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Abstract

Mansson and Shukur (Econ Model 28:1475-1481, 2011) proposed a Poisson ridge regression estimator (PRRE) to reduce
the negative effects of multicollinearity. However, a weakness of the PRRE is its relatively large bias. Therefore, as a
remedy, Tiirkan and Ozel (J Appl Stat 43:1892—-1905, 2016) examined the performance of almost unbiased ridge estimators
for the Poisson regression model. These estimators will not only reduce the consequences of multicollinearity but also
decrease the bias of PRRE and thus perform more efficiently. The aim of this paper is twofold. Firstly, to derive the mean
square error properties of the Modified Almost Unbiased PRRE (MAUPRRE) and Almost Unbiased PRRE (AUPRRE) and
then propose new ridge estimators for MAUPRRE and AUPRRE. Secondly, to compare the performance of the
MAUPRRE with the AUPRRE, PRRE and maximum likelihood estimator. Using both simulation study and real-world
dataset from the Swedish football league, it is evidenced that one of the proposed, MAUPRRE (ng4) performed better than
the rest in the presence of high to strong (0.80-0.99) multicollinearity situation.

Keywords Maximum likelihood estimator - Multicollinearity - Poisson ridge regression - Modified almost unbiased ridge
estimators - Mean square error

1 Introduction

The Poisson regression model (PRM) is a special form of
the generalized linear models and is used when the
Electronic supplementary material The online version of this dependent variable is collected in terms of counts of
article (https://doi.org/10.1007/s40995-020-00974-5) contains nonnegative integers. A PRM adopts a Poisson distribu-
supplementary material, which is available to authorized users. tion for the dependent variable and assumes the log of its
expected value can be modeled by a linear combination of
relevant parameters. The model is commonly applied for
counts such as the occurrence rate of an event (counts)
per unit of time. These counts must be independent to
facilitate that one count will not make another event to be
more or less likely. Instead, the probability of a count per
. unit of time is related to independent variables such as,
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cesses could be the number of infected patients per day at
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number of vehicles per hour passing through a freeway
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multicollinearity problems, the mean square error (MSE)
of the MLE become unstable with high variances of the
regression coefficients and the inference based on MLE
may not be reliable. Another consequence of multi-
collinearity is the wider confidence intervals, decreased
statistical power which result in increased probabilities of
type II errors in the parameters’ hypothesis tests. In
addition, the uncertainty of the estimated coefficients is
higher because of an increased coefficient variance due to
multicollinearity.

Many biased estimation techniques have been proposed
for linear regression models to reduce multicollinearity,
such as the ridge regression estimator by Hoerl and Ken-
nard (1970) and the Liu estimator by Liu (1993). More-
over, Nomura (1988) developed an almost unbiased ridge
estimator in the linear regression model, thus with the cost
of a very low bias, but substantially more efficient as
compared to the ordinary ridge regression under certain
conditions. Mansson and Shukur (2011) proposed a Pois-
son ridge regression estimator (PRRE) to reduce the effects
of problems associated with multicollinear data. Kibria
et al. (2015) proposed a number of biasing parameters, and
Asar and Geng (2018) suggested a two-parameter biased
estimator in the PRM to adjust for multicollinearity. Tiir-
kan and Ozel (2016) developed Almost Unbiased PRRE
(AUPRRE) and Modified AUPPRE (MAUPRRE).
Kaciranlar and Dawoud (2018) examined the performance
of Poisson and negative binomial ridge predictors. Algamal
and Alanaz (2018) proposed different methods to estimate
the value of ridge parameter (k) for PRRE. Rashad and
Algamal (2019) proposed a new ridge regression approach
in the PRM to reduce the issue of collinearity between
explanatory variables, and recently Qasim et al. (2019)
proposed a Liu-type of regression estimator for the PRM.
Tiirkan and Ozel (2016) did not discuss the MSE properties
of AUPRRE and MAUPRRE and not derive the optimal
value of the ridge parameter (k). However, no published
research work seems available regarding the MSE prop-
erties of the AUPRRE and MAUPRRE and their optimal
ridge estimators for the PRM.

