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Abstract

Biological invasions are among the biggest threats to freshwater biodiversity. This is increasingly relevant in the Murray–
Darling Basin, Australia, particularly since the introduction of the common carp (Cyprinus carpio). This invasive species now
occupies up to ninety per cent of fish biomass, with hugely detrimental impacts on native fauna and flora. To address the
ongoing impacts of carp, cyprinid herpesvirus 3 (CyHV-3) has been proposed as a potentially effective biological control agent.
Crucially, however, it is unknown whether CyHV-3 and other cyprinid herpesviruses already exist in the Murray–Darling.
Further, little is known about those viruses that naturally occur in wild freshwater fauna, and the frequency with which
these viruses jump species boundaries. To document the evolution and diversity of freshwater fish viromes and better un-
derstand the ecological context to the proposed introduction of CyHV-3, we performed a meta-transcriptomic viral survey of
invasive and native fish across the Murray–Darling Basin, covering over 2,200 km of the river system. Across a total of thirty-
six RNA libraries representing ten species, we failed to detect CyHV-3 nor any closely related viruses. Rather, meta-tran-
scriptomic analysis identified eighteen vertebrate-associated viruses that could be assigned to the Arenaviridae, Astroviridae,
Bornaviridae, Caliciviridae, Coronaviridae, Chuviridae, Flaviviridae, Hantaviridae, Hepeviridae, Paramyxoviridae, Picornaviridae,
Poxviridae, Reoviridae and Rhabdoviridae families, and a further twenty-seven that were deemed to be associated with non-
vertebrate hosts. Notably, we revealed a marked lack of viruses that are shared among invasive and native fish sampled
here, suggesting that there is little virus transmission from common carp to native fish species, despite co-existing for over
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fifty years. Overall, this study provides the first data on the viruses naturally circulating in a major river system and sup-
ports the notion that fish harbour a large diversity of viruses with often deep evolutionary histories.

Key words: virome; meta-transcriptomics; fish virus; freshwater fish; virus evolution; RNA sequencing.

1. Introduction

Anthropogenic stressors such as pollution, climate change and
the introduction of exotic species continue to pose a significant
threat to freshwater habitats, with almost one-third of all fish
species threatened by extinction (World Wildlife Fund 2021).
The Murray–Darling Basin, the largest freshwater river system
in Australia, harbours at least twelve exotic freshwater fish spe-
cies (Barrett, Bamford, and Jackson 2014). Key among these are
eastern mosquitofish (Gambusia holbrooki), redfin perch (Perca
fluviatilis) and, most notably, common carp (Cyprinus carpio).
Common carp (also known as European carp) were initially in-
troduced into Australia during the mid-1800s for aquaculture
operations and again on several occasions throughout the 1900s
(Koehn 2004; Forsyth et al. 2013). During extensive flooding
events during the 1970s, carp spread across much of the basin
and now represent up to ninety per cent of total fish biomass
(Forsyth et al. 2013).

The invasion of carp has been hugely detrimental to
Australian freshwater ecosystems (Koehn 2004; Forsyth et al.
2013). Impacts include increased water turbidity, decreased light
penetration, erosion of riverbanks, changes in the abundance
and diversity of native invertebrate communities and outcom-
peting native fish species for habitat and resources (Koehn
2004; Forsyth et al. 2013; Vilizzi et al. 2014). Several control
methods have been proposed to control invasive carp; never-
theless, their resilience and high fecundity create significant
challenges (Hayes et al. 2014). This has stimulated research into
biological control methods, such as deployment of the virus cyp-
rinid herpesvirus 3 (CyHV-3) (McColl et al. 2017; McColl, Cooke,
and Sunarto 2014).

CyHV-3 is a double-stranded DNA virus (family
Alloherpesviridae, order Herpesvirales) first isolated from farmed
carp in the late 1990s (Matsui et al. 2008). Since its discovery, it
has been responsible for large disease outbreaks worldwide
with a mortality rate of up to 80 per cent in domestic carp
(Michel et al. 2010). CyHV-3 is transmitted horizontally through
direct contact with skin lesions or secretion of viral particles in
freshwater where it can survive for up to 3 days (Shimizu et al.
2006). The host range of CyHV-3 is currently limited to koi and
common carp (Michel et al. 2010). While CyHV-3 DNA has been
identified in goldfish (Carrasius auratus) (Bergmann et al. 2010),
it is still relatively unclear whether infection occurs in these
species (Ilouze et al. 2011; Tolo et al. 2021).

Initial laboratory trials suggest that CyHV-3 is safe for non-
target species (McColl et al. 2017). However, little is known about
the viruses that naturally circulate in Australian native fresh-
water fauna, including any prior evidence for the existence of
CyHV-3 (Kopf et al. 2019), nor on the time-scales and frequency
with which viruses jump between fish hosts. To completely as-
sess the safety and efficacy of any virus biocontrol agent, in-
cluding CyHV-3, a comprehensive assessment of the viruses
that naturally infect both native and invasive species is
required.

