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Aim. This study is aimed at building a risk model based on the genes that significantly altered the proliferation of lung
adenocarcinoma cells and exploring the underlying mechanisms. Methods. The data of 60 lung adenocarcinoma cell lines
in the Cancer Dependency Map (Depmap) were used to identify the genes whose knockout led to dramatical acceleration
or deacceleration of cell proliferation. Then, univariate Cox regression was performed using the survival data of 497
patients with lung adenocarcinoma in The Cancer Genome Atlas (TCGA). The least absolute shrinkage and selection
operator (LASSO) model was used to construct a risk prediction score model. Patients with lung adenocarcinoma from
TCGA were classified into high- or low-risk groups based on the scores. The differences in clinicopathologic, genomic, and
immune characteristics between the two groups were analyzed. The prognosis of the genes in the model was verified with
immunohistochemical staining in 100 samples from the Department of Thoracic Surgery, Zhongshan Hospital, and the
alteration in the proliferation rate was checked after these genes were knocked down in lung adenocarcinoma cells (A549
and H358). Results. A total of 55 genes were found to be significantly related to survival by combined methods, which
were crucial to tumor progression in functional enrichment analysis. A six-gene-based risk prediction score, including the
proteasome subunit beta type-6 (PSMB6), the heat shock protein family A member 9 (HSPA9), the deoxyuridine
triphosphatase (DUT), the cyclin-dependent kinase 7 (CDK7), the polo-like kinases 1 (PLK1), and the folate receptor beta
2 (FOLR2), was built using the LASSO method. The high-risk group classified with the score model was characterized by
poor overall survival (OS), immune infiltration, and relatively higher mutation load. A total of 9864 differentially expressed
genes and 138 differentially expressed miRNAs were found between the two groups. Also, a nomogram comparing score
model, age, and the stage was built to predict OS for patients with lung adenocarcinoma. Using immunohistochemistry,
the expression levels of PSMB6, HSPA9, DUT, CDK7, and PLK1 were found to be higher in lung adenocarcinoma tissues
of patients, while the expression of FOLR2 was low, which was consistent with survival prediction. The knockdown of
PSMB6 and HSPA9 by siRNA significantly downregulated the proliferation of A549 and H358 cells. Conclusion. The
proposed score model may function as a promising risk prediction tool for patients with lung adenocarcinoma and
provide insights into the molecular regulation mechanism of lung adenocarcinoma.

1. Introduction

Lung cancer is one of the most common malignant cancers
characterized by a high incidence and the highest mortality
worldwide, with an average 5-year survival rate of <15%
[1, 2]. Lung adenocarcinoma (LUAD) is currently the major
subtype of lung cancer, accounting for nearly 60% of new

cases, characterized by poor survival [3]. Early surgical exci-
sion is the standard treatment strategy now. For patients
with high-risk LUAD, they should receive radiation, chemo-
therapy, or targeted immunotherapy after surgery to
improve survival [2]. Nearly 50% of patients are at risk of
postoperative recurrence, and tumor recurrence in high-
risk patients is an important cause of death [4, 5]. Therefore,
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accurate identification of high-risk patients and early inter-
vention with adjuvant therapy mentioned earlier are very
important for improving the prognosis.

Currently, the TNM staging system plays a critical role
in risk assessment and therapy guidance. However, these risk
assessment factors based on clinical pathological characteris-
tics can not achieve early identification of patients with poor
prognosis and can not be accurate to predict patients’
response to adjuvant treatment; more precise risk prediction
models need to be established, such as scoring models that
contain molecular characteristics of LUAD.

In recent years, public databases such as The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) provide large lung cancer datasets. At the same time,
techniques such as high-throughput sequencing, combined
with machine learning methods, have been used to explore
more types of biomarkers, identify the signaling pathways,
reveal molecular mechanisms, and make clinical prognosis
predictions based on large datasets [6]. Several prognostic
models for LUAD based on the above techniques have been
published, but these models still have limitations. The bio-
markers selected had a minimal relationship with tumor
proliferation and cannot fully reflect the proliferation poten-
tial of LUAD [7–9]. The cancer dependence of genes is the
basis of prognosis prediction and drug target research.

