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The development of resistance to anti-cancer therapeutics remains one of the core

issues preventing the improvement of survival rates in cancer. Therapy resistance

can arise in a multitude of ways, including the accumulation of epigenetic alterations

in cancer cells. By remodeling DNA methylation patterns or modifying histone

proteins during oncogenesis, cancer cells reorient their epigenomic landscapes in

order to aggressively resist anti-cancer therapy. To combat these chemoresistant

effects, epigenetic modifiers such as DNA hypomethylating agents, histone deacetylase

inhibitors, histone demethylase inhibitors, along with others have been used. While

these modifiers have achieved moderate success when used either alone or in

combination with one another, the most positive outcomes were achieved when they

were used in conjunction with conventional anti-cancer therapies. Epigenome modifying

drugs have succeeded in sensitizing cancer cells to anti-cancer therapy via a variety

of mechanisms: disrupting pro-survival/anti-apoptotic signaling, restoring cell cycle

control and preventing DNA damage repair, suppressing immune system evasion,

regulating altered metabolism, disengaging pro-survival microenvironmental interactions

and increasing protein expression for targeted therapies. In this review, we explore

different mechanisms by which epigenetic modifiers induce sensitivity to anti-cancer

therapies and encourage the further identification of the specific genes involved with

sensitization to facilitate development of clinical trials.

Keywords: epigenetic aberrations, chemoresistance, mechanism, cancer, epigenetic drugs, epigenetic

combination therapies

EPIGENETICS AND CANCER

The term “epigenetics” refers to the study of heritable phenotypic changes that do not involve
mutations in DNA sequence (1). These changes are centered around alterations in gene activity and
expression; through a variety of processes including DNA methylation and histone modifications
(2). DNA methylation is the covalent addition of a methyl group to the C-5 position of DNA
cytosine rings by DNA methyltransferases. Gene promoter hypermethylation often results in
transcription depletion leading to decreased gene expression (3). Conversely, hypomethylation of
ABCB1 promoter resulted in upregulation of ABCB1 protein and acquisition of taxane resistance
via efficient drug efflux (4). In exceptional cases, promoter methylation of genes, like TERT gene
encoding telomerase reverse transcriptase, leads to increased transcription and protein expression
(5). Methylation in gene bodies also affects transcription; demethylation of gene bodies results in
a decrease in gene transcription (6). These patterns of DNA methylation are retained during cell
division and can persist across generations.
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Histones are modified in multiple ways. These modifications
alter chromatin structure and affect gene transcription by
regulating the access of transcription machinery to DNA.
For an excellent review on the different types of histone
modifications, refer to Audia and Campbell (7). Enzymes
that modify histone proteins also facilitate post-translational
modifications in non-histone proteins, thereby affecting gene
expression (8, 9). Acetylation of NFκB and methylation of
tumor suppressor protein p53 promotes nuclear localization of
these proteins and increases transcriptional activity of respective
gene targets (10, 11). Due to the prominent role of these
proteins in cancer progression and therapy resistance, targeting
their post-translational modifications could have therapeutic
benefit (12, 13).

Drastic alterations in the epigenetic landscapes occur in cancer
cells (14). Aberrant epigenetic patterns function as key drivers in
cancer initiation and progression; often a result of the silencing of
tumor suppressor genes or induced overexpression of oncogenes
(15). Several tumor suppressors, such as RASSF1A and CASP8,
are frequently inactivated in multiple cancer subtypes via
epigenetic downregulation rather than by genetic mutation. For
an excellent review on this specific function in oncogenesis, see
Kazanets et al. (16). On the other hand, certain oncogenes, such
as c-Myc and insulin-like growth factor receptor 2 (IGF-2) are
upregulated by epigenetic mechanisms (17). These epigenetic
changes result in global dysregulation of gene expression; thereby
solidifying the development of disease states (18). Anomalous
epigenetic alterations can also lead to the acquisition of therapy
resistance (19, 20). Figure 1 outlines how epigenetic-induced
gene expression changes can give rise to multiple mechanisms of
therapy resistance.

Efforts to revert these epigenetic changes via the use
of epigenome modifying drugs have achieved some success,
specifically when used in conjunction with other therapies.
While these modifiers are “non-specific” in that they affect
gene expression on a global level, their action elicits “specific”
effects in malignant cells. This is due to the altered epigenome
that is acquired during oncogenesis, highlighted by expression
changes in tumor suppressor genes (silenced) and oncogenes
(augmented) that are responsible for cancer progression or
therapy resistance. Thereby, treatment with epigenetic drugs
elicits a “specific” effect on cancerous cells by reverting these
unique expression changes. Additionally, sensitivity to epigenetic
modifiers can be genomic loci specific, possibly due in part to the
three-dimensional chromatin structure (21–23). Thus, epigenetic
modifiers possess the unique ability to be effective in a broad
category of patients; albeit via altering the expression of a set of
genes in a patient- specific manner (24).