Following the advent of meta-transcriptomic sequencing, it
is now possible to characterize the entire set of viruses—the
virome—within a given host (Shi, Zhang, and Holmes 2018;

Zhang, Shi, and Holmes 2018). Fish, in particular, harbour a high
abundance and diversity of viruses often with deep evolution-
ary histories (Shi et al. 2018; Zhang et al. 2018). However, despite
the antiquity and diversity of fish viruses, there are few studies
of virus diversity and evolution in wild freshwater fish popula-
tions, particularly in the context of biological invasions.

Determining the viromes of invasive freshwater fish like the
common carp will enhance our understanding of the broad-
scale factors that influence virus emergence and evolution. As
the date and site of their introduction is well-documented in
Australian waters, these species can potentially provide impor-
tant information on the both rate of cross-species transmission
and how frequently viruses might move between invasive and
native species. In addition, despite representing a small fraction
of the earth’s surface water, freshwater environments serve as
a habitat for forty to fifty per cent of total fish species, harbour-
ing the greatest biodiversity per land area (Dudgeon et al. 2006).
Such habitats are subject to rapid environmental change, which
may significantly impact species connectivity (Johnson and
Paull 2011). Since contact and exposure between hosts are vital
for cross-species transmission of viruses (Parrish et al. 2008),
these species may also inform us on the ecological factors that
impact virome composition within a given host.

We performed a meta-transcriptomic viral survey of inva-
sive and native freshwater fish species across the Murray–
Darling Basin in Australia to document the diversity and evolu-
tion of freshwater fish viromes and, from this, better under-
stand the ecological drivers of virus evolution and emergence.
To the best of our knowledge, this is the largest survey of fresh-
water fish viruses undertaken to date. In particular, we aimed
to determine whether CyHV-3 is already present in common
carp in Australia (Kopf et al. 2019), and whether there is evi-
dence for transmission of existing viruses between exotic and
native species. As such, we provide important information on
the ecological and evolutionary context for the potential release
of future virus biocontrols.

2. Methods
2.1 Ethics

Fish sampling was conducted with animal ethics approval (ref:
2019/035) from the Animal Ethics Committee (AEC) at
Macquarie University, Sydney, NSW. Biosafety was approved by
Macquarie University (ref: 5201700856).

2.2 Sample Collection

We compared the viromes of native and invasive fish species
occupying different areas across the Murray–Darling Basin,
Australia (Fig. 1). Sampling occurred between January and
March 2020. A total of seven native fish species were collected:
bony herring (Nematalosa erebi) (n¼ 20), spangled perch
(Leiopotherapon unicolor) (n¼ 1), Australian smelt (Retropinna sem-
oni) (n¼ 12), Murray–Darling rainbowfish (Melanotaenia fluviatilis)
(n¼ 17), flat-headed gudgeon (Philypnodon grandiceps) (n¼ 9),
western carp-gudgeon (Hypseleotris spp.) (n¼ 20) and unspecked
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hardyhead (Craterocephalus fulvus) (n¼ 6). Three species of inva-
sive fish were also collected: common carp (C. carpio) (n¼ 74),
goldfish (C. auratus) (n¼ 5) and eastern mosquitofish (G. hol-
brooki) (n¼ 15). All fish caught were apparently healthy, with no
signs of disease. Fish were caught using boat electrofishing, eu-
thanized and dissected immediately upon capture. Tissue
specimens (liver and gills) were placed in RNALater and stored
in a portable �80 �C freezer, then later in an �80 �C freezer in
the laboratory at Macquarie University, Sydney. Tissue selection
was based on previous studies (Shi et al. 2018; Geoghegan et al.
2018; Geoghegan et al. 2021), which show that liver and gill tis-
sue serve as a rich source of viruses. To facilitate virus discov-
ery, multiple individuals (one to ten) were pooled according to
species and the location in which they were captured
(Supplementary Table S2 and Fig. S1).

2.3 Total RNA Extraction and Transcriptome Sequencing

Frozen samples of liver and gill tissue were processed together
as a single extraction for each sample. The combined tissues
were placed in 600 ll of lysis buffer containing 0.5 per cent
foaming reagent (Reagent DX, Qiagen) and 1 per cent of b-mer-
captoethanol (Sigma-Aldrich). Submerged tissue samples were
homogenized with TissueRuptor (Qiagen) for one minute at
5,000 rpm. To further homogenize tissue samples and remove
tissue residues, the homogenate was centrifuged at full speed
for three minutes. The homogenate was carefully removed and
RNA from the clear supernatant was extracted using the
RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) following the
manufacturer’s protocol. Extracted RNA was quantified using
NanoDrop (ThermoFisher) and RNA from each species was

pooled corresponding to the site in which they were captured,
resulting in thirty-six sample libraries (Supplementary Table
S2). RNA libraries were constructed using the Truseq Total RNA
Library Preparation Protocol (Illumina). To enhance viral discov-
ery and reduce the presence of non-viral reads, host ribosomal
RNA (rRNA) was depleted using the Ribo-Zero-Gold Kit
(Illumina) and paired-end sequencing (150 bp) was performed
on the NovaSeq 500 platform (Illlumina). Sample library con-
struction, rRNA depletion and RNA sequencing were performed
at the Australian Genome Research Facility.

