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Abstract
Månsson and Shukur (Econ Model 28:1475–1481, 2011) proposed a Poisson ridge regression estimator (PRRE) to reduce

the negative effects of multicollinearity. However, a weakness of the PRRE is its relatively large bias. Therefore, as a

remedy, Türkan and Özel (J Appl Stat 43:1892–1905, 2016) examined the performance of almost unbiased ridge estimators

for the Poisson regression model. These estimators will not only reduce the consequences of multicollinearity but also

decrease the bias of PRRE and thus perform more efficiently. The aim of this paper is twofold. Firstly, to derive the mean

square error properties of the Modified Almost Unbiased PRRE (MAUPRRE) and Almost Unbiased PRRE (AUPRRE) and

then propose new ridge estimators for MAUPRRE and AUPRRE. Secondly, to compare the performance of the

MAUPRRE with the AUPRRE, PRRE and maximum likelihood estimator. Using both simulation study and real-world

dataset from the Swedish football league, it is evidenced that one of the proposed, MAUPRRE (k̂q4) performed better than

the rest in the presence of high to strong (0.80–0.99) multicollinearity situation.

Keywords Maximum likelihood estimator � Multicollinearity � Poisson ridge regression � Modified almost unbiased ridge

estimators � Mean square error

1 Introduction

The Poisson regression model (PRM) is a special form of

the generalized linear models and is used when the

dependent variable is collected in terms of counts of

nonnegative integers. A PRM adopts a Poisson distribu-

tion for the dependent variable and assumes the log of its

expected value can be modeled by a linear combination of

relevant parameters. The model is commonly applied for

counts such as the occurrence rate of an event (counts)

per unit of time. These counts must be independent to

facilitate that one count will not make another event to be

more or less likely. Instead, the probability of a count per

unit of time is related to independent variables such as,

e.g., the time of day. Examples of likely Poisson pro-

cesses could be the number of infected patients per day at

a clinic, a country’s number of bankruptcies per year, the

number of vehicles per hour passing through a freeway

toll. The maximum likelihood estimator (MLE) is used to

estimate the unknown regression coefficients of the PRM.

This estimator is considered to be the best estimator for

the PRM, and as long as under- or overdispersion is not

present in the data set, this is a standard model for these

types of count problems. However, in the presence of
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multicollinearity problems, the mean square error (MSE)

of the MLE become unstable with high variances of the

regression coefficients and the inference based on MLE

may not be reliable. Another consequence of multi-

collinearity is the wider confidence intervals, decreased

statistical power which result in increased probabilities of

type II errors in the parameters’ hypothesis tests. In

addition, the uncertainty of the estimated coefficients is

higher because of an increased coefficient variance due to

multicollinearity.

Many biased estimation techniques have been proposed

for linear regression models to reduce multicollinearity,

such as the ridge regression estimator by Hoerl and Ken-

nard (1970) and the Liu estimator by Liu (1993). More-

over, Nomura (1988) developed an almost unbiased ridge

estimator in the linear regression model, thus with the cost

of a very low bias, but substantially more efficient as

compared to the ordinary ridge regression under certain

conditions. Månsson and Shukur (2011) proposed a Pois-

son ridge regression estimator (PRRE) to reduce the effects

of problems associated with multicollinear data. Kibria

et al. (2015) proposed a number of biasing parameters, and

Asar and Genç (2018) suggested a two-parameter biased

estimator in the PRM to adjust for multicollinearity. Tür-

kan and Özel (2016) developed Almost Unbiased PRRE

(AUPRRE) and Modified AUPPRE (MAUPRRE).

Kaçıranlar and Dawoud (2018) examined the performance

of Poisson and negative binomial ridge predictors. Algamal

and Alanaz (2018) proposed different methods to estimate

the value of ridge parameter (k) for PRRE. Rashad and

Algamal (2019) proposed a new ridge regression approach

in the PRM to reduce the issue of collinearity between

explanatory variables, and recently Qasim et al. (2019)

proposed a Liu-type of regression estimator for the PRM.

Türkan and Özel (2016) did not discuss the MSE properties

of AUPRRE and MAUPRRE and not derive the optimal

value of the ridge parameter (k). However, no published

research work seems available regarding the MSE prop-

erties of the AUPRRE and MAUPRRE and their optimal

ridge estimators for the PRM.

The main contribution of this paper is twofold. One is to

derive the MSE properties of the MAUPRRE and

AUPRRE. Second is, by simulations and by the empirical

application in terms of MSE and bias, to compare the

performance of the MAUPRRE with the AUPRRE, PRRE

and MLE. In addition, we introduce new estimating

methods for estimate the value of ridge parameter (k) for

AUPRRE and MAUPRRE and the performance of pro-

posed ridge estimators is compared with the existing esti-

mators by considering different factors in the simulation

study. Furthermore, the intuitive, and empirical relevance

of the MAUPRRE and AUPRRE are exhibited by

employing an estimation of a real-world dataset, where we

systematically investigate which estimator that to the

highest degree can remedy the effects of multicollinearity.