In order to better understand the uses and indications of
epigenetic modifiers in these combinations, it is necessary to
uncover mechanisms of epigenetic drug-induced sensitization to
anti-cancer therapy. Below, we summarize the gene expression
changes induced by specific epigenetic modifiers (listed in
Table 1), and how they have a variety of intracellular/extracellular
consequences to potentiate the effectiveness of subsequent anti-
cancer therapies.

EPIGENETIC DRUG-INDUCED
SENSITIZATION MECHANISMS

Disruption of Pro-survival Signaling
Epigenetic alterations during oncogenesis can dysregulate the
expression of growth factor receptors (25). Increased expression
of these receptors drives the development of therapy resistance
due to the over-activation of their downstream pathways such
as PI3K/Akt and subsequent inhibition of cell death (26). While
targeted therapies against growth factor receptors have been
used to mitigate their effects, the use of such therapies is
limited by the rapid development of resistance. Using epigenetic
modifiers to control the expression of growth factor receptors
is a promising alternative. In breast cancer, dacinostat (HDACi)
disrupted epidermal growth factor (EGF)-mediated signaling,
which is associated with increased metastasis and cell survival.
This was achieved by reducing HER2 (human EGF receptor-2)
protein expression via two independent epigenetic mechanisms:
first by decreasing HER2mRNA level independent of alterations
in promoter activity and secondly by increasing proteasomal
degradation due to dissociation from its chaperone protein
HSP90 via enhanced acetylation (27). In breast cancer as well,
treatment with lapatinib (HER2/EGFR kinase inhibitor) and
entinostat (HDACi) synergistically disrupted Akt signaling and
promoted apoptosis (28). Though the mechanism of entinostat
and lapatinib synergy is unknown, it is suggested that this
effect is due to entinostat inhibiting lapatinib-induced expression
of HER3; a HER2 heterodimerizing partner responsible for
resistance to HER2 targeted therapies (29).

Hormone-dependent cancers such as breast and prostate
respond to anti-hormone therapy by induction of apoptosis (30).
Resistance to such therapy is acquired by downregulation of
estrogen receptor (ER) or androgen receptor (AR) via epigenetic
mechanisms. Thus, epigenetic drugs have been used to induce ER
and AR expression to mediate sensitization to endocrine therapy
in breast and prostate cancer, respectively (31–33).

Activation of pro-death pathways has been utilized as a
therapeutic target to promote apoptosis in malignant cells.
The binding of tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) to its receptors death domain containing receptor
(DR) triggers pro-death signaling and induces apoptosis via the
caspase cascade (34). Reduced receptor expression is frequently
observed in cancer cells resistant to this pathway. Vorinostat
(HDACi) sensitized breast cancer cells to TRAIL-induced
apoptosis by increasing expression of DR5 (35, 36). Treatment
with epigenetic drugs can also lead to hyperactivation of pro-
death pathways such as the unfolded protein response (UPR)
pathway. UPR is activated to protect cells from endoplasmic
reticulum-stress mediated cell death (37). However, when the
pathway becomes hyperactivated, this response actually leads
to the activation of apoptotic pathways, making it a target in
cancer cells. Treatment with methylstat (inhibitor of KDM4B,
a lysine-specific histone demethylase) dissociated the UPR-
activating initiation factor eIF2α and synergized with PI3K
inhibition to hyperactivate UPR gene transcription, culminating
in apoptosis (38).
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FIGURE 1 | Hallmarks of Epigenetic Alteration-Induced Therapy Resistance Epigenetic dysregulation is a driving force in oncogenesis and the development of therapy

resistance. (1) Increased pro-survival signaling (depicted by enhanced phosphorylation and activation of kinases such as Akt) can inhibit the expression of death

proteins to promote cancer cell survival. The gene expression of death proteins (shown as transcriptional inhibition at the gene promoter) can also be disrupted,

culminating in increased cell survival. (2) Aberrant cell cycling is caused by the over/under-expression of proliferative/checkpoint proteins (blue block with promoter), or

increased activation of signaling pathways (shown by increased phosphorylation/activation) related to proliferation. DNA damage repair is augmented by an increased

expression of repair proteins and disruption of checkpoint signaling. (3) Aberrant intracellular signaling can also alter cytokine expression and lead to reduced cytotoxic

T lymphocyte (CTL) recruitment. Silencing of immune cell antigen targets can also suppress immune targeting of cancer cells (NK, natural killer). Increased expression

of PD-L1 (green arrow and blue triangle) on cancer cells can augment the immune checkpoint response, resulting in T cell apoptosis. (4) Increased cellular adhesion

within the bone marrow microenvironment (yellow block) in hematologic malignancies activates intracellular signaling pathways that protect malignant cells (blue

spheres) from anti-cancer. Epithelial to mesenchymal transition (EMT) dislodges cancer cells (green blocks) from the solid tumor microenvironment and is the first step

in metastasis. (5) Irregular cellular metabolism via overactive glucose metabolism leads to the Warburg effect favoring anabolic glycolysis over oxidative

phosphorylation, and can render cells resistant to chemotherapeutics or antimetabolites. Resistance mechanisms are not restricted to just one of the categories; often

with multiple categories being involved simultaneously.

