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Epithelial-mesenchymal transition (EMT) is an important process in

embryonic development, fibrosis, and cancer metastasis. During cancer

progression, the activation of EMT permits cancer cells to acquire migra-

tory, invasive, and stem-like properties. A growing body of evidence sup-

ports the critical link between EMT and cancer stemness. However,

contradictory results have indicated that the inhibition of EMT also pro-

motes cancer stemness, and that mesenchymal-epithelial transition, the

reverse process of EMT, is associated with the tumor-initiating ability

required for metastatic colonization. The concept of ‘intermediate-state

EMT’ provides a possible explanation for this conflicting evidence. In addi-

tion, recent studies have indicated that the appearance of ‘hybrid’ epithe-

lial-mesenchymal cells is favorable for the establishment of metastasis. In

summary, dynamic changes or plasticity between the epithelial and the

mesenchymal states rather than a fixed phenotype is more likely to occur

in tumors in the clinical setting. Further studies aimed at validating and

consolidating the concept of intermediate-state EMT and hybrid tumors

are needed for the establishment of a comprehensive profile of cancer

metastasis.

1. General overview of EMT

During embryonic development, epithelial cells lose

their polarity and are converted into a mesenchymal

phenotype. This process is referred to as epithelial-

mesenchymal transition (EMT) (Nieto et al., 2016).

The classic view of EMT is that epithelial cells trans-

form into mesenchymal cells. Morphological changes

in cells have been considered the characteristic feature

of EMT (Hay, 1995; Nieto, 2013). EMT presents cer-

tain features that are considered as its hallmarks,

including disruption of intercellular junctions, loss of

cell polarity, reorganization of the cytoskeleton, and

increased cell motility. Therefore, in most experimental

models, epithelial (E-cadherin) and mesenchymal (N-

cadherin and vimentin) markers and morphological

changes are examined as indicators to confirm the

occurrence of EMT. In cancers, EMT is triggered by
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diverse signaling pathways through the regulation of

EMT transcription factors (EMT-TFs) and/or micro-

RNAs (miRNAs) (Nieto et al., 2016). EMT not only

enhances cancer motility and dissemination through

the disruption of intercellular junctions but also allows

cells to acquire stem-like properties (Nieto et al.,

2016). However, the reverse process of EMT, that is,

mesenchymal-epithelial transition (MET), is an impor-

tant process for cancer cell re-differentiation and meta-

static colonization (Bonnomet et al., 2012). Therefore,

the association between EMT-MET and stemness is

controversial and debated. The major factors and sig-

naling pathways that trigger the changes in EMT/

MET are summarized in Fig. 1. In this review, we

summarize and discuss the connection between epithe-

lial and mesenchymal states and the acquisition of

stemness in cancer cells.

1.1. EMT transcription factors

One of the major events contributing to EMT is the

activation of EMT-TFs, such as Snail1, Twist1, ZEB1,

and ZEB2. These EMT-TFs often control the expres-

sion of each other and cooperate with other TFs to

regulate the expression of target genes, and EMT-TFs

often function as repressors for epithelial genes and

activators for mesenchymal genes (De Craene and

Berx, 2013; Peinado et al., 2007).

1.1.1. Snail1

Snail1 (also known as Snail) functions as a suppres-

sor by binding to the E-box in the promoters of

the junction proteins E-cadherin, claudin, and occlu-

din and recruiting histone modifiers, including

SIN3A-histone deacetylase 1 and 2 (HDAC1 and

HDAC2) complex, polycomb repressive complex 2

(PRC2), and lysine-specific demethylase 1, to repress

the transcription of target genes (Batlle et al., 2000;

Cano et al., 2000; Herranz et al., 2008; Ikenouchi

et al., 2003; Lin et al., 2010a,b; Peinado et al.,

2004). However, Snail1 also acts as an activator

that increases the expression of mesenchymal genes

such as fibronectin 1, an extracellular matrix protein

(Stanisavljevic et al., 2011); excision repair 1

endonuclease noncatalytic subunit (ERCC1), an

endonuclease noncatalytic subunit that is required

for the repair of DNA lesions (Hsu et al., 2010);

and interleukin-8 (Hwang et al., 2011) to contribute

to the mesenchymal phenotype. Moreover, Snail1

acts as an activator by interacting with CREB bind-

ing protein, which prevents repressor complex

EMT

MET
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Fig. 1. The dynamic change between the epithelial and the mesenchymal phenotype in cancer cells during metastasis. In response to EMT-

triggering events, such as the activation of signaling pathways (e.g., TGF-b, hypoxia, Notch, WNT) or the expression of EMT-TFs (e.g.,