2.4 Virus discovery

Raw Illumina sequence reads (forward and reverse) were ini-
tially quality trimmed with Trimmomatic v.0.39 (Bolger, Lohse,
and Usadel 2014) then assembled into contigs de novo using
Trinity RNA-seq v.2.8.5 (Haas et al. 2013), with the default pa-
rameter settings. Assembled contigs were annotated and com-
pared against the NCBI nucleotide (nt) and non-redundant
protein (nr) databases with an e-value threshold of 1 � 10�5 us-
ing BLASTn and Diamond (BLASTX) (Buchfink, Xie, and Huson
2014). To initially distinguish between invertebrate and verte-
brate-associated viruses, contigs that matched viral sequences
were inspected using Geneious v.11.1.5 (Kearse et al. 2012) and
translated into amino acid sequences. Amino acid sequences
were then used as a single query in additional sequence com-
parisons against the NCBI nt and nr databases using BLAST
algorithms. This method was also used to remove false-posi-
tives (e.g. host genes and endogenous viral elements) from our
analyses. To help exclude instances of index hopping, viral
sequences that were identified in multiple libraries were also
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inspected using Geneious Prime (www.geneious.com) and
amino acid pairwise alignments between viral sequences were
performed with Multiple Alignment using Fast Fourier
Transform (MAFFT) v.7.450 (Katoh and Standley 2013), using the
E-INS-i algorithm. Abundances of identical viral transcripts
were then calculated (see below) and sequences that were pre-
sent at frequency of less than one per cent of that of the number
of reads present in the dominant library were excluded. To de-
termine whether a virus was novel, we followed the broad crite-
ria specified by The International Committee on Taxonomy of
Viruses (http://www.ictvonline.org/).

2.5 Inferring the evolutionary history of novel viral
sequences

To determine the evolutionary history of the viruses identified
in this study and further distinguish between vertebrate and in-
vertebrate-associated viruses (which are usually phylogeneti-
cally distinct), we estimated phylogenetic trees using amino
acid sequences of stable genomic regions such as RNA-depen-
dent RNA polymerase (RdRp) or DNA polymerase for DNA vi-
ruses. To this end, we combined our sequences with
background sequences for each respective virus family taken
from NCBI/GenBank. Amino acid sequences were aligned with
MAFFT v.7.450 using the E-INS-i algorithm. To remove ambigu-
ous regions in the sequence alignment, amino acid sequences
were trimmed using trimAl v.1.2 (Capella-Gutiérrez, Silla-
Martı́nez, and Gabaldón 2009). To estimate phylogenetic trees,
selection of the best-fit model of amino acid substitution was
determined using the Akaike information criterion (AIC), cor-
rected AIC, and the Bayesian information criterion with the
ModelFinder function (-m MFP) in IQ-TREE (Nguyen et al. 2015;
Kalyaanamoorthy et al. 2017). Sequence data were analysed us-
ing a maximum likelihood (ML) approach in IQ-TREE, with 1,000
bootstrap replicates. Phylogenetic trees were annotated with
FigTree v.1.4.2. and further edited using Adobe Illustrator
(https://www.adobe.com).

2.6 Virome composition

To quantify the relative abundance of viral transcripts within
the host transcriptome, the RNA-Seq by Expectation (RSEM)
value was estimated using Trinity (Haas et al. 2013), and raw
counts from each transcript were standardized against the total
number of reads within the given sequencing library. We also
used this approach to estimate the relative abundance of a host
reference gene, ribosomal protein S13 (RPS13), which is stably
expressed in fish. To assess any differences in virome composi-
tion between hosts and sites, we calculated alpha diversity
(virome richness and Shannon diversity) using Rhea packages
(Lagkouvardos et al. 2017). Generalized linear models (GLM)
were used to identify the impact of host taxonomy (i.e. species),
host geography (i.e. site), water temperature, water pH, water
turbidity and species origin (i.e. invasive or native) on both ver-
tebrate-associated virus composition (abundance, richness and
diversity) and those viruses likely associated with non-fish
hosts: the latter should not be affected by aspects of fish biology
and hence effectively constitute a negative control. All GLM
models were tested using a likelihood-ratio test (v2) and a
Tukey’s post hoc analysis (glht) was performed using the mult-
comp package (Hothorn, Bretz, and Westfall 2008). To assess vi-
ral diversity between samples, we calculated beta diversity
using a Bray Curtis dissimilarity with the phyloseq package
(McMurdle and Holmes 2013). Differences in virome

composition between native and invasive species were calcu-
lated using permanova (Adonis test), with the vegan package
(Dixon 2003). All statistical analyses were carried out on RStudio
V1.2.1335 and plotted using the ggplot2 package (Valero-Mora
2015).

3. Results

We characterized the viromes of ten freshwater ray-finned fish
species across seven taxonomic orders (two invasive and five
native) at thirteen locations across the Murray–Darling Basin in
Australia. Total RNA-sequencing was performed on thirty-six li-
braries, resulting in a median of 76,528,534 (range 66,015,138–
95,168,951) reads per library. De novo assembly of the sequenc-
ing reads resulted in a median of 617,588 contigs (range
198,446–1,989,596) per library, with a total of 23,976,218 contigs
generated. Analysis of the host reference gene, RPS13, revealed
abundances of 0.000001–0.0002 per cent, suggesting an inconsis-
tent sequence coverage across all RNA libraries, which may
have impacted virus discovery (Fig. 2).