Through modulation of the expression of growth factor
receptors or augmenting apoptosis-inducing pathways,
epigenetic modifiers can disrupt pro-survival signaling in
cancer cells as an efficient mechanism of sensitization (Table 2).

Restoration of Cell Cycle Control and
Disruption of DNA Damage Repair
Cancer cells often rely on a dysregulated cell cycle for their
continued proliferation (83). Epigenetic modifiers can restore
tight control of the cell cycle and proliferation by mediating
a reversal of dysregulated gene expression as a mechanism
to potentiate therapy. Entinostat (HDACi) downregulated the

expression of MYC, E2F, and other G2M cell cycle genes to
sensitize breast cancer cells to doxorubicin-induced growth
arrest, however, how these genes are downregulated is unknown
(84). Previously, Lee et al. showed entinostat treatment in
breast cancer inhibited Akt signaling (28). Since Akt signaling
controls cell cycle (85), it is likely that Akt is involved in
entinostat-mediated doxorubicin sensitization. While entinostat
alone inhibited the expression of cell cycle proteins, its
combination with decitabine (DNMTi) in pancreatic cancer

increased expression of p21 to reinstitute cell cycle control and
inhibit tumor growth, likely due to increased acetylation of
histone H3 and demethylation of the p21 promoter (86).
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TABLE 1 | Epigenetic modifiers discussed in this review.

Type Inhibitor Effect

DNMTi Azacitidine Traps DNMT and prevents its progression along DNA

Decitabine Forms a covalent complex with DNMT1 to deplete its

activity

Guadecitabine -currently unknown-

Procaine Prevents the binding of DNMT1 and 3A to DNA

Zebularine Traps DNMT and prevents its progression along DNA

HDACi 4-phenylbutyric

acid

Pan HDAC inhibitor

Belinostat Pan HDAC inhibitor

Panobinostat Pan HDAC inhibitor

Valproic Acid Pan inhibitor that binds to catalytic center of HDACs

Dacinostat Non-direct pan HDAC inhibitor

Entinostat Class 1 HDAC inhibitor

Givinostat Class 1 and 2 HDAC inhibitor

Mocetinostat Inhibits HDAC 1/2/3/11

Trichostatin A Inhibits HDACs 1/3/4/6/10

Vorinostat Chelator of zinc ions at active sites of HDACs 1/2/4

Curcumin Variable; potent effects of HDAC 1/3/8

Quercetin -currently unknown-

HDMi HCI-2509 Inhibits lysine-specific demethylase 1 (LSD1)

Iadademstat Inhibits LSD1

Pargyline Inhibits LSD1

S2101 Inhibits LSD1

SP2509 Inhibits LSD1

MC3324 Inhibits LSD1 and lysine-specific demethylase 6A

DW14800 Inhibits protein arginine N-methyltransferase 5 (PRMT5)

JIB-04 Pan inhibitor of Jumanji-domain histone demethylases

Methylstat Inhibits lysine-specific demethylase 4B

SGC-0946 Inhibits disruptor of telomeric silencing 1-like (DOT1L)

Other AZD5153 Inhibits bromodomain-containing protein 4 (BRD4)

JQ1 Inhibits BRD4

Cl-Amidine Inhibits protein-arginine deiminase type-4

EPZ-6438 Inhibits enhancer of zeste homolog 2

MI-463 Inhibits menin (MEN1)

MI-503 Inhibits MEN1

Epigenetic modifiers can potentially mitigate the effects
of fusion oncoproteins. Gene fusions formed as a result
of chromosomal translocations are often responsible for
oncogenesis and therapy resistance (87, 88). In Ewing
sarcoma, the EWS/Fli1 fusion gene is a key oncogenic driver.
Treatment with JIB-04 (pan inhibitor of Jumanji-domain histone
demethylases) simultaneously increased expression of cell-cycle
inhibitor genes while suppressing expression of proteins that
promote cell cycle, possibly through a disruption of EWS/Fli1
fusion gene program (89).

Hyperactive DNA damage repair pathways in cancer cells
promote resistance to DNA damaging chemotherapeutics and
radiation (90). In neuroblastoma, treatment with vorinostat

(HDACi) diminished the expression of Ku-86, a key protein in
non-homologous end joining DNA damage repair, to potentiate
the anti-neoplastic effects of DNA damaging radiation (91).
How vorinostat affects Ku-86 expression requires further
study. Expression of DNA damage repair proteins like 53BP1
and RAD51 was also downregulated following treatment
with pevonedistat (NEDD8-activating enzyme inhibitor)
and belinostat (HDACi) in acute myeloid leukemia (AML).
Downregulation of these proteins occurred in response to
pevonedistat-mediated inhibition of belinostat-induced NFκB
signaling and belinostat-mediated inhibition of pevonedistat-
induced Chk1/Wee1 signaling, identifying a reliance of the two
drugs on each other to disrupt DNA damage repair (92).