The main contribution of this paper is twofold. One is to
derive the MSE properties of the MAUPRRE and
AUPRRE. Second is, by simulations and by the empirical
application in terms of MSE and bias, to compare the
performance of the MAUPRRE with the AUPRRE, PRRE
and MLE. In addition, we introduce new estimating
methods for estimate the value of ridge parameter (k) for
AUPRRE and MAUPRRE and the performance of pro-
posed ridge estimators is compared with the existing esti-
mators by considering different factors in the simulation
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study. Furthermore, the intuitive, and empirical relevance
of the MAUPRRE and AUPRRE are exhibited by
employing an estimation of a real-world dataset, where we
systematically investigate which estimator that to the
highest degree can remedy the effects of multicollinearity.
In this empirical application, we model the number of goals
scored at away games (as a function of the quality of the
teams measured by bookmaker odds). By this approach, it
is easily demonstrated that the standard errors and the
estimated MSEs of proposed estimators are decreased
substantially as compared to the existing estimators in the
presence of multicollinearity problem. Hence, the precision
of the estimated parameters is increased, which of course is
one of the main objectives of demonstrating the method in
an empirical situation.

The rest of the article is organized as follows: in
Sect. 2, we define the model of interest and MLE,
PRRE, AUPRRE and MAUPRRE. The MSE properties
are derived in Sect. 3. In Sect. 4, the optimal value of
the ridge parameter is derived, and we propose new
ridge estimators for estimating the value of ridge
parameter, k for AUPRRE and MAUPPRE. Monte Carlo
simulation and its results are presented in Sect. 5. In
Sect. 6, the advantages of our proposed ridge estimators
are illustrated by using our estimators to analyze an
empirical dataset based on the Swedish football league.
Finally, the concluding remarks of article are discussed
in Sect. 7.

2 Methodology

This section illustrates the model of interest and charac-
teristic of different estimators.

2.1 The Poisson Regression Model

The PRM is applicable only when the dependent variable
deals with count data. Suppose y; is the dependent variable
and follows a Poisson distribution with parameter (y;) and
it can be denoted as P(y;) with probability mass function

et
yi!

Fy) = , yvi=0,1,2,... i=12,...n (1)

The PRM is commonly developed by using the canon-
ical link function, such that »; = exp(x!f), where x; is the
ith row of X which is an n x (¢) data matrix with ¢ non-
stochastic explanatory variables, f is a ¢ x 1 vector of the
unknown regression coefficients. The log-likelihood func-

tion is defined as
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= l(:uay) = zn:{y, h’l( —1In (H yi! ) } MSE(ﬁMLE) = E(BMLE - ﬁ)t(ﬁMLE — ﬁ) = tr{/lfl}
i=1 q 1
-3
Z{ z/3 —exp xﬁ ln<Hy,>}_ = A .
- 7

(2)

The traditional MLE is used to estimate the unknown
regression coefficients for the PRM. The MLE is obtained
by taking the first order derivative of Eq. (2) with respect

to f3:
S(B) = 2 =3 30— exp() ) = 0. G)

where S(f3) is the score function, since Eq. (3) is nonlinear
in ff, we estimate the unknown coefficients through itera-

tive weighted least squares. Let f§ (™) be the estimated value
of MLE of f§ with m iterations which may be written as

gom)  gom) {I(ﬁw) }"S(ﬁw)’ ()

m _ 2 . . .
where I(B( >) = {—E (a/zalli’) } is a g x g Fisher infor-
mation matrix and both S (ﬁ<’">) and [ (ﬂ(’”)) are evaluated

at ﬁ<m). At convergence in deviance of Eq. (4), the MLE is
found by applying the following iterative weighted least
squares method

Pae = (X'WX) " X'Wz*, (5)

where W = diag{ji, i, ..., fi,}, z* = log(fy;)+ }‘H;”, is
the adjusted response variable. Both W and z* are evalu-
ated by Fisher’s scoring iterative procedure (see, e.g.,
Hardin et al. 2007).

In order to obtain the MSEs of the parameters, we
consider
A =diag(i1, A2, ..., Ag) = @t(X’WX)@ = Z'W2Z, where
Z =XQ, Q is the orthogonal matrix whose columns are
the eigenvectors of X’ WX and > >,

the eigenvalues of the matrix XWX, respectively. The

. 2> 4g>0are

BMLE can be written as
Tuie = (A4) 7 Z'Wz",
BMLE = Q?MLE-

The covariance matrix of the BMLE is defined as

Cov(Byie ) = (4)". (6)

In addition, the scalar MSE of the EMLE is defined as

where /; is the jth eigenvalue of the Z’ W Z matrix.
2.2 The Poisson Ridge Regression Estimator