3.1 Abundance and diversity of viruses

We identified eighteen viral sequences that were associated
with vertebrate hosts and a further twenty-seven that were
likely associated with algae, invertebrates and protists in the
freshwater environment (Supplementary Figs. S1 and S2).
Because such non-vertebrate viruses were likely derived from
diet or contamination of gill tissue, we primarily focused on ver-
tebrate-associated viruses.

Among the likely vertebrate-associated viruses, we identi-
fied viral sequences from fourteen viral families. With the ex-
ception of a novel poxvirus (family Poxviridae), a double-
stranded DNA virus, all the viruses identified possessed RNA
genomes. The most abundant vertebrate-associated viral tran-
scripts were those assigned to the Arenaviridae (49% of all verte-
brate-associated viruses), Hepeviridae (20%), Chuviridae (21%),
Astroviridae (3%) and Flaviviridae (2%) families. Other likely verte-
brate viral transcripts detected were assigned to the
Coronaviridae (<1%) Caliciviridae (<1%), Picornaviridae (<1%),
Paramyxoviridae (<1%), Hantaviridae (<1%), Bornaviridae (<1%),
Poxviridae (<1%), Reoviridae (<1%) and Rhabdoviridae (<1%) fami-
lies. The most common vertebrate-associated viruses identified
were astroviruses, detected in three host species (eastern mos-
quitofish, Murray–Darling rainbowfish, spangled perch). In addi-
tion, arenaviruses were detected in two host species (western
carp-gudgeon, eastern mosquitofish) along with hepeviruses
(common carp, eastern mosquitofish). All other viruses were
identified in one host species (Fig. 3).

Among the viruses likely associated with non-vertebrate
hosts (i.e. those infecting arthropods, fungi, plants and protozo-
ans), a large proportion (70%) were unclassified, comprising
picorna-like viruses, rhabdo-like viruses, tombus-like viruses
and narna-like viruses (Shi et al. 2016) (Supplementary Fig. S1).
We also detected viral transcripts that could be assigned to the
Nodaviridae (27.1%), Permutotetraviridae (1.3%), Dicistroviridae
(1.2%) and Phenuiviridae (<1%) families. Although viruses within
the Nodaviridae have been shown to infect fish (Hameed et al.
2019), all of the nodavirus sequences identified here clustered
with viruses from invertebrate hosts (Supplementary Fig. S2),
strongly suggesting they were similarly associated with fish diet
or contamination of gill tissue.
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3.2 Phylogenetic relationships of vertebrate-associated
viruses

To infer the phylogenetic relationships and hence the evolution-
ary history of the viruses newly identified here, we focused on
stable genomic regions such as the RdRp in RNA viruses and DNA
polymerase in the case of the novel poxvirus. Using these geno-
mic regions, we identified seven negative-sense single-stranded
RNA (-ssRNA) viruses (families Arenaviridae, Bornaviridae,
Chuviridae, Hantaviridae, Paramyxoviridae, Rhabdoviridae), nine posi-
tive-sense single-stranded RNA (þssRNA) viruses (families
Astroviridae, Caliciviridae, Coronaviridae, Flaviviridae, Hepeviridae,
Picornaviridae), one double-stranded RNA (dsRNA) virus (family
Reoviridae) and one double-stranded DNA (dsDNA) virus (family
Poxviridae). We now describe each of these groups in turn.

3.2.1 -ssRNA viruses
We identified -ssRNA viruses that occupied phylogenetic posi-
tions that were broadly indicative of long-term virus–host co-di-
vergence, with many fish viruses falling basal to reptile, avian
and mammalian viruses (Fig. 4). Notably, we identified two
novel arenaviruses that clustered with members of the newly
formed Antennavirus genus that includes fish hosts (Shi et al.
2018; Abudurexiti et al. 2019). Western carp-gudgeon arenavirus
found at Narrabri creek shared 36.9 per cent amino acid se-
quence similarity with its closest relative, Wenling frogfish arena-
virus 1 (Shi et al. 2018) and grouped with recently discovered

arenaviruses from pygmy gobies (Eviota zebrina) sampled from
an Australian coral reef (Geoghegan et al. 2021). Eastern mosqui-
tofish arenavirus found in the Macquarie River shared 84.5 per
cent amino acid sequence similarity with its closest available
relative, Wenling frogfish arenavirus 1.

The divergent hantavirus detected in the Murray–Darling
rainbowfish falls basal to mammalian hantaviruses (orthohan-
taviruses) and clustered with members of the Actantavirinae and
Agantavirinae subfamilies that include ray-finned and jawless
fish hosts (Shi et al. 2018; Abudurexiti et al. 2019) (Fig. 4). This vi-
rus had only 27.3 per cent amino acid similarity with its closest
relative, Bern perch virus (NCBI/GenBank: QGM12349.1). Broad
patterns of virus–host co-divergence can similarly be seen in
the cultervirus identified in carp from Lake Burrendong. BLAST
analysis identified sharpbelly cultervirus (Shi et al. 2018) as the
closest relative of all genomic regions, including the L gene (93%
amino acid similarity), glycoprotein (86.3%) and nucleoprotein
(92.9%).