Recently, the Cancer Dependency Map (DEPMAP),
using genome-scale CRISPR screens in hundreds of cell
lines, was used to establish a comprehensive and systematic
identification of the genetic and pharmacological depen-
dence of cancer and its prediction biomarkers [10–12].
Therefore, genes closely related to LUAD’s proliferation
were identified from DEPMAP, and a risk prediction score
model was built based on the expression of these genes
and survival information in this study. The proposed model
could successfully predict prognosis in patients from TCGA
and GEO. According to the model, somatic mutations, dif-
ferentially expressed genes, microRNAs, and immune infil-
tration patterns were further analyzed to reveal the
regulatory factors, cellular processes, and signaling pathways
associated with the model-related genes in LUAD. Finally,
the effects of some model-related genes on tumor prolifera-
tion were verified in vitro. The study was meaningful for elu-
cidating the molecular mechanism of proliferation in LUAD
and accurately predicting patient prognosis to provide indi-
vidualized treatment.

2. Materials and Methods

2.1. Data Preprocessing. First, data of 60 LUAD cell lines and
the CERES dependency score of genes from DEPMAP
(https://depmap.org/) were obtained. The CERES depen-
dency score of the genes represented the effect on cell sur-
vival by knocking out individual genes with CRISPR-Cas9
genetic perturbation reagents. A lower CERES score indi-
cated a higher likelihood that the gene of interest was essen-
tial in a given cell line. A score of 0 indicated that a gene was
not essential; correspondingly, a score of -1 was comparable
to the median of all pan-essential genes [13].

The public datasets of LUAD patients (n = 497) were
downloaded from the UCSC Xena Browser, and the expres-
sion data (FPKM form) was matched with patients’ survival
information downloaded from TCGA. The patients with
missing survival data were excluded. The miRNA data, the
somatic mutation data, and the copy numbers’ variation
were obtained from the Xena Browser.

The public datasets from the GEO (https://www.ncbi
.nlm.nih.gov/geo/) were used for the validation cohort. A
total of 930 samples from the datasets GSE30219 [14],
GSE31210 [15, 16], GSE3141 [17], GSE37745 [18–21],
GSE50081 [22], and GSE68465 [23] representing different
independent studies of LUAD were enrolled. The batch
effect caused by the heterogeneity among different studies
was eliminated with the COMBAT empirical Bayes method
using the sva package [24], and background adjustments
and quantile normalization were conducted using the limma
package [25].

Next, paraffin-embedded specimens of the tumor and
adjacent healthy tissues were collected from 100 patients
with LUAD who underwent radical surgery in the Depart-
ment of Thoracic Surgery, Zhongshan Hospital, Fudan Uni-
versity, from September to November 2015. The survival
information of the 100 patients was collected by the
follow-up until December 2020, excluding the ones who suc-
cumbed. All participants signed informed consent according
to the ethical requirements in the Declaration of Helsinki.
Ethics approved by the ethical committees of Zhongshan
Hospital (B2019-035).

2.2. Gene Selection and Prediction Score Model Construction.
The data were processed by the R software (Version 3.5.3)
and the GraphPad Prism software (version 7.0). The inde-
pendent hazard rate of each gene was calculated using uni-
variate Cox regression with the survival package in R, and
P value < 0.05 was considered statistically significant. The
ClusterProfiler package [26] was also adopted to analyze
the functional enrichment of the selected genes. The cutoff
of GO and KEGG terms comprised the adjusted P value <
0.05 and the false discovery rate ðFDRÞ < 0:05.

The LASSO Cox regression analysis, a penalized method
to select data with high dimensions and reduce the impact of
overfitting, was used to build the predictive score model [27,
28]. Tenfold cross-validation was adopted using the glmnet
package [29] in R to determine the optimal model parameter
λ and corresponding coefficients. The optimal λ was deter-
mined as the smallest partial likelihood deviance. A multi-
variate Cox regression of the six genes was conducted, and
their coefficients were applied to build the score model. Har-
rell’s concordance index (C-index) [30] was applied to mea-
sure the predictive accuracy of the score model
preliminarily.

2.3. Survival Data Analysis. The survival curves were visual-
ized using the ggplot2 package by the Kaplan–Meier
method. Log-rank tests exhibited the difference in overall
survival (OS). The rms package in R was used to build a
nomogram of the 497 LUAD samples from TCGA, and the
calibration plots were shown. The univariate and
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multivariate Cox proportional risk analyses were conducted
to show the score model’s prognostic value when age, gen-
der, and stage were adjusted. C-index was also calculated
to identify the value of the score model.

