, petals or
fruits have been employed for preparing metal oxide nanoparticles [15,16]. The presence
of secondary metabolites such as flavonoids, polyphenols, vitamins and proteins act as
bioreductors and capping agents, which contribute to stabilizing the nanoparticles and give
benefits for medical applications. Among many photoactive metal oxide nanoparticles,
SnO2 nanoparticles (SnO2 NPs) have been widely studied for such purposes, and have
exhibited highly photocatalytic activity with a band gap energy of about 3.2–3.6 eV. SnO2
also offers and gives higher electron mobility (100–200 cm2V−1s−1) compared to other
semiconductors such as TiO2, leading to faster photo generated electron transport during
the photocatalysis mechanism [17]. From several studies on the use of plant extracts in the
SnO2 NP synthesis, it can be concluded that different plant species gave the specific char-
acter and morphology of the nanoparticles, and influence the physicochemical character
and activity [18]. Matoa or Pometia pinnata is an endemic plant in Southeast Asia, including
Indonesia, especially in Papua Island. The leaf of Pometia pinnata has been utilized in tradi-
tional medical applications, and further analysis has revealed that the activities in medical
applications are in correlation with the high content of flavonoids, tannins, triterpenoids,
glycosides and saponins [17,19,20]. These compounds have been proven to be effective as
bioreductors for the plant extract-mediated synthesis of silver NPs and in the synthesis of
reduced graphene oxide [21,22], but, to our knowledge, utilization for SnO2 NP synthesis
has not been reported yet. As exploration for the synthesis, characterization and application
of SnO2 NPs, this research aimed to study the physicochemical character of the SnO2 NPs
and their activity as photocatalyst and antibacterial agent. Bromophenol blue (BPB) was
chosen as the model of dye compounds, since it is highly consumed in many industries. In
addition, the persistence and toxic character of BPB requires attention concerning being
treated; it will be particularly representative for photocatalytic degradation. For antibac-
terial activity assay, the inhibitory activity of SnO2 NPs was examined against Klebsiella
pneumoniae and Escherichia coli, which were representative of gram-negative bacteria, and
Staphylococcus aureus and Streptococcus pyogenes as gram-positive bacteria.

2. Materials and Methods
2.1. Materials

The SnCl2·2H2O, BPB and ethanol with 99% purity were purchased from Sigma-
Aldrich Chemical Company (Darmstadt, Germany). Double-distilled water was used in
all experiments.

2.2. Extraction of Pometia pinnata Leaves

Fresh Pometia pinnata leaves were harvested from rural farms in Sleman, Yogyakarta
Province, Indonesia, and then washed several times with distilled water to remove dirt.
Afterwards, the leaves were air dried for a week at ambient temperature to reach the
appropriate moisture. The dried leaves were ground into fine powders using a mortar and
pestle; furthermore, 20 g of the dried leaves were refluxed with 100 mL of distilled water
for 4 h. The Pometia pinnata leaf extract (PPE) was obtained by filtering the result using
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Whatman Grade 1 filter paper. To maintain the condition of the PPE, the PPE was kept at a
temperature of 5 ◦C in a refrigerator.

2.3. Synthesis of SnO2 NPs

The synthesis of SnO2 NPs was performed by mixing 2 g of tin chloride (SnCl2·2H2O)
with 50 mL of PPE, followed by the addition of 50 mL of distilled water. The mixture was
then refluxed for an hour, and the monitoring of nanoparticle formation was performed by
UV-visible spectrophotometry. As the formation of the nanoparticles was confirmed by
UV visible spectroscopy, the precipitate was obtained by evaporating water in an oven at a
constant temperature of 60 ◦C. The powder obtained from these steps was then sintered
at 500 ◦C for 2 h to get SnO2 NPs. Figure 1 displays the schematic representation of SnO2
NP synthesis.
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Figure 1. Schematic representation of SnO2 NP synthesis.