Our virological survey revealed the complete genome of a
novel chuvirus in the unspecked hardyhead in the Edward
River. This Hardyhead chuvirus displayed three open reading
frames, representing the L protein (RdRp), glycoprotein and nu-
cleoprotein. Our analysis identified Guangdong red-banded snake
chuvirus (Shi et al. 2018) as the closest relative of the L protein
(44% amino acid similarity), Wenling fish chu-like virus (Shi et al.
2018) as the closest relative of the glycoprotein (41%) and Herr
Frank virus 1 (Argenta et al. 2020) as the closest relative of the

n = 13

n = 1

n = 2

n = 3

n = 5

n = 4

n = 2

n = 1

n = 4

n = 1

Invasive Native

Common carp
 

Goldfis
h 

Eas
ter

n m
osq

uito
fis

h

Austra
lia

n smelt

Bony h
er

rin
g

Carp
-g

udgeon

Flat−
headed gudgeon 

Unspecked hard
yhead 

Murra
y-D

ar
lin

g ra
inbowfis

h

Span
gled

 p
er

ch
 

0.00

0.01

0.02

0.03

0.04

0.05

Fish

S
ta

n
d

ar
d

is
ed

 v
ir

u
s 

ab
u

n
d

an
ce

 (
cu

b
er

o
o

t)
 

Type
Vertebrate
Non−vertebrate
RPS13

Native

Figure 2. Mean standardized viral abundance across all libraries. Clustered bar chart reveals differences in viral abundance between invasive and native fish species.

Blue bars represent vertebrate-associated viruses; red bars represent non-vertebrate-associated viruses; and green bars represent host reference gene RPS13. Number

of sequencing libraries for each fish species is displayed above bars.

V. A. Costa et al. | 5



nucleoprotein (34%). Hardyhead chuvirus formed a distinct phylo-
genetic clade with all other vertebrate-associated chuviruses
(Fig. 5).

We also detected a novel paramyxovirus in western carp-
gudgeon in the Bogan River. This divergent viral sequence
shared 35.2 per cent L gene amino acid similarity with its closest
relative, Wenling tonguesole paramyxovirus (genus
Cynoglossusvirus, family Paramyxoviridae) (Shi et al. 2018). These
viruses grouped with Wenzhou pacific spadenose shark paramyxo-
virus (genus Scoliodonvirus), together falling basal to other mem-
bers of the Paramyxoviridae family. In addition, a novel
rhabdovirus in common carp similarly formed a distinct clade,
basal to other fish-infecting rhabdoviruses. This virus shared
35.7 per cent amino acid L gene sequence similarity with Beihai
dimarhabdovirus that was also identified in fish (Shi et al. 2018)
and clustered with other dimarhabdoviruses, including those
found in the spotted paddle-tail newt from China (Shi et al.
2018) and the big brown bat (Eptesicus fuscus) from the USA
(NCBI/Genbank: QPO14166.1). Across all genera within the
Rhabdoviridae, lyssaviruses were the closest relatives to this
clade (Fig. 4), with Murray–Darling carp rhabdovirus sharing 31.6
per cent amino acid L gene similarity with rabies lyssavirus
(Tordo et al. 1988).

3.2.2 1ssRNA viruses
We identified a viral sequence in common carp that shared 50.7
per cent RdRp sequence similarity with Pacific salmon nidovirus
(family Coronaviridae) (Mordecai et al. 2019). Murray–Darling carp

letovirus also exhibited sequence similarity (46.2%) with gamma-
coronaviruses, including bottlenose dolphin coronavirus and beluga
whale coronavirus (Mihindukulasuriya et al. 2008; Woo et al.
2014). This virus grouped with both Pacific salmon nidovirus and
Microhyla letovirus (Bukhari et al. 2018), which together form an
outgroup to all other coronaviruses (Fig. 6).

We also identified a novel flavivirus (genus Flavivirus, family
Flaviviridae) in western carp-gudgeon in the Bogan River. This vi-
ral sequence exhibited thirty-three to thirty-six per cent NS5
amino acid sequence similarity with its closest relatives,
Cyclopterus lumpus virus (Skoge et al. 2018), Tamana bat virus (de
Lamballerie et al. 2002), salmon flavivirus (Soto et al. 2020) and
Wenzhou shark flavivirus (Shi et al. 2018). All these viruses fall
basal to vector-borne viruses within the genus Flavivirus (Fig. 7).