Restoring control of cell cycle progression and diminishing
the activation of DNA damage repair pathways is a promising
mechanism to improve responses to treatment. Epigenetic
modifiers offer a unique route to achieving this objective
(Table 3).

Suppress Immune Evasion/Augmenting
Immune Responses
The immune system plays a pleiotropic role in cancer
progression. Infiltration of immune cells into the tumor
microenvironment releases a plethora of cytokines and growth
factors that contribute to tumor proliferation, survival, and
metastasis. Concurrently, activation of immune cells to target
cancer is a promising strategy to utilize the host immune
system in the fight against cancer (126). Like other anti-
cancer treatments, malignant cells develop a resistance to
immunotherapies by evading or suppressing the immune system
and its activation via aberrant epigenetics (127, 128). Treatment
with epigenetic modifiers has proved successful in augmenting
immunotherapy. For a detailed review on this topic, please refer
to Gomez et al. (129).

Epigenetic modifiers trigger increased expression of proteins
for targeted therapies including immunotherapies. Trichostatin
A (HDACi) up-regulated the mRNA and protein levels of both
MIC-A and ULBP-2 in glioblastoma, which are recognized by
natural killer (NK) cells to increase NK cell-mediated lysis
(130). Entinostat (HDACi) blocked regulatory T cells (which
negatively regulate the immune system and limit the efficacy of
immunotherapy) in renal cell carcinoma via increased STAT3
acetylation, possibly due to increased CBP/p300 expression that
acetylates STAT3 (131). In ovarian and colon cancer, azacitidine
(DNMTi) increased the expression of multiple cancer cell-
specific antigens. Since these antigens can be recognized by
the host immune system, they represent prime targets for
immunotherapies (132). The increased expression of cancer
antigens also provides ample opportunity for the development
of anti-cancer vaccines directing the host immune system to
target these antigens. Such advances are currently in their infancy
but have the potential for exceptional breakthrough in cancer
treatment, especially when combined with epigenetic modifiers.

In non-small cell lung cancer, azacitidine (DNMTi) and
givinostat (HDACi) induced Type I interferon signaling
through transcriptional downregulation of MYC to increase the

Frontiers in Oncology | www.frontiersin.org 4 June 2020 | Volume 10 | Article 992

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Quagliano et al. Epigenetic Sensitization Mechanisms in Cancer

TABLE 2 | Epigenetic modifier-induced disruption of pro-survival signaling.

Malignancy Drug(s) Gene/Protein Mechanism References

Bladder carcinoma Decitabine HOXA9 Restores expression (39)

Glioblastoma Decitabine TP53 and CDKN1A Restores expression (40)

Glioblastoma Decitabine CASP8 Upregulates expression (41)

Gastric/esophageal adenocarcinoma Azacitidine HPP1 Restores expression (42)

Renal cell carcinoma Decitabine RASSF1A Restores expression (43)

Renal cell carcinoma Decitabine or

4-phenylbutyric acid

miR-492 Restores expression (44)

ALL Azacitidine DCK Restores expression (45)

ALL Azacitidine AhR Restores expression (46)

AML Azacitidine SHP-1 Increases expression (47)

Chronic myeloid leukemia Azacitidine PRG2 Increases expression (48)

Cholangiocarcinoma Guadecitabine CDKN2A, RASSF1A, SEMA3B Increases expression (49)

Hepatocellular carcinoma Decitabine SULF1 Restores expression (50)

Breast cancer Dacinostat HER2 Downregulates expression at mRNA and protein level (27)

Small cell lung carcinoma Decitabine/Valproic Acid CASP8 Restores expression (51)

Small cell lung cancer Iadademstat NOTCH1 Restores expression (52)

Diffuse large B Cell lymphoma Panobinostat NOXA Increases expression (53)

Prostate Trichostatin A ATF3/4 Increases expression (54)

Prostate Azacitidine GST Restores expression (55)

Prostate Azacitidine miR-34a Restores expression (56)

Tongue squamous cell carcinoma Trichostatin A miR-375 Increases expression (57)

Solid tumors Mocetinostat miR-203 Restores expression (58)

Ovarian Zebularine RASSF1A, ARHI, BLU Restores expression (59)

Bladder Trichostatin A CXADR Increases expression (60)

Breast Vorinostat DR4/DR5 Increases expression (36)

Breast Vorinostat DR5 Increases expression (35)

T-cell leukemia HDACi TRAIL-R2, c-FLIP, and Apaf-1 Increases expression (61)

Breast Entinostat ERα and CYP19A1 Increases expression (31)

Breast Vorinostat ERα Increases expression (32)