2.4. Characterization of SnO2 NPs

X-ray diffraction (XRD) measurement was carried out using a Shimadzu X6000 diffrac-
tometer with Ni-filtered Cu-Kα radiation (λ =1.5406 Å) operated at a voltage of 40 kV and
current of 30 mA. The scanning was taken from 10 to 70◦. The crystalline size of the NPs
was measured based on the Scherer equation:

d = kλ/Bcosθ (1)

where d is the mean crystalline size of the NPs, λ is the wavelength of radiation (1.5406 Å),
θ is the selected angle and B is the full width at half maximum (FWHM) intensity of the
selected reflection.

The morphology of prepared nanoparticles was investigated on a Phenom-X field-
emission scanning electron microscope (FE-SEM); meanwhile, the elemental composition
of the SnO2 NPs was determined by X-ray Fluorescence spectroscopy (XRF) using the
Shimadzu EDX-7000 instrument. Transmission electron microscopy (TEM) images and
high-resolution TEM (HR-TEM) images were obtained with a JEOL TEM 2010 transition
electron microscope operated at 200 kV. The sample was collected on a holey carbon
grid. XPS analysis was performed on a V.G. Scientific ESKALAB MKII instrument with
a monochromatic Al Kα radiation with photon energy of 1486.6 ± 0.2 eV. Prior to being
analyzed, the sample was slightly pressed into a small size and then degassed to achieve a
dynamic vacuum below 10−8 Pa.
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2.5. Photocatalytic Activity of SnO2 NPs

To verify the photocatalytic performances of SnO2 NPs, experiments on photocatalytic
oxidation (herein called photooxidation) of BPB were conducted under UV and visible light
illumination. A 20 watt Philips UV light lamp was employed as the UV light source, and a
20 watt Philip Xenon lamp was utilized as the visible light source. The light intensities of
UV light and Xenon lamps were 39.99 MW/Cm2 and 31.22 MW/Cm2, respectively; the
radiometer was VLX-3W. The experiments were executed in a batch photocatalytic reactor
equipped with a water-jacketed chamber to stabilize the temperature. In particular, 0.25 g of
SnO2 NPs was dispersed in 100 mL of 20 ppm BPB solution, and about 1 mL of 5 × 10−3 M
of H2O2 was then added. The suspension was stirred in the dark for 15 min before being
exposed to light, and the samples of supernatant were then collected sequentially for
colorimetric analysis using UV-visible spectrophotometry.

The degradation efficiency of the photocatalysis was calculated based on the initial
concentration and the concentration at the time of sampling with reference to the following
equation (Equation (2)):

Degradation efficiency (DE)(%) = 100×
(

C0 − Ct

C0

)
(2)

where C0 and Ct are initial concentration and concentration of BPB at time t.

2.6. Antibacterial Assay of SnO2 NPs

Antibacterial activity of the SnO2 NPs was evaluated by disc diffusion method. The
tested bacterial strains were S. aureus (ATCC 25923), S. pyogenes (ATCC 19615), K. pneu-
moniae (ATCC 13883) and E. coli (ATCC 11303). The medium for bacterial growth was
prepared by suspending nutrient agar in distilled water and was autoclaved before use.
Bacterial culture was evenly spread throughout the petri plate and a 6 mm sterile filter disc
loaded with 100 µg/100 mL SnO2 NPs solution.

3. Results
3.1. SnO2 NP Synthesis and Characterization

The formation of SnO2 NPs was initially monitored by the identification of surface
plasmon resonance (SPR) using UV-visible spectrophotometry analysis on a HITACHI
U-2010 instrument.