Among other positive-sense RNA viruses identified, a novel
astrovirus, calicivirus and picornavirus all grouped with other
fish hosts and expanded the phylogenetic diversity of these vi-
rus families (Fig. 7). The novel astrovirus identified in Murray–
Darling rainbowfish shared forty per cent RdRp amino acid sim-
ilarity with Wuhan astro-like virus (Shi et al. 2018). This virus
clustered with other astro-like viruses discovered in fish, in-
cluding Beihai mudskipper astro-like virus (Shi et al. 2018) and
Guangdong catfish astro-like virus (Shi et al. 2018). This was simi-
larly observed in Australian smelt picornavirus, which clustered
with picornaviruses found in other freshwater fish, including
those from eels (Anguilla anguilla) (Fichtner et al. 2013) and carp
sampled from China (Shi et al. 2018). The Caliciviridae includes
two genera that infect fish: saloviruses associated with
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salmonid hosts and minoviruses associated with cyprinid hosts
(Vinjé et al. 2019). Recently, several caliciviruses have been dis-
covered in ray-finned and jawless fish (Mikalsen et al. 2014; Shi
et al. 2018). The novel calicivirus identified in bony herring
expands the diversity of fish viruses as it shared eighty per cent
amino acid similarity with Atlantic salmon calicivirus (Mikalsen
et al. 2014) and clustered with other freshwater fish calicivi-
ruses, including Wuhan carp calicivirus and Guangdong pseudohe-
miculter dispar calicivirus (Shi et al. 2018).

3.2.3 dsRNA viruses
We identified a novel dsRNA virus in carp in the Castlereagh
River that could be assigned to the Reoviridae. This divergent vi-
rus shared forty per cent RdRp amino acid similarity with its
closest relative, Wenling scaldfish reovirus (Shi et al. 2018), to-
gether forming a clade basal to the genus Aquareovirus that are
known to cause considerable disease in some fish species (Chen
et al. 2018) (Fig. 8).

3.2.4 dsDNA viruses
A key observation of our study was the absence of Cyprinid her-
pesviruses, including CyHV-3, as well as other Alloherpesviridae,
in any of the thirty-six RNA libraries. Similarly, although mem-
bers of the Hepadnaviridae are commonly detected in fish (Dill
et al. 2016; Lauber et al. 2017; Geoghegan et al. 2018; Geoghegan
et al. 2021) they were notably absent in our samples. The only
DNA virus detected in this study was a novel poxvirus
(Poxviridae) identified in western carp-gudgeon. This virus
shared DNA polymerase amino acid sequence similarity with
salmon gill poxvirus (SGPV) (61%) (Gjessing et al. 2015). We also
detected other genomic regions such as DNA-dependent RNA
polymerase subunit rpo22 (49.5%), DNA-dependent RNA poly-
merase subunit rpo19 (40%), DNA binding virion core protein I1L

(28.1%), A16L (32.9%) and SGPV079 (40%) (Supplementary Table
S1). Both SGPV and western carp-gudgeon poxvirus form a highly
divergent clade within the subfamily Chordopoxvirinae that is
strongly indicative of virus-host co-divergence (Fig. 9).

3.3 Virome composition, ecological and environmental
factors

We next examined whether and how vertebrate virome compo-
sition in a range of native and introduced Murray–Darling Basin
fish was associated host ecological factors, namely host species,
geography (i.e. sampling site), water quality (temperature, pH
and turbidity). GLMs revealed host species (v2¼ 7.5�6, df ¼ 9,
P¼ 0.001) as the best predictor of viral abundance (i.e. the stan-
dardized number of viral sequencing reads) (Fig. 2). In particular,
the eastern mosquitofish had significantly higher viral abun-
dance compared to Australian smelt (Tukey: z¼ 3.976, P¼ 0.002),
bony herring (Tukey: z¼ 4.334, P¼ 0.001), western carp-gudgeon
(Tukey: z¼ 4.019, P¼ 0.002), common carp (Tukey: z¼ 4.665,
P¼ 0.001), flat-headed gudgeon (Tukey: z¼ 3.632, P¼ 0.001), gold-
fish (Tukey: z¼ 3.632, P¼ 0.001) and rainbowfish (Tukey:
z¼ 4.110, P¼ 0.001). However, the high viral abundance in the
eastern mosquitofish was driven by one sample containing an
extremely high abundance of arenaviruses, accounting for sev-
enty-six per cent of its total vertebrate virome and forty-nine
per cent of all vertebrate-associated viral reads. We found no
evidence for an association between viral abundance and host
geography (P¼ 0.111), water turbidity (P¼ 0.804), water tempera-
ture (P¼ 0.709) nor water pH (P¼ 0.141).

We calculated alpha diversity to assess any differences in
virome composition (abundance and diversity) between hosts
and sites. This included the observed virus species richness (the
number of viruses found in each sequencing library) and
Shannon diversity (both the number of viral families and
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abundance of viral reads in a given host). We found no associa-
tion between observed viral species richness and host species
(P¼ 0.286), host geography (P¼ 0.748), water turbidity (P¼ 0.826),
water temperature (P¼ 0.625) and water pH (P¼ 0.115). Similarly,
there was also no observed association between Shannon diver-
sity and host taxonomy (P¼ 0.117), host geography (P¼ 0.551),
water turbidity (P¼ 0.546), water temperature (P¼ 0.206) and wa-
ter pH (P¼ 0.039).