2.4. Differentially Expressed Genes, microRNAs (miRNAs),
and Somatic Mutation Distribution. The limma package
[25] was adopted to identify differentially expressed genes
(DEGs) and miRNAs between high and low score groups.
The moderated t-test was used to calculate DEGs and miRNA
expression changes, and the P value was adjusted as FDR by
Benjamini and Hochberg method [31]. The log fold change
was set as >0.5 and the adjusted P value < 0.05 as the cutoff
criteria.

We used the maftools package basing on the Kruskal-
Wallis test to compare the distribution of somatic mutations
and the types of copy number variations. The adjusted P
value < 0.01 was used to assess the significance of the muta-
tional frequency.

2.5. Immune Cell Infiltration in the Two Groups. We selected
the gene markers reported by Bindea et al. according to the
previous studies [32–34]. A synopsis of genes associated with
microenvironment cell sets was constructed precisely, which
contained 585 genes depicting 24 tumor microenvironment-
(TME-) infiltration cell populations related to innate immu-
nity and adaptive immunity. The subsets included B cells, den-
dritic cells (DCs), immature DCs, activated DCs, neutrophils,
mast cells, eosinophils, macrophages, natural killer (NK) cells,
NK CD56bright cells, NK CD56dim cells, cytotoxic cells, T
cells, CD8 T cells, and Th1, Th2, Th17, Tfh, Tgd, Tγδ, T
helper, Tcm, Tem, and Treg cells (Table S1). We employed a
seven-gene panel introduced in the POPLAR (patients with
previously treated non-small-cell lung cancer) trial as a
surrogate index to identify infiltration pattern of effector T-
cell (CD8A and CXCL10) and IFN-γ associated cytotoxicity
(IFNG, GZMA, GZMB, EOMES, and TBX21) [35]. The
CYT (cytolytic activity) score was defined by Rooney et al.
[36]. We used it to calculate the geometrical mean of PRF1
and GZMA, which can reflect the significance of the
response to antitumor. The pheatmap package was used to
plot the 24 immune cell infiltrating patterns from different
patients.

2.6. Immunohistochemistry. The tissue specimens were col-
lected from both tumor and tumor-adjacent areas of 100
patients with LUAD who received lung surgery from Sep-
tember to November 2015 in the Zhongshan Hospital. The
paraffin-embedded tissues were dewaxed, rehydrated, and
stained using a GTVision + Detection System/Mo&Rb
Immunohistochemistry kit (GK500710, GeneTech, Shang-
hai, China) following the manufacturer’s protocol. Anti-
PSMB6 (1 : 50, abs116436, Absin Bioscience Inc., Shanghai,
China), anti-HSPA9 (1 : 50, abs135628, Absin), anti-DUT
(1 : 50, abs102198, Absin), anti-CDK7 (1 : 50, abs136079,
Absin), anti-PLK1 (1 : 100, ab17056, Abcam, Cambridge,
UK), and anti-FOLR2 antibodies (1 : 50, abs107177, Absin)
were used. The detailed procedure can be found in a previ-
ous study [37].

2.7. Cell Culture and siRNA Transfection. Two LUAD cell
lines (A549 and H358) were purchased from the Chinese
Academy of Science Cell Bank and cultured in high glucose
Dulbecco’s Modified Eagle’s Medium (Hyclone, UT, USA)
supplemented with 10% fetal bovine serum (Every Green,
Hangzhou, Zhejiang, China), 100U/mL penicillin,
0.1mg/mL streptomycin, and 0.25μg/mL amphotericin B
(Sangon Biotech, Shanghai, China) in a humidified 5%
CO2 atmosphere at 37°C.

Two small interfering RNAs (siRNAs) targeting PSMB6
(si-PSMB6-1 and si-PSMB6-2), two siRNAs targeting
HSPA9 (si-HSPA9-1 and si-HSPA9-2), and two negative
control siRNAs (siCtrl-1 and siCtrl-2) were designed and
purchased by Guangzhou RiboBio Co., Ltd. (RiboBio). Tar-
get sequences of the siRNAs can be found in Table S7.
SiRNAs were transfected with a 100nM Lipo8000 transfect
reagent (Beyotime, Haimen, Zhejiang, China) and Opti-
MEM (Thermo Fisher Scientific, MA, USA) following the
manufacturer’s protocol.