Snail1/2, Twist1, ZEB1/2, Prrx1) and miRNAs (e.g., miR-103/107, miR-181a, miR-9), cancer cells transition from an epithelial phenotype to a

mesenchymal phenotype, with the suppression of epithelial markers and expression of mesenchymal markers. Activation of an EMT

program results in the acquisition of migration and invasion abilities for facilitating cancer dissemination. Furthermore, EMT-TFs promote

cancer cells to acquire the stem-like features. After the mesenchymal-type cancer cells reaching the metastatic sites, the cancer cells

reverse back to the epithelial type through MET, which is critical for cancer colonization. The effectors of MET include the activation of

certain transcriptional factors (e.g., Id1, OVOL1/2), miRNAs (e.g., miR-200), and receptor (VDR).
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formation and remodels the tumor microenviron-

ment (Hsu et al., 2014).

1.1.2. Slug

Slug (also known as Snail2) belongs to the Snail super-

family of zinc finger transcriptional factors (Nieto,

2002). Slug interacts with the corepressor nuclear

receptor coreceptor and recruits C-terminal binding

protein 1 (CtBP1) for repressing E-cadherin and trig-

gering EMT (Hajra et al., 2002; Molina-Ortiz et al.,

2012; Nieto, 2002). Slug also binds to E2-box sequence

of the target genes promoter (BRCA2 and VDR) and

recruits CtBP1 and HDAC1 to suppress the gene

expression (Hemavathy et al., 2000; Molina-Ortiz

et al., 2012; Tripathi et al., 2005). Overexpression of

VDR upregulates E-cadherin, downregulates SNAI1,

TWIST1, and MMP9, and reduces the ability to form

mammospheres, an attribute of breast normal and can-

cer stem cells (CSCs; Larriba et al., 2016; Pervin et al.,

2013). Degradation of Slug consequently enhances E-

cadherin expression and represses cancer cell invasion

(Mittal et al., 2008; Shih and Yang, 2011; Wang et al.,

2009).

1.1.3. ZEB1

Zinc finger E-box binding homeobox 1 (ZEB1)

binds to E-boxes and represses the expression of

E-cadherin to induce EMT (Eger et al., 2005;

Spoelstra et al., 2006; Witta et al., 2006). ZEB1 can

function as an activator by interacting with Smads,

signaling mediators of the transforming growth fac-

tor beta (TGF-b) pathway, and the transcriptional

coactivator p300 (Pena et al., 2006; Postigo et al.,

2003). The EMT-inhibiting transcription factor ovo-

like zinc finger 2 restricts EMT by directly inhibit-

ing EMT-inducing factor ZEB1 and induces MET

(Hong et al., 2015; Kitazawa et al., 2016; Roca

et al., 2013; Watanabe et al., 2014). ZEB1 is indi-

cated as a key factor for pancreatic cancer progres-

sion. Depletion of ZEB1 suppresses stemness and

colonization capacity of tumor cells in Pdx1-cre-

mediated activation of mutant Kras and p53 (KPC)

model of pancreatic cancer. In this model, EMT-

TFs Snail1 and Twist1 had no such effect (Krebs

et al., 2017; Zheng et al., 2015). Krebs et al. (2017)

also suggested that there are considerable functional

variabilities and tissue specificities among different

EMT-TFs. With regard to the interplay between

ZEB1 and other EMT-TFs, Snail1 acts coopera-

tively with Twist1 to control the expression of

ZEB1 (Dave et al., 2011).

1.1.4. ZEB2

Zinc finger E-box binding homeobox 2 (ZEB2) acts as

a transcriptional repressor and regulates downstream

targets either dependent or independent of the CtBP1

corepressor complex (van Grunsven et al., 2003; Shi

et al., 2003). ZEB2 induces EMT by binding to the E-

cadherin promoter and repressing the transcription of

E-cadherin (Comijn et al., 2001). Moreover, ZEB2 has

been shown to repress the expression of several genes

encoding junctional proteins, including desmosomal

proteins desmoplakin and plakophilin 2 and tight junc-

tion protein claudin 4 (Vandewalle et al., 2005). ZEB2

is regulated by sumoylation, which attenuates gene

repression by the disruption of CtBP1 recruitment

(Long et al., 2005).