Figure 2 shows that the bioreduction occurred as the change of peaks recorded values
of from 200 to 800 nm. The PPE showed peaks at the range of 200–300 nm and 500–600 nm,
indicating the presence of secondary metabolites which contain aromatic structures. The
spectrum of SnO2 NPs shows the characteristic surface plasmon resonance (SPR) absorption
band at 396 nm. This wavelength is consistent with the SPR absorption band of Sn NPs in
previous literature mentioning the range of 295–400 nm. The disappearing peaks at the
range of 500–600 nm is an indication of the reduction of some secondary metabolite. A
previous study identified some secondary metabolites such as kaempferol-3-O-rhamnoside,
glycolipid, epicatechin, quercetin-3-O-rhamnoside, steroid glycosides, and other saponin
compounds as the components of PPE [23,24]; the reduction of Sn2+ possibly involves the
functional groups of those compounds. Taking quercetin as one of the bioreductors, the
reduction mechanism is as presented in Figure 3.

Moreover, other phenolic compounds work as singlet oxygen quenchers, hydrogen
donators, metal chelating and reducing agents which furthermore act as capping agents
for the nanoparticles [25].
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Figure 3. Mechanism of Sn2+ bioreduction by quercetin in PPE.

Results from the XRD analysis presented in Figure 4 exhibit the peaks which are
associated with the (110), (101), (200), (210), (211), (220), (002), (310), (112), (301) and (202)
planes, respectively. All diffraction peaks coincide strongly with the planes of standard
tetragonal rutile SnO2, which refers to JCPDS 41-1445, and there is no other peak detected,
indicating the single phase of the nanoparticles [26,27]. Based on the Scherer equation, the
average crystallite size of SnO2 NPs calculated from (110), (101) and (211) is about 18.2 nm.
Complete oxide formation was observed by XPS analysis, and the spectra are presented in
Figure 5.
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of O1s.

The survey scan spectrum (Figure 5a) shows the major peaks of C, O and Sn, clearly
indicating the successful fabrication of SnO2 by using PPE as the reducing agents. The
deconvoluted Sn 3d spectrum (Figure 5b) shows two peaks at 487.1 and 495.9 eV, which
are assigned as the Sn 3d5/2 and Sn 3d3/2 spin-orbit peaks, indicating the chemical state
of the SnO2 NPs as Sn4+. In addition, the O1s spectrum can be deconvoluted into two
peaks centered at 530.6 and 531.8 eV, associated with the Sn-O and Sn-OH, respectively
(Figure 5c). These peaks are ascribed as the oxygen-containing functional groups bound to
the SnO2 NPs as the caping agent [18,28,29].

Figure 6a shows the flower-like FE-SEM image of the SnO2 NPs, while Figure 6b repre-
sents the higher magnification of the image. By the higher magnification, the nanoparticle
facets of the of the structures are smooth and discriminable in uniform spherical shapes.
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Moreover, the TEM and HR-TEM investigations represent further insight into the
morphologies and the structural features of SnO2 NPs. It can be seen from the TEM profile
(Figure 7a–c) that the irregular spherical forms have diameters ranging from 8 to 18 nm.
In addition, HR-TEM images (Figure 7c) represent the clear lattice fringes with a width of
0.34 nm, which corresponds to the interplanar distance of (1 1 0) planes SnO2 [16,30,31].
These data infer that the calculated average particle sizes from XRD, SEM and TEM
measurements have a consistent value. The particle size obtained in this work is at the
average and within the range found using other plants extracts, as presented in Table 1.
Many researches have found the spherical form of nanoparticles to be within the range
of 2–50 nm, except concerning Ficus carica with a size of 128 nm. The form and particle
size are strongly influenced by several factors such as composition of the extract, reaction
procedure and temperature of sintering [32].
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Table 1. Comparison of morphologies and particle size of SnO2 NPs synthesized using various plant extracts.

Bioreductor. Morphology Particle Size (nm) References

Camellia sinensis flower extract spherical 5–30 [32]
Vernonia amygdalina leaf extract nanorod 6.45 [33]

Menta spicata leaf extract nanorod 7.35 [33]
Actinidia deliciosa (Kiwi) peel extract. spherical 20 [34]

Galaxaura elongata spherical 35 [35]
Ficus Carica leaf spherical 128 [36]

Calotropis gigantea irregular 35 [27]
Vitex altissima (L.) Leaf Extract spherical 20 [27]

Red spinach leaf extract Spherical 20–40 [37]

The different compositions of secondary metabolites govern the bioreduction of Sn2+

and furthermore affect the particle’s aggregation after the sintering process, which has also
been reported in the green syntheses of ZnO, Fe2O3 and SnO2 nanoparticles [28,32,38,39].