3.4 Virome composition of native versus invasive fish
species

While carp and native fish species were sampled together at
ten out of thirteen sites (Fig. 1), they shared no vertebrate-

associated viruses. Similarly, no vertebrate-associated viruses
were shared among any of the native fish species. Although
we identified hepeviruses in common carp and eastern mos-
quitofish, these were highly divergent and exhibited only
twenty per cent amino acid similarity such that they reflect
ancient divergence events. These viruses were also distinct in
that Murray–Darling carp hepevirus clustered with ray-finned
fish hosts (Shi et al. 2018), while eastern mosquitofish hepevirus
formed a distinct basal clade with amphibian (Reuter et al.
2018), jawless fish and cartilaginous fish hosts (Shi et al. 2018)
(Fig. 7).

While the native and invasive fish species largely had dis-
tinct viromes, two vertebrate-associated virus families were
present in both: arenaviruses (western carp-gudgeon and
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eastern mosquitofish) and bastroviruses (spangled perch and
eastern mosquitofish) (Fig. 3). However, the arenaviruses identi-
fied in the eastern mosquitofish and western carp-gudgeon
were highly divergent, exhibiting only 27.9 per cent amino acid
similarity, with western carp-gudgeon arenavirus falling basal to
eastern mosquitofish arenavirus (Fig. 4). The bastroviruses
detected in eastern mosquitofish and spangled perch shared
57.1 per cent RdRp amino acid similarity and formed a distinct
clade with other bastrovirus sequences identified in Culex

mosquitos (Sadeghi et al. 2018), bats (NCBI/GenBank:
NC_035471.1) and sewage samples in Brazil (Dos Anjos, Nagata,
and Melo 2017) (Supplementary Fig. S3). Because bastroviruses
have genomic features that resemble hepeviruses (Reuter et al.
2018), both these contigs had matches to invertebrate and verte-
brate-associated hepeviruses such that their true hosts could
not be easily determined.

We also examined whether there were any differences in
alpha and beta diversity between native and invasive
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freshwater fish. Accordingly, we found no association between
host origin (i.e. invasive or native) and virome abundance
(P¼ 0.390). When assessing alpha diversity, we similarly found
no association between host origin and virome richness
(P¼ 0.626) nor Shannon diversity (P¼ 0.425). Likewise, this re-
sult was also observed when examining beta diversity
(P¼ 0.602).

3.5 Associations between host ecology and non-
vertebrate viruses

To assess any associations between host ecology and non-ver-
tebrate viruses, we similarly performed GLMs using the afore-
mentioned ecological factors as a negative control. As expected,
this revealed no association between non-vertebrate viral abun-
dance and host taxonomy (P¼ 0.200), host geography (P¼ 0.101),
host origin (P¼ 0.998), water turbidity (P¼ 0.421), water tempera-
ture (0.282) and water pH (P¼ 0.343). We similarly found no as-
sociation between non-vertebrate virome richness and host
taxonomy (P¼ 0.204), host geography (P¼ 0.090), host origin
(P¼ 0.675), water turbidity (P¼ 0.398), water temperature
(P¼ 0.072) and water pH (P¼ 0.461). We also found no evidence
for an association between Shannon diversity and host taxon-
omy (P¼ 0.691), host geography (P¼ 0.173), host origin
(P¼ 0.876), water turbidity (P¼ 0.571), water temperature
(P¼ 0.334) and water pH (P¼ 0.578). This was also observed
when assessing statistical associations between beta diversity
and host species (P¼ 0.684), host origin (P¼ 0.239) and host ge-
ography (P¼ 0.501).

4. Discussion

Our meta-transcriptomic viral survey of native and invasive
fish across the Murray–Darling Basin, Australia, revealed a high
diversity and abundance of viruses, including the identification
of 45 novel virus species that infected seemingly healthy fish or
non-vertebrate hosts in the freshwater environment. Crucially,
however, we observed no clear examples of recent cross-species
transmission among any fish hosts, including between invasive
and native species, nor any evidence for the presence of CyHV-3
from a total of thirty-six RNA sequencing libraries. Hence, these
data provide further evidence of the absence of CyHV-3 in
Australia (McColl and Crane 2013; McColl, Cooke, and Sunarto
2014; McColl et al. 2017). Similarly, our analysis failed to detect
other cypriniviruses (i.e. CyHV-1, CyHV-2), despite previous
reports of the presence of CyHV-2 in the Murray–Darling Basin
(Stephens, Raidal, and Jones 2004; Becker et al. 2014).