1.1.5. Twist1

Twist1, a basic helix-loop-helix transcriptional factor,

is a master regulator of gastrulation and mesoderm

specification (Castanon and Baylies, 2002; Furlong

et al., 2001) and is recently demonstrated to be essen-

tial to mediate cancer metastasis (Yang et al., 2004).

Ectopic expression of Twist1 upregulates mesenchymal

cell markers (fibronectin, vimentin, smooth muscle

actin, and N-cadherin) and a loss of epithelial markers

(E-cadherin, and a- and c-catenin), and induces EMT

(Kang and Massague, 2004; Yang et al., 2004). Twist1

has been shown to play a vital role in the intravasation

step of metastasis, angiogenesis, and chromosomal

instability (Mironchik et al., 2005; Yang et al., 2004).

Under hypoxic condition, a principal feature of malig-

nancies, HIF-1a promotes EMT through the induction

of Twist1 (Yang et al., 2008). Twist1 in turn activates

Bmi1, and both of them are essential for promoting

EMT and tumor-initiating capacity (Yang et al., 2008,

2010). A report by Tsai et al. (2012) also indicated

that turning off Twist1 reversed the EMT process,

leading to the subsequent occurrence of MET for colo-

nization and the formation of metastases, indicating

that Twist1 is an important regulator of epithelial plas-

ticity during cancer metastasis.

1.2. Signaling pathways for EMT induction

EMT transcription factors can be activated through

different pathways, which strongly suggest the conver-

gence of diverse pathways on common targets during

EMT (Lamouille et al., 2014). TGF-b deposited in the

surrounding stroma or secreted from tumor cells

induces the expression of both ZEB1 and Snail1,

thereby triggering EMT to promote tumor progression
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and metastasis (Korpal et al., 2008; Zavadil and

Bottinger, 2005). Notch signaling pathway plays an

important role in physiological and pathologic condi-

tions through the induction of EMT (Niessen et al.,

2008; Timmerman et al., 2004; Wang et al., 2010;

Zavadil et al., 2004). WNT family proteins and growth

factors that act through receptor tyrosine kinases have

also been shown to induce EMT (Lamouille et al.,

2014). Hypoxia induces the expression of Twist1 or

Snail to promote EMT during cancer progression

(Peinado and Cano, 2008).

1.3. miRNAs for regulation of EMT

miRNA that selectively target mRNA for the degrada-

tion of mRNA or translational repression also partici-

pate in the regulation of the EMT process (Ambros,

2004; Lamouille et al., 2013). For example, the miR-

200 family miRNAs have been shown to repress the

expression of ZEB1 and ZEB2, thereby maintaining

cancer cells in the epithelial phenotype (Gregory et al.,

2008; Korpal et al., 2008; Park et al., 2008). ZEB1/2

and miR-200 family members have a double-negative

feedback loop that controls the balance between

epithelial and mesenchymal states (Bracken et al.,

2008; Gregory et al., 2011). miR-103/107 induces

EMT by targeting Dicer, a key component of the

miRNA processing machinery, to downregulate the

level of miR-200 in breast cancer cells (Martello et al.,

2010). Inhibition of the let-7d causes EMT (Huleihel

et al., 2014; Pandit et al., 2010). miR-181a mediates

TGF-b-induced EMT (Brockhausen et al., 2015). miR-

9 directly targets the E-cadherin-encoding mRNA

CDH1, leading to an EMT-like conversion (Ma et al.,

2010). In summary, signaling within the microenviron-

ment triggers the activation of EMT-TFs, resulting in

the occurrence of EMT in cancer cells. miRNAs also

function as major mediators of EMT by regulating the

expression of EMT-TFs.

2. EMT and cancer stemness

In the past decade, accumulating evidence has shown

that EMT permits cancer cells to acquire stem cell

properties for metastasis and dissemination. Here, we

will focus on the association between EMT and cancer

stemness.