It can be easily seen that the MSE of the MLE becomes
overstated when the explanatory variables are linearly
correlated because some of the eigenvalues will be small

and Z'WZ is ill-conditioned. To reduce the effects of
multicollinearity, Mansson and Shukur (2011) proposed a
PRRE estimator which can be defined as

~ N —1 A A
Perre = (XWX +kly)  X'WX Py g
The /A?pRRE can be written as
- e
Berre = (Au,)  Z'Wz', (8)

where Ay, = diag(Ay +kly, Ao + kI, ..., 2q +kl,;) and k
(k > 0) is the ridge parameter. The bias, covariance matrix
and MSE of the ﬁpRRE are, respectively, defined as

Bias <BPRRE) = E(ﬁPRRE) —p

Bias (BPRRE) = _kAIZI:ﬁv 9)
Cov (BPRRE) = A, A, (10)
MSE (:gPRRE) = kllAAkI +iA kII:B:B Akl ) (11)
where Ay, = diag (A +kly, A + ki, ..., Ag + kl;) and

A =diag(ii, Ao, ..., Ag) = Z'WZ, where Q is the
orthogonal matrix whose columns are the eigenvectors of

Z'WZ. The scalar MSE of the PRRE is obtained by
applying the tr(.) operator on Eq. (11), which can be
defined as

_ Rx )j q K202
MSE () = Z( zj+k>2> +,-_Zl(<zj+k>2>

(12)

where o =71" BMLE, y is the eigenvector of the matrix
Z'W2Z and k is the ridge parameter of the PRRE.

52, €\ Springer
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2.3 Almost Unbiased Poisson Ridge Regression
Estimator

The PRRE overcome the problem of multicollinearity, but
this estimator has a large bias. Therefore, Tiirkan and Ozel
(2016) proposed AUPRRE. This estimator cannot only
remedy the problem of multicollinearity but also reduce the
bias as compared to PRRE and MLE. Before explaining the
full AUPRRE, we first define the almost unbiased ridge
estimator in Definition 2.3.1:

Definition 2.3.1 Xu and Yang (2011), Consider ,l? is a
biased estimator of the parameter f§ and the bias vector /? is

given by Bias (ﬁ) = E(B) — f = Mp, which shows that
E(ﬁ—M@:ﬁ, then F=f—Mp=

(I —M)p is called the almost unbiased estimator based on

the estimator

the biased estimator B

Below, we define the AUPRRE based on the PRRE.
According to Definition 2.3.1, we define the following

AUPRRE based on Bias (BPRRE) =
(XWX + kL) X'WX Py — B
Baverse = [1 = { (XWX +k1,) XWX = 1'}] Bonse
= [21 — (X'WX + KL )"X'WX] Brrre
= [+ Cowx k) XWX) (XWX + kL) XWX By
= [ k(WX + k1) 1= k(WX + k1) e

. 1127 &
{1 k(X'WX + ki) } }ﬁMLE.
The above expression can be defined as
- 1121,
ﬂAUPRRE = [I - {k(/lqu) } :|VMLE' (13)

The bias, covariance matrix and MSE of the ﬁ AUPRRE aI€
defined, respectively, as following:

Bias ([}AUPRRE) =E (ﬁAUPRRE) —p
Bias (Baverre ) = ~K2425, (14)
COV([Z’AUPRRE) - (Iq - kM;,j)A*l (Iq - sz;,j). (15)

MSE (ﬁAUPRRE) = (Iq4_ k22/1k_13> A7 (Iq - kz/lk‘lj)
+ KA BB A (16)

The scalar MSE of the AUPRRE is obtained by applying
the tr(.) operator on Eq. (16), which can be stated as

52, €\ Springer

B q k2 2
MSE(ﬂAUPRRE) = Z)l (1 _()2>
! (17)

2.4 Modified Almost Unbiased Poisson Ridge
Regression Estimator

Tiirkan and Ozel (2016) proposed a modified Jackknifed
ridge estimator or MAUPRRE for the PRM by following
the work of Singh et al. (1986). The MAUPRRE is defined
as

[ [Iq - {k(X’WX + kI, }
(1o = {k (WX +k1,) "} e
The Pyauprre €an be written as
fuansrane = |1 = {k() "} | [t = {(20) ™
(18)