2.8. RNA Extraction and Quantitative Real-Time Polymerase
Chain Reaction. TRIzol reagent (Tiangen Biotechnology Co.,
Beijing, China) served as an RNA extraction reagent. A Pri-
meScript RT Reagent Kit (TaKaRa, Tokyo, Japan) was used
to synthesize the cDNA template, and SYBR Premix Ex
Taq (TaKaRa) was used to perform quantitative real-time
polymerase chain reaction following the manufacturer’s pro-
tocol. All reactions were analyzed in a QuantStudio 5
(Thermo Fisher Scientific). The 2-ΔΔCT method using
GAPDH as an endogenous calibrator was adopted to rela-
tively quantify the mRNA. All primers were synthesized by
Sangon Biotech, and the sequences can be seen in Table S2.

2.9. Western Blot Analysis. Western blot analysis was per-
formed as described earlier [37]. RIPA buffer (Beyotime)
with protease and phosphatase inhibitor cocktail
(Topscience Co., Shanghai, China) was used to extract pro-
teins from cells. Proteins were quantified using an Enhanced
BCA Protein Assay Kit (Beyotime), separated with SDS-
PAGE, and transferred onto polyvinylidene fluoride mem-
branes (Merck-Millipore, MA, USA). Furthermore, 10%
nonfat milk was used to block the membranes for 2 h and
then incubated with specific primary antibodies for 12 h at
4°C. Tris-buffered saline-Tween 20 (TBST) solution was
used to wash the membranes three times, and the secondary
antibody dilutions were incubated on the membranes at
room temperature for 1 h. Finally, the protein bands were
visualized using a Moon Chemiluminescence Reagent kit
(Beyotime). In this study, the following antibodies were
used: anti-HSPA9 (1 : 1000, abs135628), anti-PSMB6
(1 : 1000, abs135628), anti-tubulin (1 : 1,000, AT-819, Beyo-
time), horseradish peroxidase- (HRP-) labeled goat anti-
mouse IgG (H+L) (1 : 1,000, A0216, Beyotime), and HRP-
labeled goat anti-rabbit IgG (H+L) (1 : 1,000, A0208,
Beyotime).

2.10. Cell Proliferation Analysis. Green fluorescent protein-
(GFP-) overexpressing cells were first transfected with siR-
NAs (si-PSMB6-1, si-PSMB6-2, si-HSPA9-1, si-HSPA9-2,
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Figure 1: (a) Design of the study. (b) The scatter dot plots show the relationship between the CERES dependency scores and the P value of
the 257 genes we selected before.
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Figure 2: Continued.
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Figure 2: (a) The network showed the interactions among the enriched pathways of the 55 genes. The circle nodes’ size represents the
number of input genes that fall into that pathway, and its color represents its cluster identity. The description of each cluster was shown
in the label. The same enrichment network has its nodes colored by P value, as shown in the legend. The dark the color, the more
statistically significant the node is (see legend for P value ranges). (b) GO and KEGG functional enrichment analyses of the enriched
terms. (c) Coefficient profiles of variables in the LASSO Cox regression model. (d) Tenfold cross-validation for turning parameter
selection in the LASSO Cox regression model. λ is the turning parameter. The partial likelihood deviance is plotted in log(λ), in which
vertical lines are shown at the optimal values by minimum criteria and 1− SE criteria. (e) Kaplan-Meier curves of overall survival (OS)
stratified by the six genes in TCGA.
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Figure 3: (a) Kaplan–Meier curves of OS in patients from TCGA in the two groups. (b) Kaplan–Meier curves of OS in patients from GEO in
the two groups. (c) The nomogram of the overall survival prediction model. (d) Calibration plots for the nomogram: 1-, 3-, and 5-year
nomogram.
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si-NC-1, and si-NC-2) at a 100nM final concentration using
Lipo8000 transfection reagent (Beyotime) and Opti-MEM
(Thermo Fisher Scientific). Then, 1,500 cells in the logarith-
mic growth phase were digested and inoculated in blank 96-
well plates (Life Science, NY, USA) with 100μL of cell sus-
pension in every well. Following incubation for 24, 48, 72,
96, and 120h at 37°C, cell proliferation was measured
according to corresponding fluorescence intensity using a
Celigo cytometer (Cyntellect Inc., CA, USA), which was
equipped with a 4-megapixel CCD camera with an F-theta
scan lens.

3. Results

3.1. Gene Selection. The design of this study is shown in
Figure 1(a). First, the CERES dependency score of genes
with 60 LUAD cell lines from DEPMAP was obtained. A
score less than zero showed that the gene knockout inhibited
cell proliferation; the smaller the score, the more pro-
nounced the effect. A score greater than zero showed the
opposite effect.