2.1. Cancer stem cells

Intratumoral heterogeneity contributes to therapeutic

resistance and results in disease recurrence (Hanahan

and Weinberg, 2011). CSCs are a small population of

cancer cells with the characteristics of self-renewal,

tumor initiation, and chemotherapy resistance (O’Brien

et al., 2007; Ricci-Vitiani et al., 2007; Todaro et al.,

2007, 2014). The existence of CSCs was initially inten-

sively debated; however, the concept of CSCs has been

strongly supported by the application of spontaneous

tumor mouse models and genetic tracing (Chen et al.,

2012; Driessens et al., 2012; Schepers et al., 2012).

Moreover, the term ‘stemness’, which was initially used

to describe the properties of normal stem cells, has

been expanded to illustrate the feature of CSCs with

reference to the molecular signatures that control and

maintain the stem cell state. In experimental models,

stemness is generally defined as an increase in cancer

type-specific stem cell markers. The reported markers

for CSCs in different types of cancers are illustrated in

Table 1. Furthermore, serial replating of tumorspheres

and in vivo serial repopulation assays have been

applied as the standard procedures for testing the self-

renewal ability of cancer cells.

2.2. Correlation between EMT and stemness

Exposing human mammary epithelial cells to TGF-b
or the ectopic expression of Snail1/Twist1 induces a

cell population with stem cell characteristics, including

enhanced expression of CD44 (CD44high) and low

expression of CD24 (CD24low) and the ability to form

mammospheres (Mani et al., 2008). Prostate cancer

cells with the mesenchymal phenotype display stem-

like properties, including increased expression of the

pluripotency genes Sox2, Nanog, and Oct4, enhanced

clonogenic and sphere-forming ability, and tumori-

genicity in vivo (Kong et al., 2010). In pancreatic can-

cer, ZEB1 is the critical link between the activation of

EMT and the acquisition of stem-like properties and

functions by suppressing miR-200 family members,

which are strong inducers of epithelial differentiation.

Activation of ZEB1 promotes EMT and the expression

of stem cell factors such as Sox2 and Klf4 (Wellner

et al., 2009). Bmi1, a polycomb-group protein that

maintains self-renewal, is directly regulated by Twist1,

which links EMT to tumor-initiating ability (Wu and

Yang, 2011; Wu et al., 2012; Yang et al., 2010). The

EMT process can also confer resistance to senescence.

Twist1/2 and ZEB1/2 override oncogene-induced pre-

mature senescence by inhibiting p53- and Rb-depen-

dent pathways (Ansieau et al., 2008; Morel et al.,

2012; Ohashi et al., 2010). Furthermore, Twist1 acts

together with Bmi1 to suppress the expression of let-7,

a microRNA expressed during stem cell differentiation,

leading to cancer stemness (Yang et al., 2012). Down-

regulation of let-7 activates the chromatin modifier
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ARID3B to promote expression of stemness genes

through histone modification (Liao et al., 2016). In

colon CSCs, Snail1 mediates the switch from asymmet-

ric to symmetric cell division, indicating a role for

EMT in increasing the size of the CSC pool (Hwang

et al., 2014). Slug-driven EMT program is important

for inducing the entrance into adult stem cell state;

however, it is not sufficient to induce this change in

‘differentiated’ luminal cells. Instead, activation of an

additional genetic program through expression of Sox9

is required to work in concert with the EMT program

to induce stem cells (Guo et al., 2012).

Intriguingly, EMT has also been shown to inhibit

the development of stem-like traits in certain studies

(Celia-Terrassa et al., 2012; Korpal et al., 2011; Sarrio

et al., 2012), a finding that contradicts the concept of

EMT-induced stemness. Further evidence has shown

that, in human breast cancer cells, knockdown of

paired-related homeobox transcription factor 1

(Prrx1), a recently identified EMT inducer, increased

mammosphere formation, self-renewal capacity, and

the proportion of enhanced expression of CD44

(CD44high) and low expression of CD24 (CD24low)

CSCs (Ocana et al., 2012). Moreover, another study

showed that Twist1 is essential for the acquisition of

CSC properties; however, cancer stemness is indepen-

dent of EMT or tumor invasion, implying that EMT

and stemness are regulated separately (Beck et al.,

2015). Transient activation of Twist1 promotes cancer

stemness, even when EMT has not been induced

(Schmidt et al., 2015). Taken together, this indicates

that EMT is closely associated with but is not

necessary for cancer stemness. EMT-TFs are the criti-

cal mediators that link EMT to stemness, but the

mechanisms are different, including epigenetic and

miRNA regulation; in other words, the regulation of

EMT and stemness are an independent function of the

same EMT-TFs. This correlation between EMT and

cancer stemness is more complicated than expected

and deserves intensive investigation in the future.