The bias, variance, MMSE and scalar MSE of the
ﬁMAUpRRE are defined as

Bias <BMAUPRRE) =E (BMAUPRRE) - B
Bias (BMAUPRRE) = kA (Iq + Ay~ kZA,:,j) . (19)
Cov (BMAUPRRE) (1 ~ KA ) (I —kAy )
A7 (1 = kgt ) (1, = A2,
MSE (ﬁMAUPRRE) = Cov (ﬁMAUPRRE)
+ Bias (EMAUPRRE) Bias (EMAUPRRE) t-

(21)

The scalar MSE of the MAUPRRE is obtained by
applying the tr(.) operator on Eq. (21), which can be stated
as

MSE(nas) = Z{ ( A.,fk)z)z(u.ffk)Z)z}
+Z< fk:a )( N ojk)z)

(22)

(20)
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3 Mean Square Error Properties
of the Estimators

In this section, we derive the MSE properties of the
AUPRRE and MAUPRRE for the PRM. We also make a
comparison of the AUPRRE and MAUPRRE with the
existing estimators such as MLE and PRRE. We show the
superiority of the AUPRRE and MAUPRRE under differ-
ent conditions. The performance of ﬁMLE, ﬁPRRE, B AUPRRE
and ﬁM Auprre 1S theoretically judged by using MSE and the
bias criteria. Therefore, we define Lemma 3.1 for com-
parison purpose.

Lemma 3.1 (Farebrother 1976) Let M (M > 0) be a
positive definite matrix, © be a vector of nonzero constants
and c is a positive constant, then cM — ao' >0 if and only
ifdM 'a<c.

3.1 Comparison of fy,prae With Bpgre and Puce

Theorem 311 In the PRM, we have

Bias (EAUPRRE)z <Bias (ﬁpm)z for k> 0.
Proof By using Egs. (9) and (14), we have
A; = Bias (ﬁPRRE)z_BiaS (BAUPRRE)Z

= K Ay BB Ay — K A BB A = (BFB),
where

12 (3 + 2k) 7]
F=RAZ - KA = diag{i( 7 )”’} >0,

()%i + k)4 j=1

thus for k > 0, the proof is completed.

Theorem 312 If k> (3 — Ao+

2
\/(3 + /l,-oc}) —|—4),joc})/4ocf forj=1,2,...,q,, then the

ﬁ AUPRRE IS superior to the BPRRE for the PRM in terms of
the scalar MSE.

Proof From Egs. (12) and (17), we have

A, = MSE (ﬁPRRE) — MSE (ﬁAUPRRE)

[XJ{Z(kocj)2+k?]c¢J2 — 3]{ — Zij}k]

(3 + k)"

Since A, is positive definite for £ > 0 if and only if
when {Z(koci)z—i—kijac? — 3k — 2/1j} > 0 and this expression

is a quadratic function of k which has following roots

2
k= (3 - /ljocf + \/(3 + ijocjz) +4ijocj?> /40{_?

It is noted that the root

2
(3 — Jjo; — \/<3 + )Ljocjz) —&-4/1,-0(}) /40cj2

is negative. Thus, if £k > 0, then

2
k > (3 — Jjor; + \/(3 + /ljocjz) —|—4Zjocjz> /40(12

. Thus, the AUPRRE is superior to the PRRE in sense of
scalar MSE for the PRM.

Theorem 3.1.3 The ﬁAUPRRE is superior to the ﬁMLE in
PRM for

k< (Mj +in/2(1+ Aja})>/zjq§ —1

when /ljocjz — 1> 0 and for k > 0 when /"Ljdf —1<0 for
j=12,...q.
Proof From Egs. (7) and (17), we have

A; =MSE ([}MLE) — MSE <BAUPRRE>

2
q 1) 41 ©2 q kol )
= ) -N"_[1=- _ J .
263 -at) S
e [(1 = iﬂf)kz + 4k + 2;,1

45+ k)

J=1

Since Az is definite
{(1 — /ljfx]?)kZ + 42k + 2/1j2} > 0 and this expression is a
quadratic function of k. (i) If 1 > )L_,-ocjz forj=1,2,...q,
then { (1= 422 )2 + 42k + 222} > 0. (i) 1</8 for
j=1,2,...,q, then, we have

k< (mj +in/2(1+ Aja})>/ﬂja} —1

and {(1 - ijocj?>k2 + 405k + 2)»}} >0 by using the
method in Theorem 2. Thus, the AUPRRE is superior to

the MLE in sense of scalar MSE for the PRM and the proof
is completed.