Prostate Quercetin/Curcumin AR Increases expression (33)

ALL Vorinostat BCR-ABL Decreases expression (62)

T-cell ALL Dacinostat c-FLIP Decreases expression along with increasing DR4/5

expression to sensitize to Apo2L/TRAIL-induced

apoptosis

(63)

Chronic myeloid leukemia Dacinostat BCR-ABL Decreases expression (64)

AML Dacinostat FLT-3 Decreases expression and activity (65)

Mixed lineage leukemia MI-463/MI-503 HOXA9 Decreases expression (66)

MLL Azacitidine TERT Decreases expression (67)

Hepatocellular carcinoma Guadecitabine WNT/EFG/IGF Decreases expression of pathway associated genes (68)

Non-small cell lung carcinoma Panobinostat TAZ Decreases transcription and its targets (EGFR and

EGFR ligand)

(69)

Multiple myeloma EPZ-5676/SGC-0946 IRF4 Decreases expression (70)

Hematologic Vorinostat JAK Decreases expression (71)

Breast Entinostat Akt Inhibits phosphorylation (28)

Breast Methylstat eIFα Increases dissociation from KDM4B leading to

increased phosphorylation by ERK and transcription of

unfolded protein response genes

(38)

Breast MC3324 ERα Inhibits signaling (72)

Breast Cl-amidine Akt/mTOR Inhibits signaling, leading to increased nuclear

accumulation of p53

(73)

Colon Decitabine Akt Inhibits signaling (74)

Colon Cl-amidine p53 Increases transcription of targets, including miR-16 (75)

Retinoblastoma Vorinostat NFκB Inhibits signaling and increases p53 expression (76)

Gynecologic Panobinostat Mutant TP53 Decreases protein expression (77)

Gynecologic SP2509 p62 Stabilizes protein expression (78)

AML Panobinostat Akt/NFκB Inhibits signaling to increase p53-mediated cell death (79)

Non-small cell lung carcinoma Panobinostat EGFR Inhibits signaling (80)

Ovarian S2101 Akt Inhibits phosphorylation (81)

Prostate Azacitidine Akt Inhibits activation (82)
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TABLE 3 | Restoration of cell cycle control and disruption of DNA damage repair by epigenetic modifiers.

Malignancy Drug(s) Target Gene/Protein Mechanism References

Breast Cl-amidine CDKN1A and GADD45A Increases expression to inhibit cell cycle (93)

Breast Decitabine/ Trichostatin A MSH2 Restores expression (94)

Colorectal AZD5153 c-Myc/Wee1 Reduces expression (95)

Gastric Procaine CDKN2A and RARβ Restores expression (96)

Acute leukemia Decitabine CDKN2A Restores expression (97)

Non-small cell lung carcinoma Trichostatin A CDKN1A Increases expression to mediate G1 arrest (98)

Non-small cell lung carcinoma Azacitidine MGMT Restores expression (99)

Diffuse large B cell lymphoma Decitabine SMAD1 Restores expression (100)

MDS/Chronic myeloid leukemia Decitabine CDKN2B Restores expression (101)

Multiple myeloma Azacitidine/EPZ-6438 SMAD3 Restores expression (102)

Ovarian/Colon Decitabine MLH1 Restores expression (103)

Pancreatic Decitabine/Vorinostat CDKN1A Increases expression to mediate G1 arrest (86)

Pancreatic Azacitidine SST and SSTR2 Restores expression (104)

Multiple HDACi SLFN1 Restores expression (105)

Solid tumors Azacitidine/HDACi Genes related to ionizing

radiation

Increases expression for radiosensitivity (106)

Bladder Panobinostat MRE11 Reduces expression to increase radiosensitivity (107)

Neuroblastoma Vorinostat Ku-86 Reduces expression to disrupt DNA damage repair (91)

Neuroblastoma Panobinostat Chk1 Reduces expression and signaling to disrupt DNA

damage repair

(108)

Breast Entinostat MYC, E2F, and G2M cell cycle

genes

Reduces expression to induce G2M cell cycle arrest (84)

Non-small cell lung carcinoma Belinostat ERCC1 Decreases expression to disrupt DNA damage repair (109)

Lung adenocarcinoma HCI-2509 PLK1 Decreases expression and target genes (110)

Non-Hodgkin’s Lymphoma Belinostat c-Myc Decreases expression to increase DNA damage (111)

Ovarian Panobinostat RAD51 Decreases expression to increase PARP inhibiton (112)

Pancreatic JQ1 c-Myc Decreases expression (113)

Testicular Guadecitabine p53 Increases activation and target gene expression (114)

Breast Valproic Acid γH2AX and H3S10p Increases and decreases retention, respectively (115)

Breast/Ovarian Guadecitabine PARP Increases “trapping” by PARP inhibitors (116)

Ewing Sarcoma JIB-04 Disrupts EWS/Fli1 oncogeneic program to increase

DNA damage

(89)