In this empirical application, we model the number of goals

scored at away games (as a function of the quality of the

teams measured by bookmaker odds). By this approach, it

is easily demonstrated that the standard errors and the

estimated MSEs of proposed estimators are decreased

substantially as compared to the existing estimators in the

presence of multicollinearity problem. Hence, the precision

of the estimated parameters is increased, which of course is

one of the main objectives of demonstrating the method in

an empirical situation.

The rest of the article is organized as follows: in

Sect. 2, we define the model of interest and MLE,

PRRE, AUPRRE and MAUPRRE. The MSE properties

are derived in Sect. 3. In Sect. 4, the optimal value of

the ridge parameter is derived, and we propose new

ridge estimators for estimating the value of ridge

parameter, k for AUPRRE and MAUPPRE. Monte Carlo

simulation and its results are presented in Sect. 5. In

Sect. 6, the advantages of our proposed ridge estimators

are illustrated by using our estimators to analyze an

empirical dataset based on the Swedish football league.

Finally, the concluding remarks of article are discussed

in Sect. 7.

2 Methodology

This section illustrates the model of interest and charac-

teristic of different estimators.

2.1 The Poisson Regression Model

The PRM is applicable only when the dependent variable

deals with count data. Suppose yi is the dependent variable

and follows a Poisson distribution with parameter ðliÞ and
it can be denoted as P lið Þ with probability mass function

f yið Þ ¼ elilyii
yi!

; yi ¼ 0; 1; 2; . . . i ¼ 1; 2; . . .; n: ð1Þ

The PRM is commonly developed by using the canon-

ical link function, such that li ¼ exp xtib
� �

, where xi is the

ith row of X which is an n� qð Þ data matrix with q non-

stochastic explanatory variables, b is a q� 1 vector of the

unknown regression coefficients. The log-likelihood func-

tion is defined as
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l ¼ l l; yð Þ ¼
Xn

i¼1

yi ln lið Þ � li � ln
Yn

i¼1

yi!

 !( )

¼
Xn

i¼1

yi x
t
ib

� �
� exp xtib

� �
� ln

Yn

i¼1

yi!

 !( )

:

ð2Þ

The traditional MLE is used to estimate the unknown

regression coefficients for the PRM. The MLE is obtained

by taking the first order derivative of Eq. (2) with respect

to b:

S bð Þ ¼ ol

ob
¼
Xn

i¼1

yi � exp xtib
� �� �

xi ¼ 0; ð3Þ

where S bð Þ is the score function, since Eq. (3) is nonlinear
in b, we estimate the unknown coefficients through itera-

tive weighted least squares. Let b mð Þ be the estimated value

of MLE of b with m iterations which may be written as

b mþ1ð Þ ¼ b mð Þ þ I b mð Þ
� �n o�1

S b mð Þ
� �

; ð4Þ

where I b mð Þ
� �

¼ �E o2L
obobt

� �n o
is a q� q Fisher infor-

mation matrix and both S b mð Þ
� �

and I b mð Þ
� �

are evaluated

at b mð Þ. At convergence in deviance of Eq. (4), the MLE is

found by applying the following iterative weighted least

squares method

b̂MLE ¼ XtŴX
� ��1

XtŴz�; ð5Þ

where Ŵ ¼ diag l̂1; l̂2; . . .; l̂nf g; z� ¼ log l̂ið Þþ yi�l̂i
l̂i

, is

the adjusted response variable. Both Ŵ and z� are evalu-

ated by Fisher’s scoring iterative procedure (see, e.g.,

Hardin et al. 2007).

In order to obtain the MSEs of the parameters, we

consider

K ¼ diag k1; k2; . . .; kq
� �

¼ Qt XtŴX
� �

Q ¼ ZtŴZ, where

Z ¼ XQ; Q is the orthogonal matrix whose columns are

the eigenvectors of XtŴX and k1 � k2 � ; . . .; � kq [ 0 are

the eigenvalues of the matrix XtŴX, respectively. The

b̂MLE can be written as

~cMLE ¼ Kð Þ�1ZtŴz�;

~bMLE ¼ Q~cMLE:

The covariance matrix of the ~bMLE is defined as

Cov ~bMLE

� �
¼ Kð Þ�1: ð6Þ

In addition, the scalar MSE of the ~bMLE is defined as

MSE ~bMLE

� �
¼ E ~bMLE � b

� �t
~bMLE � b
� �

¼ tr K�1
� �

¼
Xq

j¼1

1

kj
;

ð7Þ

where kj is the jth eigenvalue of the ZtŴZ matrix.