positive if and only if

52, €\ Springer
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3.2 Comparison of Buauprse With Baupreer Berre

and B¢
Theorem 3.2.1 Under the PRM, let k>0 and
b = Bias (BMAUPRRE). Then, MSE (BMLE) -

MSE(ﬁMAUPRRE) > O l‘fbt I:A71 - U]ilb S 1, Where 6 =
(1 = K2a2) (1 = kA ) a7 (1, = kg ) (1, = A2,

Proof From Egs. (6) and (21), the difference between
MSE (ﬁMu:) and MSE (BMAUPRRE) is obtained by

A, =MSE (ﬁMLE> — MSE (ﬁMAUPRRE)
- [(/1-') - {(lq - sz,;,f> (lq - kA,;,i)

A7 (1, — kg ) (1, - 42 ) }]
| /1,(()7» + k)szz)2

—— —bb'
}"j (;»j + k)6

q+1

—bb" = diag

=1
The matrix {47~ (1, = RA2) (I, —k AgH)a™!

(o =k ) (f=RA2)} is pd it (4K

7((/11' + k)27k2)2 > 0 wherej=1,2,...,q+ 1. Thus, by

Lemma 3.1., the proof is completed.

Theorem 3.2.2 Under the PRM, let k>0 and

berge = Bias (ﬁpm) Then, MSE (BPRRE> ~ MSE

~ 1
(ﬁMAUPRRE) >0ifv [/1;:1:/1/1,:,; — U} b<1.

Proof From Egs. (11) and (21), the difference between
MSE (ﬁPRRE) and MSE (/?MAUPRRE) is obtained by

As = MSE(Forgs ) — MSE (Byiavrrre
= [{aatanit} = {1 = a2 (1, kag!)
A7 (1, = kg ) (1, = g2 b + bowrebigs — b0
/1.1'((/1.1' + k)z—k2>2 "
(4 +4)°

Jr
= diag l__

(s +k)°

+bprrEDbgg — bb'.

j=1

Since bprrebprrp 1S @ nonnegative definite matrix, it is
abundant to prove that y = A,:,:AA,:,: — U —-bb is pd.

2
The matrix  is p.d. if 4> (k2 +Alk + 22}) > 0, where

j=1,2,...,q+ 1. Thus, by Lemma 3.1. The proof is
completed.

52, €\ Springer

Theorem 3.2.3 Under the PRM, let k > 0 and bayprre =

Bias (ﬁAUPRRE) MSE(BAUPRRE) - MSE(BMAUPRRE) >0
i e 9]0 ) (0 5)
~u 'p< 1.

Proof From Egs. (11) and (21), the difference between
MSE (BPRRE) and MSE (ﬁmmms) is obtained by

AG = MSE (ﬁAUPRRE) — MSE (BMAUPRRE)
o 2]
~{ (1= e 2) (1, = kg ) a7 (1, = kg ) (1, - 4.2 }]

+ baurrrED s ypreE — P
2y q+1
diaed L (1 2o ij((/lj + k)szz)
= diag{ - (1 - -
A (i +k)° (i +k)°

+ bAUPRREb:AUPRRE — bb'.

j=1

Since bauprrED\prrE 1S @ NOnnegative definite matrix,
it is abundant to prove that (Iq - kz/lk’,qz)
A 1= ea) —v - is pd [, A2
A7 (I, = R AGZ) = O] s pad. i 452k + 5)° (K + 245k+
)72 — ;) > 0. Simplifying the last inequality, one can gets

(k+4)°=4 >0, where j=1,2,...,q+1. Thus, if
k > 0, then by Lemma 3.1., the proof is done.