AML Belinostat Chk1/Wee1 Inhibits signaling to disrupt DNA damage response (92)

Chronic myeloid leukemia Decitabine/Vorinostat p53 Increases cell death through p53-dependent pathway

and p21

(117)

AML Azacitidine/Panobinostat p53 signaling Induced remission in patient-derived xenograft models (118)

AML Panobinostat Chk1/Wee1 Decreases signaling to disrupt DNA damage response (119)

AML Trichostatin A γH2A.X Accumulates to enhance radiosensitivity (120)

Non-small cell lung carcinoma Decitabine/Trichostatin A miRNAs Enhances DNA damage by dysregulating expression (121)

Non-small cell lung carcinoma Panobinostat p53/p21 and Chk1 Increases expression of p53-dependent pathway and

decreased Chk1 signaling

(122)

Ovarian Guadecitabine DNA repair genes Alters expression to disrupt DNA damage repair (123, 124)

Solid tumors DNMTi/HDACi Reduces chromatin condensation to increase DNA

damage following chemotherapy

(125)

expression of the T cell chemoattractant CCL5, thereby reversing
tumor immune evasion by promoting T cell infiltration. This
combination also shifted host T cells from exhausted states
(characterized by loss of effector function due to prolonged
antigen stimulation) to memory and effector states [capable
of durable responses to immune checkpoint blockades) via
activation of associated genes (133)].

Cancer cells exploit the “immune checkpoint” function to
evade the immune system (134) by expression of programmed
cell death-1 (PD-1) or anti–cytotoxic T-lymphocyte-associated
antigen-4 (CTLA-4) resulting in increased apoptosis of T cells.
Immune checkpoint blockers such as nivolumab (monoclonal
antibody blocking PD-1) and ipilimumab (monoclonal antibody
blocking CTLA-4) have emerged as an attractive mechanism to
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decrease immune system evasion and tumor cell survival. Co-
administration of azacitidine (DNMTi) and entinostat (HDACi)
alongside immune checkpoint blockers improved treatment
outcome in a preclinical metastatic cancer model via their
inhibitory action on the myeloid derived suppressor cells within
the tumor microenvironment (135).

Exploitation of the immune system to successfully diminish
tumor burden is a promising avenue of improving anti-cancer
therapy. The use of epigenetic modifiers offers a distinctive
method to potentiate these therapies (Table 4).

Modulation of Microenvironmental
Interactions
Cellular and extracellular matrix interactions within the tumor
microenvironment are crucial for cancer development and
progression. Epigenetic dysregulation in cancer is known to
control adhesion through a variety of mechanisms (141–143).
Thus, the use of epigenetic modifiers could provide a way to
mollify these alterations. In solid tumors, disengagement from
the microenvironment has severe consequences for the patient,
as it is the first step in metastasis (144). Therefore, increasing
cell adhesion proves beneficial to localize the tumor to the
primary site.

In a majority of solid tumors, carcinomas arise from
epithelial cells undergoing epithelial to mesenchymal transition
(EMT), which causes loss of epithelial polarity/adhesion and
increased migratory/invasiveness potential (145). Following
EMT, cancer cells acquire stem-cell like properties and a
higher rate of metastasis (146). EMT is controlled by multiple
epigenetic mechanisms, including DNAmethylation and histone
modifications (147). The expression of the classical cell adhesion
molecule and EMT suppressor E-cadherin is downregulated
via promoter hypermethylation in cancer cells (148), or
repressed by transcription factor Snail (149) in conjunction with
histone modifiers such as lysine-specific histone demethylase
1 (LSD1) recruited by Snail (150). In breast cancer cells,
EMT was suppressed by the LSD1 inhibitor pargyline (151).

It is important to note, that the same study identified
LSD1 to inhibit M1 macrophage infiltration into tumors,
which is known to promote tumor progression and therapy
resistance (152).

Targeting the SNAIL/LSD1 complex to prevent EMT via
depletion of SNAIL expression was accomplished by the BRD4
inhibitor JQ1 in breast cancer. JQ1 repressed the expression
of Gli1, an important mediator of SNAIL transcription. This
prevented SNAIL-mediated repression of epithelial markers such
as E-cadherin and prevented EMT (150, 153). Combined, these
two studies provide a powerful indication of how the use of
epigenetic modifiers can perturb EMT to prevent metastasis and
improve treatment efficacy in solid tumors.

In hematologic malignancies, interactions within the bone
marrow microenvironment transition malignant cells into
chemoresistant states (154). Disruption of these interactions
mobilizes cells from the bone marrow into the peripheral blood,
thereby sensitizing them to therapy. In acute lymphoblastic
leukemia (ALL), azacitidine (DNMTi) and panobinostat
(HDACi) combined to disrupt cellular adhesion within the
bone marrow microenvironment in ALL by decreasing the
surface expression of the tetraspanin protein CD81, resulting in
increased chemosensitivity (155, 156).