2.2 The Poisson Ridge Regression Estimator

It can be easily seen that the MSE of the MLE becomes

overstated when the explanatory variables are linearly

correlated because some of the eigenvalues will be small

and ZtŴZ is ill-conditioned. To reduce the effects of

multicollinearity, Månsson and Shukur (2011) proposed a

PRRE estimator which can be defined as

b̂PRRE ¼ XtŴX þ kIq
� ��1

XtŴXb̂MLE

The b̂PRRE can be written as

~bPRRE ¼ KkIq

� ��1ZtŴz�; ð8Þ

where KkIq ¼ diag k1 þ kIq; k2 þ kIq; . . .; kq þ kIq
� �

and k

(k[ 0) is the ridge parameter. The bias, covariance matrix

and MSE of the ~bPRRE are, respectively, defined as

Bias ~bPRRE
� �

¼ E ~bPRRE
� �

� b

Bias ~bPRRE
� �

¼ �kK�1
kIq
b; ð9Þ

Cov ~bPRRE
� �

¼ K�1
kIq
KK�1

kIq
; ð10Þ

MSE ~bPRRE
� �

¼ K�1
kIq
KK�1

kIq
þ k2K�1

kIq
bbtK�1

kIq
; ð11Þ

where KkIq ¼ diag k1 þ kIq; k2 þ kIq; . . .; kq þ kIq
� �

and

K ¼ diag k1; k2; . . .; kq
� �

¼ ZtŴZ, where Q is the

orthogonal matrix whose columns are the eigenvectors of

ZtŴZ. The scalar MSE of the PRRE is obtained by

applying the tr(.) operator on Eq. (11), which can be

defined as

MSE ~bPRRE
� �

¼
Xq

j¼1

kj

kj þ k
� �2

 !

þ
Xq

j¼1

k2a2i
kj þ k
� �2

 !

¼
Xq

j¼1

kj þ k2a2i
kj þ k
� �2

 !

;

ð12Þ

where a ¼ � tb̂MLE, c is the eigenvector of the matrix

ZtŴZ and k is the ridge parameter of the PRRE.
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2.3 Almost Unbiased Poisson Ridge Regression
Estimator

The PRRE overcome the problem of multicollinearity, but

this estimator has a large bias. Therefore, Türkan and Özel

(2016) proposed AUPRRE. This estimator cannot only

remedy the problem of multicollinearity but also reduce the

bias as compared to PRRE and MLE. Before explaining the

full AUPRRE, we first define the almost unbiased ridge

estimator in Definition 2.3.1:

Definition 2.3.1 Xu and Yang (2011), Consider b̂ is a

biased estimator of the parameter b and the bias vector b̂ is

given by Bias b̂
� �

¼ E b̂
� �

� b ¼ Mb, which shows that

E b̂�Mb
� �

¼ b, then the estimator ~b ¼ b̂�Mb ¼

I �Mð Þb̂ is called the almost unbiased estimator based on

the biased estimator b̂.

Below, we define the AUPRRE based on the PRRE.

According to Definition 2.3.1, we define the following

AUPRRE based on Bias b̂PRRE
� �

¼

XtŴX þ kIq
� ��1

XtŴXb̂MLE � b:

b̂AUPRRE ¼ I � XtŴX þ kIq
� ��1

XtŴX � I
n oh i

b̂PRRE

¼ 2I � XtŴX þ kIq
� ��1

XtŴX
h i

b̂PRRE

¼ I þ XtŴX þ kIq
� ��1

XtŴX
h i

XtŴX þ kIq
� ��1

XtŴXb̂MLE

¼ I þ k XtŴX þ kIq
� ��1

h i
I � k XtŴX þ kIq

� ��1
h i

b̂MLE

¼ I � k XtŴX þ kIq
� ��1

n o2
� 	

b̂MLE:

The above expression can be defined as

~bAUPRRE ¼ I � k KkIq

� ��1
n o2

� 	
~cMLE: ð13Þ

The bias, covariance matrix and MSE of the ~bAUPRRE are

defined, respectively, as following:

Bias ~bAUPRRE
� �

¼ E ~bAUPRRE
� �

� b

Bias ~bAUPRRE
� �

¼ �k2K�2
kIq
b; ð14Þ

Cov ~bAUPRRE
� �

¼ Iq � k2K�2
kIq

� �
K�1 Iq � k2K�2

kIq

� �
: ð15Þ

MSE ~bAUPRRE
� �

¼ Iq � k2K�2
kIq

� �
K�1 Iq � k2K�2

kIq

� �

þ k4K�2
kIq
bbtK�2

kIq
: ð16Þ

The scalar MSE of the AUPRRE is obtained by applying

the tr(.) operator on Eq. (16), which can be stated as

MSE ~bAUPRRE
� �

¼
Xq

j¼1

1

kj
1� k2

kj þ k
� �2

 !2

þ
Xq

j¼1

k4a2i
kj þ k
� �4

 !

:

ð17Þ

2.4 Modified Almost Unbiased Poisson Ridge
Regression Estimator

Türkan and Özel (2016) proposed a modified Jackknifed

ridge estimator or MAUPRRE for the PRM by following

the work of Singh et al. (1986). The MAUPRRE is defined

as

b̂MAUPRRE ¼ Iq � k XtŴX þ kIq
� ��1

n o2
� 	

Iq � k XtŴX þ kIq
� ��1

n oh i
b̂MLE:

The b̂MAUPRRE can be written as

~bMAUPRRE ¼ Iq � k KkIq

� ��1
n o2

� 	
Iq � k KkIq

� ��1
n oh i

~cMLE

ð18Þ

The bias, variance, MMSE and scalar MSE of the
~bMAUPRRE are defined as

Bias ~bMAUPRRE

� �
¼ E b̂MAUPRRE

� �
� b

Bias ~bMAUPRRE

� �
¼ kK�2

kIq
Iq þ kK�1

kIq
� k2K�2

kIq

� �
b; ð19Þ

Cov ~bMAUPRRE

� �
¼ Iq � k2K�2

kIq

� �
Iq � kK�1

kIq

� �

K�1 Iq � kK�1
kIq

� �
Iq � k2K�2

kIq

� �
:

ð20Þ

MSE ~bMAUPRRE

� �
¼ Cov ~bMAUPRRE

� �

þ Bias ~bMAUPRRE

� �
Bias ~bMAUPRRE

� �t
:

ð21Þ

The scalar MSE of the MAUPRRE is obtained by

applying the tr(.) operator on Eq. (21), which can be stated

as

MSE ~bMAUPRRE

� �
¼
Xq

j¼1

1

kj
1� k2

kj þ k
� �2

 !2
kj

kj þ k
� �2

 !2
8
<

:

9
=

;

þ
Xq

j¼1

k2a2i
kj þ k
� �2

 !

1þ k

kj þ k
� �2 �

k2

kj þ k
� �2

 !

ð22Þ
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3 Mean Square Error Properties
of the Estimators

In this section, we derive the MSE properties of the

AUPRRE and MAUPRRE for the PRM. We also make a

comparison of the AUPRRE and MAUPRRE with the

existing estimators such as MLE and PRRE. We show the

superiority of the AUPRRE and MAUPRRE under differ-

ent conditions. The performance of ~bMLE,
~bPRRE, ~bAUPRRE

and ~bMAUPRRE is theoretically judged by using MSE and the

bias criteria. Therefore, we define Lemma 3.1 for com-

parison purpose.

Lemma 3.1 (Farebrother 1976) Let M M[ 0ð Þ be a

positive definite matrix, H be a vector of nonzero constants

and c is a positive constant, then cM � aat � 0 if and only

if atM�1a� c.

3.1 Comparison of ~bAUPRRE with ~bPRRE and ~bMLE

Theorem 3.1.1 In the PRM, we have

Bias ~bAUPRRE
� �2

\Bias ~bPRRE
� �2

for k[ 0.

Proof By using Eqs. (9) and (14), we have

D1 ¼ Bias ~bPRRE
� �2

�Bias ~bAUPRRE
� �2

¼ k2K�1
kIq
bbtK�1

kIq
� k4K�2

kIq
bbtK�2

kIq
¼ bFbtð Þ;

where

F ¼ k2K�2
kIq

� k4K�4
kIq

¼ diag
k2 kj þ 2k
� �

kj

kj þ k
� �4

( )q

j¼1

[ 0;

thus for k[ 0; the proof is completed.

Theorem 3.1.2 If k[ 3� kja2jþ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ kja2j
� �2

þ4kja2j

r

Þ=4a2j for j ¼ 1; 2; . . .; q;, then the

~bAUPRRE is superior to the ~bPRRE for the PRM in terms of

the scalar MSE.

Proof From Eqs. (12) and (17), we have

D2 ¼ MSE ~bPRRE
� �

�MSE ~bAUPRRE
� �

¼
Xq

j¼1

kj þ k2a2j

kj þ k
� �2

 !

�
Xq

j¼1

1

kj
1� k2

kj þ k
� �2

 !2

�
Xq

j¼1

k4a2j

kj þ k
� �4

 !

:

¼
Xq

j¼1

kj 2 kaj
� �2þkkja2j � 3k � 2kj

n o
k

kj þ k
� �4

2

4

3

5:

Since D2 is positive definite for k[ 0 if and only if

when 2 kaið Þ2þkkja2i � 3k � 2kj
n o

[ 0 and this expression

is a quadratic function of k which has following roots

k ¼ 3� kja
2
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ kja2j
� �2

þ4kja2j

r !,

4a2j

It is noted that the root

3� kja
2
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ kja2j
� �2

þ4kja2j

r !,

4a2j

is negative. Thus, if k[ 0, then

k[ 3� kja
2
j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ kja2j
� �2

þ4kja2j

r !,

4a2j

. Thus, the AUPRRE is superior to the PRRE in sense of

scalar MSE for the PRM.

Theorem 3.1.3 The ~bAUPRRE is superior to the ~bMLE in

PRM for

k\ 2kj þ kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ kja2j
� �r� �


kja
2
j � 1

when kja2j � 1[ 0 and for k[ 0 when kja2j � 1� 0 for

j ¼ 1; 2; . . .; q:

Proof From Eqs. (7) and (17), we have

D3 ¼MSE ~bMLE

� �
�MSE ~bAUPRRE

� �

¼
Xq

j¼1

1

kj

� �
�
Xq

j¼1

1

kj
1� k2

kj þ k
� �2

 !2

�
Xq

j¼1

k4a2j

kj þ k
� �4

 !