Table 1. CSC markers for different tumor types

Cancer types CSC markers Features/Reference

Breast ALDH1 Tumor initiation in xenograft, poor prognostic factor, metastasis (Ginestier et al., 2007)

CD44 Mammosphere formation, tumor initiation in xenograft, poor prognostic factor,

metastasis (Al-Hajj et al., 2003; Leth-Larsen et al., 2012; Ponti et al., 2005)

Sox2 Mammosphere formation, tumor initiation in xenograft (Leis et al., 2012)

Colon LGR5 Increase pluripotency and self-renewal (lineage tracing); induces clonogenicity and

tumorigenicity (Barker et al., 2007; Kemper et al., 2012)

CD24 Increase carcinogenesis; express in spheroid cultures (Sagiv et al., 2006; Vermeulen et al., 2008)

CD29 Increase colony formation; express in spheroid cultures (Fujimoto et al., 2002; Vermeulen

et al., 2008)

CD44 Tumor initiation in xenograft, colony formation; poor prognostic factor, lymph node infiltration

(Dalerba et al., 2007; Du et al., 2008; Huh et al., 2009)

CD133 Tumor initiation in xenograft, sphere formation (Ricci-Vitiani et al., 2007)

Head and neck Oct4 Sphere formation, chemoresistance, invasion, migration, tumor initiation in xenograft, poor

prognostic factor (Koo et al., 2015; Liao et al., 2016)

CD44 Tumor initiation in xenograft, colony formation, sphere formation (Krishnamurthy et al., 2010;

Prince et al., 2007)

ALDH1 Tumor initiation in xenograft, colony formation, sphere formation, radioresistance (Krishnamurthy

et al., 2010; Major et al., 2013)

Liver CD133 Tumor initiation in xenograft, clonogenicity (Yin et al., 2007)

SALL4 Poor prognostic factor, tumor proliferation, chemoresistance, tumor initiation in xenograft (Oikawa

et al., 2013)

ALDH1 Tumor initiation in xenograft, proliferation, sphere formation (Ma et al., 2008)

Pancreas CD24/CD44/EpCAM Tumor initiation in xenograft (Li et al., 2009)

CD133 Metastasis, poor prognostic factor (Hermann et al., 2007; Li et al., 2015)

CXCR4 Metastasis, poor prognostic factor (Hermann et al., 2007; Marechal et al., 2009; Wang et al.,

2015)

Prostate CD133 Proliferation, invasion, clonogenicity, glandular regeneration (Collins et al., 2005; Vander Griend

et al., 2008)

CD44 Tumor initiation in xenograft, proliferation, clonogenicity, metastasis, poor prognostic factor

(Hurt et al., 2008; Li et al., 2007; Patrawala et al., 2006)

EpCAM Tumor initiation in xenograft, metastasis (Deng et al., 2015; Li et al., 2007)
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3. Cell plasticity and cancer stemness

Studies in induced pluripotent stem cells (iPSCs)