Hypoxia within the tumor microenvironment can often
promote therapy resistance (157). This therapy resistance can
be attributed to multiple factors including aberrant micro RNA
(miRNA) expression and dysregulated epigenetic machinery
(158, 159). Thus, gene expression alterations are accumulated and
therapy resistance can occur in a variety of mechanisms such
as those described in Figure 1. Due to the aberrant epigenetics
involved, the use of epigenetic modifiers could sensitize cancer
cells by reverting these hypoxic effects. However, further study is
required to elucidate their effectiveness.

The role of microenvironmental interactions and their effect
on cancer progression has been well-defined, however, the use
of epigenetic modifiers to attenuate these effects has not been
exploited. More studies across all cancer subtypes are necessary

TABLE 4 | Suppression of immune evasion/augmented immune responses following epigenetic modifier treatment.

Malignancy Drug(s) Gene/Protein Mechanism References

Osteosarcoma Entinostat MIC-A and MIC-B Increases expression to increase NK cell-mediated

cytotoxicity

(136)

Glioblastoma Trichostatin A MIC-A and ULBP-2 Increases expression to increase NK cell-mediated

death

(130)

Colon Decitabine/Vorinostat Fas Increases expression to sensitize to FasL-induced

apoptosis and improve CTL adoptive transfer

immunotherapy

(137)

Melanoma Vorinostat DR5 Increases expression to overcome immune resistance (138)

Melanoma Dacinostat MHC and tumor antigen Increases expression to improve functional activity of

lymphocytes

(139)

Renal cell carcinoma /Prostate Entinostat STAT3 Increases acetylation to improve immunotherapy (131)

Non-small cell lung carcinoma Azacitidine/Givinostat MYC Inhibits signaling to reverse immune evasion (133)

Ovarian Azacitidine Type I interferon Activates signaling to reduce immunosuppression (140)

Colon/Ovarian Azacitidine Cancer antigens Vaccines (132)

AML Azacitidine PD-1, PD-L1, and CTLA-4 Nivolumab and Ipilimumab NCT02397720
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to achieve a greater understanding of how microenvironmental
interactions can be modulated by epigenetic therapy.

Reprogramming of Cellular Metabolism
Through a variety of genetic and epigenetic mechanisms,
metabolic reprogramming can render cancer cells resistant to
chemotherapeutics (160–162). These changes can often result
as a compensatory mechanism in response to the exposure of
certain chemotherapeutics (162). Therefore, targeting aberrant
cellular metabolism is a promising method of circumventing
therapy resistance.

Due to the epigenetic regulation involved with aberrant
metabolism, epigenetic modifiers could prove highly successful
in mitigating the resultant chemoresistant effects. Treatment
with entinostat (HDACi) combined with cisplatin upregulated
the gene expression of thioredoxin-interacting protein (TXNIP),
which inhibited the cellular uptake of glucose and increased
DNA damage (163). This occurred via an increase in TXNIP
promoter activity, however, this increase was only achievable
with the two drugs in combination. In AML, treatment with the
DNMTi azacitidine combined with the Bcl-2 inhibitor venetoclax
disrupted cellular metabolism by decreasing glutathione levels,
thereby diminishing electron transport chain complex II activity
and oxidative phosphorylation (164).

Epigenetic modifiers can also augment the effectiveness
of established antimetabolites like pemetrexed, which targets
enzymes like thymidylate synthase (TI) catalyzing purine and
pyrimidine synthesis. TI expression can be augmented post
treatment with pemetrexed, thus leading to resistance (165).
In non-small cell lung cancer, pemetrexed treatment followed
by givinostat (HDACi) downregulated the mRNA and protein
expression of TI, thereby overcoming therapy resistance and
resulting in a synergistic increase in cell death (166).

While there has been strong evidence of the role played
by epigenetic-induced metabolic changes in cancer cells in
promoting therapy resistance, the study of how epigenetic
modifiers can mitigate these effects has yet to be explored in
depth. More examination into these effects is required in order
to better overcome resistance to therapies.

Opportunities for Development of Rational
Combinations With Epigenetic Therapy
The impact of epigenetic modifiers on global gene expression
results in modulation of several genes, both promoting
and inhibiting therapy resistance, thereby necessitating and
offering opportunity to combine with targeted therapies. This
is exemplified by a study in ovarian cancer that identified
overexpression of CD146, a cell surface marker involved
in tumor dissemination, following treatment with vorinostat
(HDACi). This increased expression was exploited by combining
vorinostat with anti-CD146 monoclonal antibody treatment
to synergistically induce cell death via inhibition of CD146-
mediated Akt signaling (167). Vorinostat (HDACi) along with
decitabine (DNMTi) was also observed to significantly increase
the expression of the tyrosine kinase AXL in AML. This led
to the identification of a novel triple therapy with the AXL
inhibitor BGB324 facilitating synergistic activation of cell death

(168). Therefore, mechanistic understanding of epigenetic drug
action is essential for developing rational combinations with
targeted therapies.