:

¼
Xq

j¼1

k2
1� kja2j

� �
k2 þ 4kjk þ 2k2j

kj kj þ k
� �4

2

4

3

5:

Since D3 is positive definite if and only if

1� kja2j

� �
k2 þ 4kjk þ 2k2j

n o
[ 0 and this expression is a

quadratic function of k. (i) If 1[ kja2j for j ¼ 1; 2; . . .; q;,

then 1� kja2j

� �
k2 þ 4kjk þ 2k2j

n o
[ 0. (ii) 1\kja2j for

j ¼ 1; 2; . . .; q; then, we have

k\ 2kj þ kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ kja2j
� �r� �


kja
2
j � 1

and 1� kja2j

� �
k2 þ 4kjk þ 2k2j

n o
[ 0 by using the

method in Theorem 2. Thus, the AUPRRE is superior to

the MLE in sense of scalar MSE for the PRM and the proof

is completed.
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3.2 Comparison of ~bMAUPRRE with ~bAUPRRE, ~bPRRE
and ~bMLE

Theorem 3.2.1 Under the PRM, let k[ 0 and

b ¼ Bias ~bMAUPRRE

� �
. Then, MSE ~bMLE

� �
�

MSE ~bMAUPRRE

� �
[ 0 if bt K�1 � f

� ��1
b� 1, where f ¼

Iq � k2K�2
kIq

� �
Iq � kK�1

kIq

� �
K�1 Iq � kK�1

kIq

� �
Iq � k2K�2

kIq

� �
:

Proof From Eqs. (6) and (21), the difference between

MSE ~bMLE

� �
and MSE ~bMAUPRRE

� �
is obtained by

D4 ¼MSE ~bMLE

� �
�MSE ~bMAUPRRE

� �

¼ K�1
� �

� Iq � k2K�2
kIq

� �
Iq � kK�1

kIq

� �nh

K�1 Iq � kK�1
kIq

� �
Iq � k2K�2

kIq

� �oi

�bbt ¼ diag
1

kj
�
kj kj þ k
� �2�k2
� �2

kj þ k
� �6

8
><

>:

9
>=

>;

qþ1

j¼1

�bbt

The matrix K�1 � Iq � k2K�2
kIq

� �
Iq � k
�n

K�1
kIq
ÞK�1

Iq � kK�1
kIq

� �
Iq � k2K�2

kIq

� �
g is p.d. if kj þ k

� �6

� kj þ k
� �2�k2
� �2

[ 0 where j ¼ 1; 2; . . .; qþ 1. Thus, by

Lemma 3.1., the proof is completed.

Theorem 3.2.2 Under the PRM, let k[ 0 and

bPRRE ¼ Bias ~bPRRE
� �

. Then, MSE ~bPRRE
� �

�MSE

~bMAUPRRE

� �
[ 0 if bt K�1

kIq
KK�1

kIq
� f

h i�1

b� 1.

Proof From Eqs. (11) and (21), the difference between

MSE ~bPRRE
� �

and MSE ~bMAUPRRE

� �
is obtained by

D5 ¼ MSE ~bPRRE
� �

�MSE ~bMAUPRRE

� �

¼ K�1
kIq
KK�1

kIq

n o
� Iq � k2K�2

kIq

� �
Iq � kK�1

kIq

� �nh

K�1 Iq � kK�1
kIq

� �
Iq � k2K�2

kIq

� �oi
þ bPRREb

t
PRRE � bbt:

¼ diag
kj

kj þ k
� �2 �

kj kj þ k
� �2�k2
� �2

kj þ k
� �6

8
><

>:

9
>=

>;

qþ1

j¼1

þbPRREb
t
PRRE � bbt:

Since bPRREb
t
PRRE is a nonnegative definite matrix, it is

abundant to prove that w ¼ K�1
kIq
KK�1

kIq
� f� bbt is p.d.

The matrix w is p.d. if kjk2 k2 þ 4kjk þ 2k2j

� �2
[ 0, where

j ¼ 1; 2; . . .; qþ 1. Thus, by Lemma 3.1. The proof is

completed.

Theorem 3.2.3 Under the PRM, let k[ 0 and bAUPRRE ¼

Bias ~bAUPRRE
� �

MSE ~bAUPRRE
� �

�MSE ~bMAUPRRE

� �
[ 0

if and only if bt Iq � k2K�2
kIq

� �h
K�1 Iq � k2K�2

kIq

� �

�f	�1b� 1.

Proof From Eqs. (11) and (21), the difference between

MSE ~bPRRE
� �

and MSE ~bMAUPRRE

� �
is obtained by

D6 ¼ MSE ~bAUPRRE
� �

�MSE ~bMAUPRRE

� �

¼ Iq � k2K�2
kIq

� �
K�1 Iq � k2K�2

kIq

� �n oh

� Iq � k2K�2
kIq

� �
Iq � kK�1

kIq

� �
K�1 Iq � kK�1

kIq

� �
Iq � k2K�2

kIq

� �n oi

þ bAUPRREb
t
AUPRRE � bbt:

¼ diag
1

kj
1� k2

kj þ k
� �2

 !2

�
kj kj þ k
� �2�k2
� �2

kj þ k
� �6

8
><

>:

9
>=

>;

qþ1

j¼1

þ bAUPRREb
t
AUPRRE � bbt:

Since bAUPRREb
t
AUPRRE is a nonnegative definite matrix,

it is abundant to prove that Iq � k2K�2
kIq

� �

K�1 Iq � k2K�2
kIq

� �
� f� bbt is p.d. Iq � k2K�2

kIq

� �h

K�1 Iq � k2K�2
kIq

� �
� f	 is p.d. if kj 2k þ kj

� �2
k2 þ 2kjkþ
�

k2j � kjÞ[ 0. Simplifying the last inequality, one can gets

k þ kj
� �2�kj [ 0, where j ¼ 1; 2; . . .; qþ 1. Thus, if

k[ 0, then by Lemma 3.1., the proof is done.