3.2. Optical Properties of SnO2 NPs

The optical properties of SnO2 NPs were studied by UV-DRS and photoluminescence
spectroscopy analyses, and the spectra are presented in Figure 8. The band gap of SnO2
NPs was evaluated according to the UV-DRS spectrum with the following Equation (2):

(αhν)2=A(hν − Eg) (3)

where α, h, ν, Eg and A are the absorption coefficient, Planck constant, light frequency,
bandgap energy and Tauc constant, respectively. The extrapolation of (α h ν)2 versus hν to
zero gives the band gap energy of 3.5 eV. This value lies within the range of 3.1–3.9 eV, as
mentioned in the literatures, and is comparable to the band gap energy of SnO2 NPs syn-
thesized using the hydrothermal method [17,40,41]. The photoluminescence (PL) spectrum
was recorded with varying excitation wavelengths (l = 360~380 nm), and the spectrum of
SnO2 NPs showed an excitation wavelength of 396 and 550 nm, of which the peak at 550 nm
is attributed to 6A1→4T1(4G) ligand field transition of Sn4+. The data represents that SnO2
NPs have the capability to interact with photons in either the UV or the visible region.
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3.3. Photocatalytic Activity

Figure 9 shows the kinetics plot of BPB photooxidation under UV and visible light
irradiation in comparison with blank experiments consisting of adsorption and photolytic
treatments. The adsorption treatment was the treatment with the addition of SnO2 NPs
in the solution without any light exposure, while the photolytic experiment was the UV
light exposure to the solution with the addition of H2O2 in the absence of photocatalysts. It
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can be seen that the photocatalytic and photooxidation experiments significantly reduced
BPB concentration attributed to the decolorization from the initial step of the reaction,
while the blank experiments reveal insignificant decolorization. The decolorization of
BPB reaches less than 5% with respect to the initial concentration by photolytic treatments;
meanwhile, there is about 15% reduction concerning the adsorption experiment for 120 min.
The decolorization for the adsorption experiment is attributed to the role of SnO2 NPs in
providing surface interactions with the BPB molecules, as has been reported in previous
experiments of dye adsorption using SnO2 and SnO2 NPs [42,43]. The photolytic mecha-
nism depends on the capability of light to produce radicals from the homolytic cleavage of
H2O2 molecules and, from the experiment, it was conclusively obtained that the reaction
went slower compared to the formation of radicals over the catalytic mechanism.
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It was also seen that the use of UV light illumination demonstrated a faster removal.
While the PL intensity of SnO2 NPs supports the photoactivity within the visible light
region, according to the band gap energy value which lays within the UV light range, the
photon interaction with UV light produced the radicals for further propagation reactions.

3.4. Identification on Oxidation Mechanism

For the verification of the occurrence of the oxidation mechanism, LCMS analyses were
performed. Results from LCMS analysis presented in Figure 10 validated the degradation
mechanism, concerning which the chromatogram of the initial solution demonstrated a
single peak at 12.8 min and later changed, displaying other peaks in the treated solution,
indicating that the products degraded [44]. In addition, the MS spectra of the initial
and treated solutions suggested the predicted reaction intermediates from the presence
of m/z = 667.4, 665.7, 632.7, 603.5, 500.3, 523.2, 415.1 and 325.6. The degradation mechanism
and products of azo dyes have been extensively discussed, and refer to the existence of
the peak m/z = 667.4, which is higher compared to the m/z reflecting the presence of BPB
(665.7), indicating the addition of the radical as the first step of the propagation [45,46].
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Referring to these MS peaks, the possible degradation mechanism can be seen in
Figure 11. A similar mechanism was reported for BPB removal over CuO-nano-clinoptilolite
and BPB degradation by sono-catalytic treatment using SnO2/montmorillonite [47,48].
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These data revealed the role of SnO2 NPs to accelerate the radical formation and
propagation steps by the following mechanism:

SnO2 NPs + hν→SnO2 NPs* + hvb
+ + ecb

−

H2O + h+→H+ + OH•
OH− + h+→OH•
O2 + e−→O2

−

O2 + 2H+ + 2e−→H2O2
H2O2 + e−→OH• + OH−

BPB + •OH + O2→degradation products→→→CO2 + H2O
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Furthermore, the kinetics plots of photooxidation reactions from varied concentrations
are depicted in Figure 12. Generally speaking, the compared data are consistent with the
trends of the higher degradation rate which were achieved under UV exposure rather than
the use of visible light. The kinetics evaluation on these data suggests that the reactions
obey the pseudo-second order kinetics with reference to following equation (Equation (4)):

1
Ct

= kt +
1

C0
(4)

where C0 and Ct are initial concentration and concentration of BPB at time t, and k is
kinetics constant.
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The fitness of the data concerning pseudo-second-order kinetics is similar to the
kinetics of BPB photocatalytic degradation over SnO2 synthesized using red spinach [37],
which also represented the effect of the initial concentration of dye concerning the reaction
rate. The kinetics parameters and DE values are presented in Table 2.
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Table 2. Kinetics constant and DE of BPB photooxidation at varied initial concentrations.

Initial Concentration Light R2 of the Second
Order Kinetics

Kinetics Constant k
(L/mg.min) DE at 120 min (%)

2 UV 0.997 3.41 99.93
5 UV 0.993 0.72 98.52

10 UV 0.995 0.60 94.50
25 UV 0.994 0.21 92.85
2 Visible 0.994 0.67 93.29
5 Visible 0.996 0.63 95.85

10 Visible 0.996 0.60 94.50
25 Visible 0.996 0.21 85.16

3.5. Effect of Scavenger

To study the role of ·OH in photooxidation, the effect of scavenging agents consisting
of EDTA as a hole scavenger and isopropanol as the radical’s scavenger on kinetics of BPB
removal was examined. Figure 13a shows that isopropanol significantly suppressed the
degradation of BPB as slower C/C0 reduction occurred. Isopropanol traps the radicals
formed by the excitation produced by the interaction between SnO2 NPs and light so the
propagation steps for producing further oxidation reaction are diminished. In contrast,
the addition of EDTA enhanced the photooxidation with about 10% BPB reduction being
observed at the initial part of the reaction. The kinetics reflected that EDTA inhibits the
recombination of electrons and holes so more electrons can migrate to the surface of the
SnO2 NPs and further react with O2 to form HOO• [48].
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3.6. Reusability of Photocatalysts

The reusability of photocatalysts is an important character which governs the appli-
cability for further scale. In order to check the reusability of photocatalysts, the spent
photocatalyst was filtered and recycled by washing with ethanol, followed by drying at
200 ◦C for 2 h. A mass loss of about 5–10% wt. occurred due to technical steps such as
incompleteness in recovery by filtration. The degradation efficiency of recycled photo-
catalysts compared to fresh ones is presented in a chart in Figure 13b. It is seen that DE
remained stable in the range of 98.52–94.60% until the fifth cycle, which means that the
reduced activity was no more than 10%. This performance is attributed to the stability of the
nanoparticles which related to the maintained physicochemical characteristics concerning
its role in the photooxidation mechanism. The reusability of the SnO2 is comparable with
magnetite nanoparticles and SnO2 dispersed onto montmorillonite [47], but the crucial
factor of recovery after the use of photocatalyst needs to be addressed for improvement in
industrial or scaled-up levels.
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3.7. Antibacterial Activity