NEED FOR CLINICAL TRIALS

The use of epigenetic modifiers is a robust method for improving
treatment efficacy in cancer. Through a variety of mechanisms,
epigenetic therapy has the potential to augment the effectiveness
of cancer treatments to improve overall survival in patients.
In many of the examples presented above, a combination
of epigenetic modifiers was used to induce specific changes
that potentiate the effects of anti-cancer therapeutics in cancer
cells. However, despite a plethora of clinical trials involving
the use of epigenetic modifiers, very few have focused on the
use of a combination of epigenetic modifiers along with anti-
cancer therapy (Table 5). The combination therapies identified
in this review underline the need and provide the basis for the
development of future clinical trials to study their effectiveness.

Additionally, it is worth mentioning that not only the use
of epigenetic modifiers (either alone or in combination with
one another) in conjunction with chemotherapeutics should

TABLE 5 | List of clinical trials utilizing multiple epigenetic modifiers in combination

with traditional therapy.

Malignancy Epigenetic

Modifiers

Other Therapeutics NCT

Identifier

ALL Decitabine/

Vorinostat

Vincristine/

Dexamethasone/

Mitoxantrone/

Pegasparagase/

Methotrexate

01483690

AML Azacitidine/

Vorinostat

Gemtuzumab 00895934

AML Azacitidine/

Valproic Acid

All-trans retinoic acid/

Hydroxyurea

01369368

AML/MDS Azacitidine/

Valproic Acid

All-trans retinoic acid 00339196

Breast Decitabine/

Panobinostat

Tamoxifen 01194908

Lymphoma Azacitidine/

Vorinostat

Gemcitabine/Busulfan/

Melphalan/

Dexamethasone/

Caphosol/Glutamine/

Pyridoxine/Rituximab

01983969

MDS Azacitidine/

Valproic Acid

All-trans retinoic acid 00326170

MDS Decitabine/

Vorinostat

CD3-/CD19- NK cell

infusion

01593670

MDS Azacitidine/

Valproic Acid

All-trans retinoic acid 00439673

Melanoma Decitabine/

Panobinostat

Temozolomide 00925132

Non-small cell lung

cancer

Azacitidine/

Entinostat

Docetaxel/

Gemcitabine/Irinotecan

01935947

Non-small cell lung

cancer

Azacitidine/

Entinostat

Nivolumab 01928576
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be studied, but the protocols in which they are administered
should be considered as well. Simultaneous exposures have been
shown to have an inhibitory effect on cell viability compared
to sequential treatment (169). Additionally, a study of the
use of azacitidine and panobinostat in B-ALL identified that
following treatment in mice; leukemic cells were mobilized from
the bone marrow into the peripheral blood. This mobilization
was responsible for the improved efficacy of subsequent
chemotherapy treatment, thus suggesting that staggering the
treatments had a significant effect (170). More study on this
effect as well as its potential in other cancer subtypes must be
performed to exploit the efficacy of epigenetic treatments.

CONCLUSIONS

Aberrant epigenetics is responsible for the development and
progression of several cancers. These alterations can be the
driving forces of therapy resistance and survival. Treatment with
epigenetic modifiers offers a unique route to diminishing these
effects and re-sensitizing cancer cells to traditional therapies.
While there have been some clinical trials studying the efficacy
of epigenetic modifiers in cancer, more studies focusing on
identifying specific gene targets are required, particularly with
a combination of epigenetic modifiers in conjunction with
other therapies. By precisely identifying sensitization biomarkers,
epigenetic/chemotherapeutic/immunotherapeutic combination
therapies can achieve greater translational success (171).
Follow-up studies using comprehensive analyses like RNAseq,
global methylation, and chromatin immunoprecipitation-Seq are
required to identify pathways of sensitization.

It is also imperative to include analyses of non-coding regions
of the DNA, such as miRNA. While epigenetic alterations
during oncogenesis directly affect the transcription of coding

genes, these variations can have an effect on the expression of
miRNAs (172, 173), which are non-coding RNAs that function
in RNA silencing and post-transcriptional regulation of gene
expression. miRNAs can mediate either tumor suppressive
or oncogenic effects depending on their gene target (174).
Examination of alterations in miRNA expression following
treatment with epigenetic modifiers could identify additional
sensitization mechanisms and therapeutic markers.

Studies investigating the development of inhibitors of atypical
histone modifications, such as citrullination, phosphorylation,
sumoylation, ubiquitylation, and ribosylation; are needed
because these modifications are also known to regulate gene
transcription and contribute to cancer progression (175–178).
The mechanisms outlined in this review offer not only a
rationale for successful combinations and mechanisms, but
also identify indications for their use in specific patients
based on the markers being modulated, in line with the
advancements in personalized medicine. Further studies
on the mechanisms of epigenetic modifier action in cancer
are needed to identify markers that can detect and predict
clinical response.
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