4 Proposed Ridge Estimators

It is a complicated challenge for practitioners to select an

optimal value of k. Therefore, we propose new ridge esti-

mators k̂q1 � k̂q4
� �

for the AUPRRE and MAUPRRE. We

also used k̂TO ridge estimator that suggested by Türkan and

Özel (2016) for the PRM. Moreover, the performance of

k̂q1 � k̂q4 is compared with the k̂TO in sense of MSE in the

simulation and the empirical application sections. In order

to obtain an optimal value of the AUPRRE, differentiating

the MSE b̂AUPRRE
� �

with respect to k yields Eq. (18):

o

ok
MSEAUGRREð Þ ¼ �4kjkðkj þ 2kÞ

kj þ k
� �5 þ

4k3kja2j

kj þ k
� �5

¼
4kjk a2j k

2 � 2k � kj
� �

kj þ k
� �5 :

ð18Þ
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Let

o MSE b̂AUPRRE
� �n o.

ok ¼ 0

and resulting function solve for k, then we have following

optimal value of k

kj ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2j kj
� �r� �

a2j
: ð19Þ

Türkan and Özel (2016) concluded that the kTO perform

rather well and this estimator is defined as

k̂TO ¼ median
r̂2

â2j

 !

;

where â2j is the jth j ¼ 1; 2; . . .; qð Þ element of � tb̂MLE, � is

the eigenvector of matrix XtŴX and

r̂2 ¼
Xn

i¼1
yi � l̂ið Þ2

.
n� qþ 1ð Þ

. Following ridge estimators are proposed for AUPPRE and

MAUPRRE based on the optimal value which derived in

Eq. (19).

k̂q1 ¼ mean

r̂2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 þ a2j kj
� �r� �

a2j

2

664

3

775: k̂q2 ¼ median

r̂2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 þ a2j kj
� �r� �

a2j

2

664

3

775:

k̂q3 ¼ max

r̂2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 þ a2j kj
� �r� �

a2j

2

664

3

775: k̂q4 ¼
Qqþ1

j¼1

r̂2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 þ a2j kj
� �r� �

a2j

0

BB@

1

CCA

2

664

3

775

1
qþ1

:

5 The Monte Carlo Simulations

The Monte Carlo simulation study is designed to demon-

strate the performance of the estimators. The performance

of the proposed estimators is compared with the existing

estimators in the sense of MSE and bias under different

conditions which are given in Table 1. The dependent

variable of the PRM is obtained from the P lið Þ distribution,
where

li ¼ exp bo þ b1xi1 þ . . .þ bqxiq
� �

i ¼ 1; 2; . . .; n; ð20Þ

We selected the parametric values of b under the

assumption that
Pq

j¼1 b
2
j ¼ 1, which are standard restric-

tions in simulation studies. The correlated explanatory

variables are generated as

xij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2ð Þ

p
zij þ qziqþ1 i ¼ 1; 2; . . .; n;

j ¼ 1; 2; . . .; q
ð21Þ

where q2 is the correlation between the explanatory vari-

ables and zij represents the independent standard normal

pseudo-random numbers. Other factors are also varied in

the simulation study such as explanatory variables

q ¼ 3; 6ð Þ, multicollinearity levels (q ¼ 0:80; 0:90;

0:95; 0:99) and different sample size. However, the sample

sizes need to be increased with the increase in number of

explanatory variables to attain the convergence of the

iterative weighted least squares algorithm. In order to

evaluate the performance of the proposed estimators, the

MSE and absolute bias are considered as performance

criteria. The MSE and absolute bias are defined as

MSE b̂
� �

¼
PR

r¼1 b̂ rð Þ � b
� �t

b̂ rð Þ � b
� �

R
;

Bias b̂
� �

¼
PR

r¼1 b̂ rð Þ � b
���

���

R

where R = 5000 is the total number replications and b̂r is
the estimate of b in the rth replication obtained from the

MLE, PRRE, AUPRRE and MAUPRRE.