The average and median scores of each gene were calcu-
lated in 60 cell lines. The top 400 genes on the minimum and
maximum of the average and median, respectively, were
selected to match, and 257 genes were finally obtained,
which meant that cell proliferation was dramatically acceler-
ated or deaccelerated when the genes were knockout. Next,
univariate Cox regression was performed on the 257 genes
in 497 samples from TCGA. The genes significantly related
to survival were retained (P < 0:05). The genes that showed

the same tendency in cell proliferation (the CERES depen-
dency score) and survival (HR) were matched, and 55
genes finally remained (Figure 1(b), Table S3). The
results showed that all these genes greatly influenced cell
proliferation and significantly correlated with the survival
of LUAD patients.

The analysis of the enrichment of GO and KEGG on
these 55 genes was performed using the R cluster profile
package. These genes were significantly related to tumor
progression, including DNA replication, nuclear division,
and cell cycle (Figures 2(a) and 2(b)).

3.2. Construction of the Score Model. After LASSO Cox anal-
ysis, six genes, including PSMB6, HSPA9, DUT, CDK7,
PLK1, and FOLR2 (Figures 2(c) and 2(d), Table S4), were
selected to construct the optimal prognostic model. All the
six genes were significantly related to survival (Figure 2(e)).
The CERES dependency scores and HRs from univariate
Cox regression of the six genes indicated that PSMB6,
HSPA9, DUT, CDK7, and PLK1 served as oncogenes,
while FOLR2 served as a tumor-suppressor gene. The
expression values of most of them were significantly
correlated (P < 0:05) (Fig. S1A). The correlation between
clinical characteristics (sex, age, stage, and smoking) and
gene expression is shown in Figure S1B.

A risk-predicted score model was built based on their
coefficients with multivariate Cox regression (Additional file
1). Based on the risk predicting score model, 497 patients
with LUAD from TCGA were assigned to low score
(n = 324) and high score (n = 173) groups by the optimal
cutoff value (3.539). Patients with a high score had a signif-
icantly poorer OS (P value < 0.0001, Figure 3(a)) compared
with those with a low score, indicating the accuracy of the
prediction model.

3.3. Validation and Clinical Significance of the Score Model.
The univariate and multivariate Cox regression analyses
were performed to demonstrate that the score model was
an independent prognostic factor in patients with LUAD

Table 1: Univariate and multivariate analysis of overall survival in LUAD patients from TCGA database.

Univariable Multivariable
HR (95% CI) P value HR (95% CI) P value

Age

<60 — — —

60-70 0.82 (0.56-1.19) 0.29 0.97 (0.66-1.43) 0.88

>70 1.26 (0.87-1.83) 0.22 1.61 (1.09-2.36) 0.02

Stage

Stage I — — — —

Stage II 2.32 (1.60-3.36) <0.001 2.35 (1.61-3.43) <0.001
Stage III 3.30 (2.24-4.85) <0.001 2.91 (1.96-4.32) <0.001
Stage IV 3.61 (2.08-6.26) <0.001 3.20 (1.82-5.62) <0.001
Gender

Female — — — —

Male 1.09 (0.81-1.46) 0.59 0.92 (0.68-1.25) 0.595

Score groups (high vs. low) 2.83 (1.95-4.11) <0.001 2.86 (1.94-4.22) <0.001

Table 2: Comparison of the accuracy of survival prediction
between the factors with and without the score.

Age + gender+stage
Score + age + gender

+stage
C-index 95% CI C-index 95% CI

Training cohort 0.678 0.632-0.723 0.711 0.667-0.756
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compared with other clinicopathological factors such as
age and stage (Table 1). A nomogram based on the multi-
variate analysis (P < 0:05) of the OS of patients with
LUAD from TCGA was used to show the prediction
(Figure 3(c)). Great calibration plots were shown for the
1-, 3-, and 5-year OS rates of patients with LUAD
(Figure 3(d)). The corresponding C-index showed that
the combination of the score model, age, and stage per-
formed remarkably (Table 2).

The results of immunohistochemistry further demon-
strated the functions of genes. The overexpression of
PSMB6, HSPA9, DUT, CDK7, and PLK1 was seen in
resected tumor tissues compared with adjacent normal tis-
sues, while FOLR2 was expressed more in normal tissues
(Figure 6(d)). One hundred patients from the institution
were divided into high and low expression groups according
to the expression of the six genes. Patients with high expres-
sion of PSMB6, HSPA9, DUT, CDK7, and PLK1 had a sig-
nificantly poorer OS (P value < 0.0001, Figure 6(e)), while
patients with high expression of FOLR2 showed the opposite
result.