showed that MET, the reverse process of EMT, is a

prerequisite for the reprogramming of fibroblasts to

iPSCs (Li et al., 2010; Samavarchi-Tehrani et al.,

2010). During the reprogramming process, Oct4/Sox2

represses the expression of Snail1, c-Myc reduces the

expression of TGF-b1 and TGF-b receptor П, and

Klf4 activates the expression of E-cadherin. All these

events result in MET (Li et al., 2010). During tumor

progression, MET is considered an essential process

for metastatic colonization (Nieto, 2013). Evidence of

EMT in clinical specimen is the fact that the histology

of metastatic tumors exhibits the epithelial phenotype

rather than the mesenchymal-like phenotype,

suggesting that the reversion of EMT occurs during

metastatic colonization (Yao et al., 2011). Moreover,

miR-200 family miRNAs were shown to promote

MET, which was also found to increase metastatic col-

onization (Dykxhoorn et al., 2009; Perdigao-Henriques

et al., 2016). In addition to metastatic colonization,

MET has also been noted to promote the stemness of

cancer cells. For example, inhibitor of differentiation 1

(Id1) induces MET and the stem-like phenotype by

antagonizing Twist1 (Stankic et al., 2013). Connective

tissue growth factor has been noted to enhance stem-

like properties and trigger MET in head and neck can-

cer cells (Chang et al., 2013). Furthermore, transient

expression of Twist1 induces long-term invasiveness

and colonization capability by promoting the coexis-

tence of the features of epithelial and mesenchymal

cells (Schmidt et al., 2015). This result suggests that an

‘intermediate state’ of cancer cells may be more flexible

in terms of cell invasion and the regulation of stem-

like properties.

A concern of previous studies is that most instances

of EMT or MET were achieved by the forced expres-

sion of certain factors, which fixed cells in a terminal

epithelial or mesenchymal state and may not reflect

the dynamic process of transition between epithelial

and mesenchymal status in vivo. For example, circulat-

ing tumor cells (CTCs) have been shown to express

both epithelial and mesenchymal markers (Bonnomet

et al., 2012; Lecharpentier et al., 2011; Paterlini-Bre-

chot and Benali, 2007; Raimondi et al., 2011;

Yu et al., 2013). In patients with advanced metastatic

cancer, a high frequency of ‘hybrid’ CTC populations

expresses CSC markers (Armstrong et al., 2011;

Theodoropoulos et al., 2010). A recent study that used

intravital microscopy to observe epithelial-mesenchy-

mal plasticity without artificially modifying the

expression of EMT regulators showed that epithelial-

mesenchymal plasticity occurs during the migration

process but not when cells enter the circulation. This

study also observed that mesenchymal cells adopt the

epithelial state after several rounds of cell division

upon reaching metastatic sites (Beerling et al., 2016).

Furthermore, the hybrid epithelial/mesenchymal (E/M)

cells in primary ovarian cancer cells and prostate can-

cer cells showed higher self-renewal and tumor-initiat-

ing ability (Ruscetti et al., 2015; Strauss et al., 2011).

The concept of hybrid E/M cells in metastatic colo-

nization is shown in Fig. 2. Therefore, stemness prop-

erties are no longer a feature of a fixed state, but

follow the changes in the cells as a flexible feature.

Endothelial cell

Epithelial cancer cell

Hybrid E/M cell

Hybrid E/M cells Metastatic tumor

Epithelial phenotype

Primary tumor

Epithelial phenotype
Blood cell

Fig. 2. A model for depicting cellular plasticity for cancer metastasis. In primary tumors, most cancer cells have an epithelial type. In

metastatic cancer, hybrid epithelial/mesenchymal (E/M) cells or partial EMT is favorable for cancer dissemination. When the hybrid E/M cells

reach the metastatic site, they will revert back to epithelial cells to form metastatic colonies, possibly via rapid kinetics. Therefore, the

epithelial/mesenchymal features and stem-like properties are no longer a fixed state. A dynamic or a flexible feature of E/M phenotype is a

better description for the plasticity of cancer cells.
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Further studies are necessary to clarify the mechanism

and significance of epithelial plasticity and stemness in

tumor cells.

4. Conclusions

Experimental models of EMT have been used for

decades and have established a foundation for us to

elucidate the mechanisms underlying EMT,

metastasis, and tumor initiation. However, this

dichotomy between the epithelial and the mesenchy-

mal states may be oversimplified and may not pre-

cisely reflect the situation in vivo. The concept of an

‘intermediate-state’, or so-called partial EMT, pro-

vides a possible explanation for this controversy. The

phenomenon of partial EMT has been found to occur

during the process of embryo development and in

wound healing, and a growing body of evidence indi-

cates the existence of partial EMT in cancer biology.

Hence, the development of an in vivo model will be

important for providing a research tool for us to use

in elucidating the dynamic changes in the epithelial-

mesenchymal phenotype and the regulation of

stemness properties in pathophysiological microenvi-

ronments. Considering a process of plastic change

between the epithelial and the mesenchymal states is

more useful than considering the process of a fixed

transition for our understanding of cancer progres-

sion and metastasis.
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