6 Results and Discussion

In this subsection, we discuss the simulated MSE and bias

of the estimators. The simulated results are shown in

Tables 2, 3, 4 and 5. The performance of the estimators is

inspected by changing different factors such as the sample

size, multicollinearity level and the number of explanatory

variables. From Tables 2 and 3, it is clear that the MSE of

all the estimators decreases as the same size increases,

while the value of MSE is increased when the degree of

correlation is increased. However, the MLE has a larger

MSE than the PRRE, AUPRRE and MAUPRRE. Table 2

reveals that estimators behave differently with respect to

multicollinearity levels, and it is seen that the performance

of proposed k̂q4 is better than the other estimators. The

performance of k̂q1 � k̂q3 is not superior to the k̂TO when

q� 0:95 and q ¼ 3. In the presence of high but imperfect

multicollinearity, the proposed ridge estimators k̂q1 � k̂q4

are superior to the MLE and k̂TO. From Table 3, when

Table 1 The design of the experiment

Name of factors Notations Values

Multicollinearity levels q 0.80, 0.90, 0.95, 0.99

Number of explanatory variables q 3, 6

Sample sizes n 25, 50, 100, 200, 400

Replications R 5000
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q ¼ 6 and q[ 0:80, the MAUPRRE with the ridge esti-

mators k̂q1 � k̂q4 exhibit very good performances since it

has lowest MSE values. When the multicollinearity level

increases the MSE values of all the estimators increases.

But the severe multicollinearity level q ¼ 0:99ð Þ does not
show a substantial effect on the performance of

MAUPRRE with k̂q4 as showing for other estimators. The

effect of increasing the number of explanatory variables for

a given q and n leads to an increase in the MSE. When

q ¼ 6 and n ¼ 25, the performance of MLE is very poor.

The performance of MAUPPRE k̂q4
� �

is superior to the

MLE, AUPRRE and k̂TO (k̂TO suggested by Türkan and

Özel 2016). The simulated absolute bias values of the

PPRE, AUPRRE and MAUPRRE are given in Table 4 and

5. k̂q4 give minimum bias as compared to other estimators.

However, the performance of MAUPRRE is satisfactory in

the sense of having the smallest bias (almost unbiased)

when we use k̂q4 in MAUPRRE. As the sample size and the

number of explanatory variables increases the absolute bias

of the estimators is decreased. However, the multi-

collinearity level has a negative effect on the performance

of the estimators. Overall, as expected, we can see that the

estimated MSE and bias of the estimators increase due to

the increase in the multicollinearity level, but the effects of

multicollinearity are least problematic when using our new

MAUPPRE k̂q4
� �

. The AUPPRE k̂q4
� �

provides minimum

bias when sample size small and q ¼ 3. As q ¼ 6, n ! 1
and q ! 0:99, the performance of MAUPPRE k̂q4

� �
is

superior to other estimators in the sense of absolute bias.

Finally, when looking at the simulation results, the greatest

benefit of applying MAUPRRE is in the situation when

ridge estimator k̂q4 is used.

7 Application: Swedish Football League
2019

For the purpose of illustrating the empirical relevance of

the proposed methods, we analyze Swedish football data.1

The proposed and existing estimation methods are expli-

cated using a dataset regarding the performance of Swedish

football teams in the top Swedish league (Allsvenskan)

during the year of 2019. This dataset includes n ¼ 242

observations which include one dependent and six

explanatory variables. These variables are defined as:

number of, within full time, away-team goals (y), pinnacle

home win odds x1ð Þ, pinnacle draw odds x2ð Þ, pinnacle
away win odds x3ð Þ, maximum market home win odds x4ð Þ,

maximum market draw win odds x4ð Þ and maximum

market away win odds x6ð Þ. The effects of the regressors

x1 to x6ð Þ on the dependent variable are analyzed using the

PRM. The distribution of the dependent variable is illus-

trated in Fig. 1 which indicates that the PRM is well fitted.

Based on a Chi-square v2ð Þ goodness of fit test, the results

confirm that the response variable is well suited to the PRM

(with a p value = 0.15). The correlation matrix of the

regressors is exhibited in Table 6. Table 6 shows severe

correlation among x1, x3, x4 and x6. Furthermore, the

condition number, which is the ratio of maximum to the

minimum eigenvalues, is 1766[ 1000 which indicates

what can be defined as a severe multicollinearity problem

in this dataset.

We present the coefficients and the standard errors of the

estimators in Table 7. The MSE and bias values of the

estimators are illustrated in Fig. 2a–c. Theoretical MSE

values of the ~bMLE,
~bPRRE, ~bAUPRRE and ~bMAUPRRE are

calculated using Eqs. (6), (11), (16) and (21), respectively.

Simulation results revealed that the performance of the

ridge estimator k̂q4 is an efficient and k̂q4 exhibited mini-

mum MSE compared to other estimators. Therefore, we

use k̂q4 in the ~bPRRE, ~bAUPRRE and ~bMAUPRRE for estimation

Fig. 1 Distribution of number of away-team goals (within full time)

Table 6 Correlation Matrix

Variables x1 x2 x3 x4 x5 x6

x1 1.000

x2 0.077 1.000

x3 - 0.563 0.708 1.000

x4 0.997 0.098 - 0.548 1.000

x5 0.034 0.988 0.755 0.054 1.000

x6 - 0.539 0.738 0.990 - 0.524 0.783 1.000

1 The dataset is taken from Sweden football results. The homepage is

www.football-data.co.uk.
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of the PRM. For comparison purposes, we also use k̂TO
from Türkan and Özel (2016). The effects of the estimated

coefficients are changed, and the estimated standard errors

of the ~bMAUPRRE are smaller than those of ~bAUPRRE, ~bPRRE,
~bMLE. It is evident from Table 7, based on high standard

errors, that the MLE does not estimate the coefficients very

precisely in the presence of multicollinearity. However, on

the other hand, the proposed estimation method
~bMAUPRRE k̂q4

� �
estimates the coefficients rather precisely.