Disk diffusion assay was performed to analyze the inhibition zone of SnO2 NPs
against K. pneumoniae, E. coli, S. aureus and S. pyogenes. Figure 14 shows the inhibition
zone diameter for each test in comparison with ampicillin as the positive control. It is
also found that the inhibition zone reduced at prolonged incubation times for 48 and 72 h,
suggesting that the nanoparticles’ capability is more for inhibiting rather than killing the
tested bacteria.
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The data show that the inhibition zone diameters for all tested bacteria are smaller
compared to those of ampicillin as positive control. The different mechanism is a known
factor in this, and ampicillin is a well-known pharmaceutical, being an antimicrobial agent.
In more detail concerning SnO2 NPs, higher antibacterial effects against K. pneumoniae and
S. pyogenes, which are gram-positive bacteria, compared to those of E. coli and S. aureus,
are demonstrated. With regard to a previous study on the surface interaction among
nanoparticles and the bacteria, the stronger surface interaction of nanoparticles with gram-
positive bacteria is due to a partially less negative surface potential of the bacteria.

Metal oxide nanoparticles tend to have a negative zeta potential, which easily interacts
with this surface potential according to the electrostatic force equilibrium. In contrast,
the more negative the surface potential of the gram-negative bacteria, the less the surface
interaction [49–52]. Ions can be released from the interaction between SnO2 NPs with the
cell wall leading to the generation of reactive oxygen species (ROS) on the surface of the
nanoparticles. The DNA damage causing cell destruction is a further step for bacteria
inactivation. Figure 15 depicts the schematic representation of the mechanism [53].
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The inhibition zone which identified the antibacterial activity of SnO2 NPs in this
study was comparable to, and even greater than, the SnO2 NPs observed in other studies.
For example, the activity against E coli was higher compared to that demonstrated by
the SnO2 NP synthesized co-precipitation method using DNA as the capping agent [54],
and was also higher compared to SnO2 NPs synthesized using Vitex altissima [52]. The
inhibition zone of 12 mm in this research was achieved with a concentration of 200 µg/mL,
higher than the inhibition zone from the DNA-synthesized SnO2 NPs (10 mm) and Vitex
altissima-mediated SnO2 NPs (1.1 mm). Higher activity was also demonstrated against
S. aureus and K. pneumoniae compared to Stevia rebaudiana-mediated SnO2 NPs [55]. The
particle size of Stevia rebaudiana-mediated SnO2 NPs ranged from 20 to 30 nm, suggesting
that the higher antibacterial activity in this work is strongly correlated with smaller particle
size. Smaller particle size enables the intrusion of nanoparticles into the cell wall to
further destroy the structure of the bacteria [32,56–58]. Generally speaking, the synthesized
SnO2 NPs have pronounced antibacterial activity concerning tested gram-negative and
gram-positive bacteria, so it has potentially further developed for environmental and
biomedical applications.

4. Conclusions

This research, the first ever study on the synthesis of SnO2 nanoparticles using Pometia
pinnata leaf extract, demonstrated the flower-like structure of nanoparticles as a single
SnO2 tetragonal phase. TEM analysis proved the nanoparticles had uniform spherical
shapes with size ranging from 8 to 20 nm, which was confirmed with XRD analysis, finding
a crystallite size of 18.2 nm. Optical study of the nanoparticles showed that the band
gap energy of SnO2 nanoparticles is 3.5 eV, contributing to the photocatalytic activity in
bromophenol blue photooxidation. Kinetics study revealed the fitness of bromophenol
blue photooxidation with second-order kinetics by either UV or visible light exposure.
Degradation efficiencies ranging from 85 to 99% were found with dependency toward an
initial concentration of BPB and the use of a light source. The antibacterial activity evalua-
tion of SnO2 nanoparticles indicated an inhibition capability against Klebsiella pneumoniae,
Escherichia coli Staphylococcus aureus and Streptococcus pyogenes which is comparable and
even higher in comparison with SnO2 nanoparticles reported in previous studies.
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