GEO samples were obtained to verify the score model.
Furthermore, 930 patients with LUAD from GEO were also
classified into high and low score groups; the survival analy-
sis showed a significant difference in OS between the two
groups (P value < 0.0001, Figure 3(b)), which was consistent
with the data from TCGA.

3.4. Somatic Mutation, DEGs, and Differentially Expressed
microRNA (miRNA) in the Two Groups. As reported before,
the number of somatic mutations had relationships with
survival. The distribution of somatic genomic mutations
and the copy numbers’ variation in the high and low score
groups were analyzed. The average somatic mutation
numbers of each sample in high and low score groups
were 95.88 and 87.89, respectively (Figure 4(a)). TP53
was highly mutated in the high score group (65% in the
high score group, 39% in the low score group, P value <
0.001). Other genes, such as EGFR (15% in the low score
group, 7% in the high score group, P value = 0.013), had
lower mutation rates in the high score group
(Figure 4(a) and Table S5).
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Figure 4: (a) The waterfall plots show the somatic mutations and copy numbers’ variations in the two groups. (b) The volcano plot displays
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The expression of DEGs was analyzed to draw the land-
scape of the difference in biological characteristics between
the two groups. In total, 4,863 genes, including GPR116,
TMPRSS2, and CYR2, were upregulated (all adjusted P <
0:01) while 5,001 were downregulated in the high score
group, including CCNB1, PLK1, and PRC1 (Figure 4(b),
Table S6). Functional enrichment of GO and KEGG in the
9864 DEGs was analyzed, and the pathways were related to
the high score group. The antigen processing and
presentation and positive regulation of the immune
effector process corresponded to the high score group
(Figures 4(c) and 4(d)). Several classic metabolic pathways
ranked top in the low score group.

Also, the miRNA expression and distribution of somatic
mutations were analyzed. In conclusion, 75 miRNAs,
including miR-99a-5p, miR-497-5p, and miR-29c-3p, were
upregulated (all adjusted P < 0:01), and 63 were downregu-
lated in the high score group, including miR-106b-5p and
miR-128-1-5p (Fig. S1C and Table S7).

3.5. TME Infiltration Characteristics in the Two Groups.
Based on the high scores and low scores of 497 patients from
TCGA, the infiltration patterns of each patient in 24
immune cell populations associated with innate immune
and adaptive immune processes were determined.

The results showed high infiltration of T cells
(P = 1:26E−06), Th1.cells (P = 1:62E−05), cytotoxic cells
(P = 0:001491), and pDC cells (P = 3:54E−07), except for
Th2.cells (4.45E-26), which exhibited low infiltration in the
low score group (Figures 5(a) and 5(b)). The Wilcoxon test
was used to verify the different infiltration patterns
(Table S8). The nearly comprehensively positive relativity
among the enrichment level of 24 microenvironment cell
populations can be seen in Figure 5(c), which was related
to the coinfiltration effect.

The TME characteristics in the high and low score
groups were described by conducting a full analysis of the
expression level of several genes and cytokines associated
with immunity from the data of 497 patients with LUAD.
A seven-gene panel designed in the POPLAR trial was cho-
sen as a substitute indicator to quantify the cytotoxicity
related to IFN-γ (IFNG, EOMES, GZMA, TBX21, and
GZMB) and effector T cells (CD8A and CXCL10) [36].
Then, the score was examined according to the score of cyto-
lytic activity reported previously [38], representing the geo-
metric meaning of GZMA and PRF1, to reflect the
importance of the antitumor response (Figure 5(d)). The
high score group had higher expression levels of GZMA,
IFNG, GZMB, CD8A, and CXCL10. (most P < 0:05), dem-
onstrating that these patients had a more efficient cytotoxic
function. As for the molecules, the low score group showed
more activity of the innate immune response. TLR9, AIM2,
and NLRP6 showed similar tendencies (Figure 5(e), left).
Furthermore, compared with the high score group, the low
score group had an enriched abundance of MHC-I/MHC-
II-related antigen-presenting molecules(most P < 0:001;
Figure 5(e), right).