4 Proposed Ridge Estimators

It is a complicated challenge for practitioners to select an
optimal value of k. Therefore, we propose new ridge esti-

mators (kyi — kgu) for the AUPRRE and MAUPRRE. We
also used k7o ridge estimator that suggested by Tiirkan and
Ozel (2016) for the PRM. Moreover, the performance of
kAql — I€q4 is compared with the kATO in sense of MSE in the

simulation and the empirical application sections. In order
to obtain an optimal value of the AUPRRE, differentiating

the MSE (ﬁ AUPRRE) with respect to k yields Eq. (18):

0 —405k(2y 4 2k) 4R Do
af(MSEAUGRRE) = Ajﬂ ( ! 5 ) ! j5
k (4 +k) (% + k)
18
42K = 2k — ) (18)
- (}“j + k)s
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Let
6{MSE (ﬁAUPRRE) }/ak =0

and resulting function solve for k, then we have following
optimal value of k

{1 + (12+ a},lj)}- )

o;

kj =

Tiirkan and Ozel (2016) concluded that the k7o perform
rather well and this estimator is defined as

~ G2
k1o = median —= |
%

where &7 is the jth (j = 1,2, ..., ¢) element of T Bygs T is

the eigenvector of matrix XWX and
52 " . 2 —
=3 i) [ —q+1)

. Following ridge estimators are proposed for AUPPRE and
MAUPRRE based on the optimal value which derived in
Eq. (19).

K, = mean [MM’%)}] . kp = median {{gu(gw%)}] )

kg =

5 The Monte Carlo Simulations

The Monte Carlo simulation study is designed to demon-
strate the performance of the estimators. The performance
of the proposed estimators is compared with the existing
estimators in the sense of MSE and bias under different
conditions which are given in Table 1. The dependent
variable of the PRM is obtained from the P(y;) distribution,
where

Table 1 The design of the experiment

Name of factors Notations Values
Multicollinearity levels P 0.80, 0.90, 0.95, 0.99
Number of explanatory variables ¢ 3,6

Sample sizes n 25, 50, 100, 200, 400
Replications R 5000

1 =exp(B, + fixin + ...+ Bxig) i=1,2,...n, (20)

We selected the parametric values of f under the
assumption that 27:1 ﬁjz = 1, which are standard restric-

tions in simulation studies. The correlated explanatory
variables are generated as

Xjj = \/(lfpz)ZUﬂLPZqurl i=1,2,...,n, (21)

j: 1727"'7q

where p? is the correlation between the explanatory vari-
ables and z; represents the independent standard normal
pseudo-random numbers. Other factors are also varied in
the simulation study such as explanatory variables
(g =3,6), multicollinearity levels (p = 0.80,0.90,
0.95,0.99) and different sample size. However, the sample
sizes need to be increased with the increase in number of
explanatory variables to attain the convergence of the
iterative weighted least squares algorithm. In order to
evaluate the performance of the proposed estimators, the
MSE and absolute bias are considered as performance
criteria. The MSE and absolute bias are defined as

MSE(B) _ > (/%) —If)t(/}m - ﬁ) |
i) ol \im -

where R = 5000 is the total number replications and [}, is
the estimate of f§ in the rth replication obtained from the
MLE, PRRE, AUPRRE and MAUPRRE.

6 Results and Discussion

In this subsection, we discuss the simulated MSE and bias
of the estimators. The simulated results are shown in
Tables 2, 3, 4 and 5. The performance of the estimators is
inspected by changing different factors such as the sample
size, multicollinearity level and the number of explanatory
variables. From Tables 2 and 3, it is clear that the MSE of
all the estimators decreases as the same size increases,
while the value of MSE is increased when the degree of
correlation is increased. However, the MLE has a larger
MSE than the PRRE, AUPRRE and MAUPRRE. Table 2
reveals that estimators behave differently with respect to
multicollinearity levels, and it is seen that the performance

of proposed I$q4 is better than the other estimators. The

performance of k;l — I€q3 is not superior to the k}o when
0 <0.95 and ¢ = 3. In the presence of high but imperfect

multicollinearity, the proposed ridge estimators k;l — I€q4

are superior to the MLE and kATO. From Table 3, when

%
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g =6 and p > 0.80, the MAUPRRE with the ridge esti-
mators kAql — l€q4 exhibit very good performances since it
has lowest MSE values. When the multicollinearity level
increases the MSE values of all the estimators increases.
But the severe multicollinearity level (p = 0.99) does not
show a substantial effect on the performance of

MAUPRRE with I$q4 as showing for other estimators. The
effect of increasing the number of explanatory variables for
a given p and n leads to an increase in the MSE. When
q = 6 and n = 25, the performance of MLE is very poor.