The PRRE provides smaller standard errors as compared to

the AUPRRE and MLE. The AUPRRE gives higher stan-

dard errors of the parameters since AUPRRE provides

minimum squared bias and MSE among other estimators

under certain conditions. AUPRRE shrinks the bias, and

therefore, we named it almost unbiased estimator due to its

minimized bias. One can easily see that in the presence of

multicollinearity MLE exhibits the wrong sign of the slope

parameters ~b3 and ~b6. However, biased estimation methods

may change the sign of the slope parameters. For instance,

theoretically, pinnacle away win odds and maximum

market away win odds have negative effects on the number

of fulltime away-team goals, while the MLE shows a

negative effect. Meanwhile, proposed method shows pos-

itive effect and it is considered a good approach to tackle

the problem of multicollinearity. Hence, the advantage of

the proposed method over MLE using this empirical

application is easily understood.

We also plot the squared bias and MSE values using

Eqs. (11), (16) and (21) against assuming different values

of k to show the performance of estimators under different

conditions. In Fig. 2a, we plot the squared bias values of

the PRRE and AUPRRE for changing the values of the

ridge parameter k between 0 and 1. It is seen that AUPRRE

has always the minimum bias compared to the PRRE, and

these results satisfy Theorem 3.1.1 when the values of

k[ 0. The estimated MSE values of the PRRE and

AUPRRE are shown in Fig. 2b. The AUPRRE should have

less MSE than the PRRE when k[ 8:748 and these find-

ings satisfy Theorem 3.1.2. However, we also plot the MSE

values of the MLE, PRRE, AUPRRE and MAUPRRE to

exemplify Theorems 3.2.1–3.2.3 in Fig. 2c. It is found that

the MSE of the biased estimators equals to MLE when

k ¼ 0. As the value of k increases, the MSE of MAUPRRE

demonstrate the minimum MSE compared to the

AUPRRE, PRRE and MLE. Therefore, we can conclude

that the performance of the PRRE, AUPRRE and

MAUPRRE is a function of the values of the ridge esti-

mators. Overall, we recommend practitioners to apply

MAUPRRE with ridge estimator k̂q4 since this estimator

gives lowest standard errors and MSE in the presence of

multicollinearity.

Table 7 Estimated regression

coefficients and standard errors

of the estimators

Estimators ~bMLE k̂TO k̂q4

~bPRRE ~bAUPRRE ~bMAUPRRE
~bPRRE ~bAUPRRE ~bMAUPRRE

Coefficient estimates

~bo 0.020 - 0.180 - 0.180 - 0.179 - 0.178 - 0.180 - 0.178

~b1 0.522 0.150 0.157 0.149 0.146 0.151 0.146

~b2 - 0.553 - 0.037 - 0.038 - 0.036 - 0.034 - 0.037 - 0.034

~b3 - 0.175 0.229 0.290 0.212 0.156 0.233 0.117

~b4 - 0.531 - 0.205 - 0.370 - 0.072 - 0.084 - 0.162 - 0.013

~b5 0.899 0.088 0.162 0.026 0.035 0.069 0.004

~b6 - 0.539 0.079 0.149 0.017 0.031 0.060 0.002

Standard errors

se ~bo
� �

0.067 0.024 0.024 0.024 0.024 0.024 0.024

se ~b1
� �

0.615 0.041 0.042 0.041 0.040 0.040 0.040

se ~b2
� �

0.495 0.067 0.069 0.067 0.063 0.069 0.063

se ~b3
� �

0.688 0.165 0.209 0.153 0.112 0.169 0.084

se ~b4
� �

0.626 0.149 0.268 0.052 0.061 0.118 0.009

se ~b5
� �

0.592 0.138 0.254 0.041 0.055 0.108 0.007

se ~b6
� �

0.750 0.121 0.227 0.026 0.047 0.092 0.004
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8 Conclusions

In this paper, we derive the MSE properties of the

AUPRRE and MAUPRRE to show the superiority over the

existing estimators in the presence of multicollinearity. We

also derive the optimal ridge parameter, k by minimizing

the MSE of AUPRRE and suggest new ridge estimators.

These estimators are based on the proposed optimal value

of k for estimating of the ridge parameter, k, which we

demonstrate to exhibit superiority over the existing esti-

mators. The comparison of the proposed estimators is made

using the AUPRRE, PRRE and MLE by means of Monte

Carlo simulations. The comparison concludes that

MAUPRRE with the ridge estimator k̂q4 has a smaller MSE

than MLE, PRRE and AUPRRE. Moreover, the empirical

relevance and appealing properties of the proposed esti-

mator are also demonstrated by utilizing our approach on a

collinear real-world application. In conclusion, both

empirically and by using simulations, in the presence of

multicollinearity our MAUPRRE (k̂q4) approach exhibits

the lowest MSE compared to all competing estimators.
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