The low score group had enrichment with active innate
and adaptive immune cells and immunosuppressor cells
such as Tregs and iDCs (Figures 5(a) and 5(c)). Based on
this result, the CD8+ T cell/Treg cell ratio was used to esti-
mate the importance of activated and suppressed immunity
(Figure 5(f)). The low score group had a higher ratio, which
meant that the TME in the low score group was more acti-
vated. To verify the result, the expression of several immu-
noregulators in the two groups was revealed, which
included checkpoint molecules (n = 15) (Figure 5(g), left)
and costimulating molecules (n = 20) (Figure 5(g), right).
The heat map showed that more costimulating molecules
and coinhibitory molecules were expressed in the low score
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Figure 5: TME characteristics of the two groups. (a) Infiltration patterns of immune cells for 497 LUAD patients from TCGA. Clinical and
pathological features contain age, gender, stage, smoking status, and score groups. (b) The proportion of immune cells in the two groups.
The scattered dots show the immune cells’ score. The median, third, and first quartile values are shown in the boxplots. ∗P < 0:05;
∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001. (c) Relationships between the 24 immune cells in LUAD patients from TCGA. (d) Violin
plots show the expression profiling of the f7 immune-related genes in the POPLAR study and cytolytic activity (CYT) score. (e)
Relative expression level of molecules associated with the innate immune activity (shown at left) and MHC-I/II antigen-presenting
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group (most P < 0:05). Based on the result, it was concluded
that patients in the low score group might benefit from
immune checkpoint inhibitors (ICI).

3.6. Silencing of PSMB6 and HSPA9 Inhibited the
Proliferation of LUAD Cells. According to the CERES depen-
dency score from DEPMAP, the perturbation of PSMB6 and
HSPA9 by knockout in different LUAD cell lines inhibited
proliferation. To validate the result and explore the function
of PSMB6 and HSPA9 in tumor formation and growth, siR-
NAs targeting PSMB6 and two siRNAs targeting HSPA9
each were transfected into two LUAD cell lines (A549 and
H358). Two different siRNAs targeting each gene were used
to attenuate the off-target effects. The stable knockdown effi-
ciencies of siRNAs were verified by comparing them with
those in the control cells at both mRNA and protein levels
(Figures 6(a) and 6(b)). The results of cell counting demon-

strated that the proliferation ability of A549 and H358 cell
lines after PSMB6 and HSPA9 knockdown significantly
decreased compared with that in the control cells
(Figure 6(c)).

4. Discussion

In this study, six genes were identified via comprehensive
analysis, including PSMB6, HSPA9, DUT, CDK7, PLK1,
and FOLR2, which were significantly related to cell prolifer-
ation, to construct a risk prediction score model used as an
independent predictor. The prediction score model based
on these six genes predicted the prognosis of patients with
LUAD accurately in the testing cohort from TCGA and
the verifying cohorts from GEO. Based on previous findings,
it was concluded that silencing the least reported genes
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Figure 6: (a, b) Quantitative RT-PCR (a) and western blotting analyses (b) verifying the PSMB6 and HSPA9 knockdown efficiency in A549
and H358 cells. (c) The effects of PSMB6 and HSPA9 knockdown on cell proliferation in A549 and H1299 cells. ∗∗∗∗P < 0:0001. (d)
Representative IHC staining images indicating the expression of the six genes in lung adenocarcinoma and adjacent normal tissues. (e)
Kaplan-Meier curves of overall survival according to immunohistochemical staining of the six genes in patients from our institution.
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PSMB6 and HSPA9 inhibited cell proliferation in vitro, con-
sistent with the results of DEPMAP.

The DEPMAP was created to systematically identify
genetic alterations of cancer and their influence by collecting
genetic information of hundreds of cancer cell line models
[12]. Project Achilles provided the foundation for DEPMAP,
which systematically identified and cataloged the essentiality
of genes across hundreds of genomically characterized can-
cer cell lines. Lentiviral-based pooled RNAi or CRISPR/Cas9
libraries were used as highly standardized genome-scale
pooled loss-of-function screening, which guaranteed the sta-
ble suppression of individual genes. Computational models
such as DEMETER [39] for RNAi screening and CERES
[13] for CRISPR screening were adopted to determine gene
essentiality more accurately. Recently, Szalai et al. [40]
explored the mechanisms behind cell death and confound-
ing factors of transcriptomic perturbation screens based on
Project Achilles of the DEPMAP. Also, Zhou et al. [41] used
the CERES score to identify the prognostic values of solute
carrier (SLC) family genes for patients with LUAD. Other
studies related to oncology drug discovery were dependent
on the DEPMAP [11, 12].