The performance of MAUPPRE (k;,4) is superior to the

MLE, AUPRRE and k70 (k7o suggested by Tiirkan and
Ozel 2016). The simulated absolute bias values of the
PPRE, AUPRRE and MAUPRRE are given in Table 4 and
5. l€q4 give minimum bias as compared to other estimators.
However, the performance of MAUPRRE is satisfactory in
the sense of having the smallest bias (almost unbiased)
when we use k.4 in MAUPRRE. As the sample size and the
number of explanatory variables increases the absolute bias
of the estimators is decreased. However, the multi-
collinearity level has a negative effect on the performance
of the estimators. Overall, as expected, we can see that the
estimated MSE and bias of the estimators increase due to
the increase in the multicollinearity level, but the effects of
multicollinearity are least problematic when using our new
MAUPPRE (ky4). The AUPPRE (K4) provides minimum
bias when sample size small and ¢ = 3. Asg =6, n — o0
and p — 0.99, the performance of MAUPPRE (lgq4) is
superior to other estimators in the sense of absolute bias.
Finally, when looking at the simulation results, the greatest
benefit of applying MAUPRRE is in the situation when

ridge estimator kAq4 is used.

7 Application: Swedish Football League
2019

For the purpose of illustrating the empirical relevance of
the proposed methods, we analyze Swedish football data.'
The proposed and existing estimation methods are expli-
cated using a dataset regarding the performance of Swedish
football teams in the top Swedish league (Allsvenskan)
during the year of 2019. This dataset includes n = 242
observations which include one dependent and six
explanatory variables. These variables are defined as:
number of, within full time, away-team goals (y), pinnacle
home win odds (x;), pinnacle draw odds (x;), pinnacle
away win odds (x3), maximum market home win odds (x4),

! The dataset is taken from Sweden football results. The homepage is
www.football-data.co.uk.

R
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Fig. 1 Distribution of number of away-team goals (within full time)

Table 6 Correlation Matrix

Variables x; X X3 X4 X5 Xg

X1 1.000

X 0.077  1.000

X3 — 0.563 0.708 1.000

X4 0.997 0.098 — 0.548 1.000

X5 0.034 0.988 0.755 0.054  1.000

X6 — 0.539 0.738 0990 —0.524 0.783 1.000

maximum market draw win odds (x;) and maximum
market away win odds (xg). The effects of the regressors
(x1 to x¢) on the dependent variable are analyzed using the
PRM. The distribution of the dependent variable is illus-
trated in Fig. 1 which indicates that the PRM is well fitted.
Based on a Chi-square (?) goodness of fit test, the results
confirm that the response variable is well suited to the PRM
(with a p value = 0.15). The correlation matrix of the
regressors is exhibited in Table 6. Table 6 shows severe
correlation among xj, x3, x4 and x¢. Furthermore, the
condition number, which is the ratio of maximum to the
minimum eigenvalues, is 1766 > 1000 which indicates
what can be defined as a severe multicollinearity problem
in this dataset.

We present the coefficients and the standard errors of the
estimators in Table 7. The MSE and bias values of the
estimators are illustrated in Fig. 2a—c. Theoretical MSE

values of the fyig. Berres Baurrre and Pyaverge are
calculated using Egs. (6), (11), (16) and (21), respectively.
Simulation results revealed that the performance of the
ridge estimator l€q4 is an efficient and l€q4 exhibited mini-
mum MSE compared to other estimators. Therefore, we

use kyq in the Pprre, Pauprre a0d Pyayuprre fOr estimation


http://www.football-data.co.uk
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Table 7 Estimated regression Estimators ~ N N

coefficients and standard errors Bure kro kqa

of the estimators P P P Pt Pt Pt

Brrre Bauprre Buavprre Brrre Bauprre Buauprre

Coefficient estimates
/§U 0.020 — 0.180 — 0.180 - 0.179 —0.178 — 0.180 —0.178
/§1 0.522 0.150 0.157 0.149 0.146 0.151 0.146
[}2 — 0.553 — 0.037 — 0.038 — 0.036 — 0.034 — 0.037 — 0.034
[}3 - 0.175 0.229 0.290 0.212 0.156 0.233 0.117
[}4 — 0.531 — 0.205 - 0.370 —0.072 — 0.084 —0.162 —0.013
[}5 0.899 0.088 0.162 0.026 0.035 0.069 0.004
[}6 — 0.539 0.079 0.149 0.017 0.031 0.060 0.002
Standard errors
se ( /§0> 0.067 0.024 0.024 0.024 0.024 0.024 0.024
se <51 ) 0.615 0.041 0.042 0.041 0.040 0.040 0.040
se (52> 0.495 0.067 0.069 0.067 0.063 0.069 0.063
se (&) 0.688 0.165 0.209 0.153 0.112 0.169 0.084
se < *4) 0.626 0.149 0.268 0.052 0.061 0.118 0.009
se (BS> 0.592 0.138 0.254 0.041 0.055 0.108 0.007
se <ﬁ6> 0.750 0.121 0.227 0.026 0.047 0.092 0.004

of the PRM. For comparison purposes, we also use kro
from Tiirkan and Ozel (2016). The effects of the estimated
coefficients are changed, and the estimated standard errors

of the ﬁMAUPRRE are smaller than those of f3 AUPRRE> ﬁPRRE,

ﬁMLE. It is evident from Table 7, based on high standard
errors, that the MLE does not estimate the coefficients very
precisely in the presence of multicollinearity. However, on
the other hand, the proposed estimation method
Priaupres (Kg4) estimates the coefficients rather precisely.
The PRRE provides smaller standard errors as compared to
the AUPRRE and MLE. The AUPRRE gives higher stan-
dard errors of the parameters since AUPRRE provides
minimum squared bias and MSE among other estimators
under certain conditions. AUPRRE shrinks the bias, and
therefore, we named it almost unbiased estimator due to its
minimized bias. One can easily see that in the presence of
multicollinearity MLE exhibits the wrong sign of the slope
parameters B3 and Ba- However, biased estimation methods
may change the sign of the slope parameters. For instance,
theoretically, pinnacle away win odds and maximum
market away win odds have negative effects on the number
of fulltime away-team goals, while the MLE shows a
negative effect. Meanwhile, proposed method shows pos-
itive effect and it is considered a good approach to tackle
the problem of multicollinearity. Hence, the advantage of

the proposed method over MLE using this empirical
application is easily understood.

We also plot the squared bias and MSE values using
Egs. (11), (16) and (21) against assuming different values
of k to show the performance of estimators under different
conditions. In Fig. 2a, we plot the squared bias values of
the PRRE and AUPRRE for changing the values of the
ridge parameter k between 0 and 1. It is seen that AUPRRE
has always the minimum bias compared to the PRRE, and
these results satisfy Theorem 3.1.1 when the values of
k> 0. The estimated MSE values of the PRRE and
AUPRRE are shown in Fig. 2b. The AUPRRE should have
less MSE than the PRRE when k > 8.748 and these find-
ings satisfy Theorem 3.1.2. However, we also plot the MSE
values of the MLE, PRRE, AUPRRE and MAUPRRE to
exemplify Theorems 3.2.1-3.2.3 in Fig. 2c. It is found that
the MSE of the biased estimators equals to MLE when
k = 0. As the value of k increases, the MSE of MAUPRRE
demonstrate the minimum MSE compared to the
AUPRRE, PRRE and MLE. Therefore, we can conclude
that the performance of the PRRE, AUPRRE and
MAUPRRE is a function of the values of the ridge esti-
mators. Overall, we recommend practitioners to apply
MAUPRRE with ridge estimator kAq4 since this estimator
gives lowest standard errors and MSE in the presence of
multicollinearity.
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Fig. 2 a Squared bias values of PRRE and AUPRRE versus k; b MSE values of MLE and AUPRRE versus k; ¢ MSE values of MLE, PRRE,

AUPRRE and MAUPRRE versus k

8 Conclusions

In this paper, we derive the MSE properties of the
AUPRRE and MAUPRRE to show the superiority over the
existing estimators in the presence of multicollinearity. We
also derive the optimal ridge parameter, k by minimizing
the MSE of AUPRRE and suggest new ridge estimators.
These estimators are based on the proposed optimal value
of k for estimating of the ridge parameter, k, which we
demonstrate to exhibit superiority over the existing esti-
mators. The comparison of the proposed estimators is made
using the AUPRRE, PRRE and MLE by means of Monte
Carlo simulations. The comparison concludes that
MAUPRRE with the ridge estimator l€q4 has a smaller MSE
than MLE, PRRE and AUPRRE. Moreover, the empirical
relevance and appealing properties of the proposed esti-
mator are also demonstrated by utilizing our approach on a
collinear real-world application. In conclusion, both
empirically and by using simulations, in the presence of
multicollinearity our MAUPRRE (kAq4) approach exhibits
the lowest MSE compared to all competing estimators.
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