In this study, the six genes used to build the predicted
model strongly correlated with cell proliferation and survival
of patients with LUAD. As previously reported, high levels
of CDK7 mRNA and protein and overexpression of PLK1
were related to poor prognosis in NSCLC [42, 43]. The
CDK7 and PLK1 inhibitors played a critical role in immuno-
therapies for lung cancer [44, 45]. PSMB6 regulated protea-
some structure and function, variations in which affected the
treatment of multiple myeloma [46]. Shi et al. [47] demon-
strated that PSMB6 played a more important role in the pro-
teasome structure than in functional activity. The
mitochondrial HSP70 chaperone mortalin (HSPA9/GRP75)
was often upregulated in MEK/ERK-deregulated tumors
[48]. Wu et al. [49] demonstrated that the depletion effect
of HSPA9 was sensitized by KRAS activity, suggesting that
HSPA9 was a potential target for KRAS-mutated tumors.

The “cold tumor” in the high score group had a low level
of infiltration. In contrast, the low score group was enriched
in cytotoxic T cells (as immune activation) and Tregs and
others (as immune suppression). As for immunomodulators,
the high score group had a relatively low level while the low
score group was abundant in immune-related cytokines or
markers reported earlier [36, 38, 50, 51]. As showed earlier
[38, 52], preexisting immunity, defined by the presence or
absence of CD8+ T effector cells, can be used to discriminate
immunotherapy-sensitive versus insensitive patients. In
summary, we speculated that patients in the low score group
could reap more benefits from ICI, and restoring preexisting
immunity was crucial to a higher response rate. However, we
fail to reveal the relationship between the mutation load and
the cytotoxic factors. The low score group had a lower level
of genomic mutation but higher immune infiltration com-
paring with the high score group. As reported before, muta-
tional burden of the tumor may affect the ICI efficiency by
enhancing tumor immunogenicity [53, 54].

This study had several limitations. First, although hun-
dreds of samples from the GEO database and the institution

were used as validation cohorts, more patients in prospective
cohorts are still needed to verify the proposed risk prediction
model. Also, the identification of immune subtypes in clini-
cal samples was required to be performed to validate the
function of immune cells in the training cohort. Besides,
the roles of these genes and the molecular mechanisms in
the tumorigenesis of LUAD could not be further explored
due to the limitations on research funds and time in the
present study. Future research should explore the interaction
relationship between the relevant genes in the model and the
pathways involved and downstream signaling factors.

In summary, the CERES score of genes from DEPMAP
was used to identify six genes with a combination strategy
and build a risk prediction score model that could effectively
predict the survival of patients with LUAD from TCGA,
GEO, and the institution. The study demonstrated that the
genes in the prediction model were significantly related to
cell proliferation in vitro. Moreover, the study described a
comprehensive landscape of the regulator factors, signaling
pathways, and immune infiltration patterns behind the
model, which might help identify the high-risk patients
and interfere with individualized treatment early.
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Supplementary 1. Additional file 1 score: the score was used
in the risk-predicted model to calculate the score of patients
with LUAD.

Supplementary 2. Table S1: the table showed genes associ-
ated with microenvironment of the 24 immune cell subsets.
Table S2: the table showed the sequences of all the siRNAs
and primers used in this study. Table S3: the table showed
55 genes selected for LASSO Cox regression; all the 55 genes
showed the same tendency in cell proliferation (the CERES
dependency score) and survival (HR). Table S4: the table
showed six genes used in the model and their LASSO coeffi-
cient after LASSO Cox regression. Table S5: the table showed
the summary of genomic alterations in the two groups,
including the somatic mutation numbers of each gene in
high and low score groups. Table S6: the table showed the
differentially expressed genes (DEGs) between high score
group and low score group identified by limma. Table S7:
the table showed the differentially expressed miRNAs
between high score group and low score group identified
by limma. Table S8: the table showed the comparison the
abundance of 24 types of immune cells between the two
groups by Wilcoxon test.

Supplementary 3. Figure S1 (A–C) (A) The scatter dot plots
show the relationships of expression values between the six
genes we selected in the score models. (B) The correlation
between clinical characteristics (sex, age, stage, and smok-
ing) and gene expression. The scattered dots show the
immune cells’ score. The median, third, and first quartile
values are shown in the boxplots. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗
P < 0:001; ∗∗∗∗P < 0:0001. (C) The volcano plot displays
the differentially expressed miRNAs of the two groups.
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