While we observed no cypriniviruses in our analysis, such
viruses typically induce latent infections in fish hosts and may
become transcriptionally inactive (Michel et al. 2010). Thus, cyp-
riniviruses in a latent stage may be difficult to detect using the
transcriptome-based methods described here. Despite this, a vi-
ral survey of CyHV-1, CyHV-2 and CyHV-3 was previously con-
ducted on carp across eight sites in the Murray–Darling Basin
(McColl and Crane 2013). Using PCR amplicon sequencing, this
study similarly failed to identify all three cypriniviruses in 849
carp DNA samples. This suggests that our findings may reflect a
true absence of CyHV-3 in Australian waterways, although addi-
tional surveillance studies will be required to further address
this issue.
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Although carp and native fish have co-existed in the
Murray–Darling Basin for over 50 years (Forsyth et al. 2013), they
shared no vertebrate-associated viruses. The only instance of
co-occurrence of viruses from the same family in both invasive
and native species was the presence of arenaviruses in native
carp-gudgeon and invasive mosquitofish. However, these vi-
ruses were so divergent that they likely represent ancient com-
mon ancestry rather than recent cross-species transmission
(Fig. 4). Eastern mosquitofish, introduced into Australia during
the early 1920s to control mosquito populations (Ayres,
Pettigrove, and Hoffman 2010), are now widespread across the
Murray–Darling Basin and have become a successful invasive
species (Macdonald et al. 2012). Their abundance primarily
impacts smaller native fish (such as carp-gudgeon, rainbowfish
and hardyheads) since they typically outcompete these species
and disrupt food webs (Macdonald et al. 2012). As well as being
highly divergent, western carp-gudgeon arenavirus formed a basal
clade with a recently discovered arenavirus in the pygmy goby
sampled from an Australian coral reef (Geoghegan et al. 2021), a
member of the same fish order (Gobiiformes). These data further
suggest that arenaviruses may have been circulating in
Gobiiform fishes (gobies and gudgeons) in Australia prior to the
introduction of eastern mosquitofish.

We also identified a novel coronavirus—Murray–Darling carp
letovirus—that shared 50.7 per cent amino acid sequence simi-
larity with Pacific salmon nidovirus and 46.2 per cent amino acid
similarity with gammacoronaviruses. The Coronaviridae (order
Nidovirales) can be split into two subfamilies: the
Orthocoronavirinae, associated with birds and mammals, and the
Letovirinae associated with amphibians (Bukhari et al. 2018).
Both Murray–Darling carp letovirus and Pacific salmon nidovirus
formed a sister clade to only member of the Letovirinae subfam-
ily, Microhyla letovirus (genus Alphaletovirus) identified in the or-
namental pygmy frog (Microhyla fissipes) (Fig. 6), suggests that
fish may be common and ancient hosts for the Letovirinae. It is
also notable that Murray–Darling carp letovirus and Pacific salmon
nidovirus are highly divergent from the other Nidovirales that are
known to infect fish (e.g. Chinook salmon bafinivirus) (Cano et al.
2020).

The phylogenetic range of the Chuviridae largely incorporates
invertebrate hosts with diverse genomes (segmented, unseg-
mented and circular) (Jun-Hua et al. 2015). Recently, chuviruses
have been discovered in vertebrates, all possessing three seg-
ments (Shi et al. 2018; Argenta et al. 2020). The novel chuvirus
detected here in the unspecked hardyhead displayed these ge-
nomic features with the L gene (RdRp), S gene (glycoprotein)
and N gene (nucleoprotein) all related to fish and reptile viruses
(Fig. 5). The phylogenetic position of this vertebrate clade sug-
gests the ancestors of the viruses may be of invertebrate origin,
particularly those that inhabit aquatic ecosystems. For instance,
the closest related invertebrate viruses were Wenzhou crab virus
(Jun-Hua et al. 2015), Imjin River virus (mosquitos) (Hang et al.
2016) and Atrato chu-like virus (mosquitos). Similarly, chuvirus
endogenous viral elements have been detected in several fresh-
water fish species (Shi et al. 2018).

We identified a novel flavivirus in western carp-gudgeon
from the Bogan River. This virus falls basal to mammalian vec-
tor-borne viruses in phylogenetic trees, grouping with viruses
from other vertebrate hosts including Cyclopterus lumpus virus,
Tamana bat virus and Wenzhou shark flavivirus. Although western
carp-gudgeon flavivirus was detected in apparently healthy fish,
in vivo flavivirus replication was recently demonstrated in
Chinook salmon (Oncorhynchus tshawytscha) that were associ-
ated with abnormal mortalities in the Eel River, California (Soto

et al. 2020). While there is still no clear link between flavivirus
infection, transmission and disease in aquatic hosts, these data
suggest that flaviviruses may be common in fish species.
Moreover, the basal phylogenetic positions of aquatic flavivi-
ruses also suggest that these viruses may be the ancestors of
notable vector-borne viruses (Fig. 7). Nevertheless, gaps still re-
main in the evolutionary history of the genus Flavivirus and will
likely be bridged with additional metagenomic studies.

In broad terms, the evolutionary histories of many verte-
brate viral families appear to generally follow patterns of long-
term virus–host co-divergence, albeit with regular cross-species
transmission (Shi et al. 2018; Zhang et al. 2018). This evolution-
ary pattern can be observed in the phylogenies of the cultervi-
rus, poxvirus and arenaviruses identified here. The Bornaviridae
contain three genera with eleven currently classified viral spe-
cies that infect mammals, birds and reptiles (Amarasinghe et al.
2019). The only fish virus identified to date falls within the ge-
nus Cultervirus, comprising Sharpbelly cultervirus from China (Shi
et al. 2018). We identified this virus (i.e. transcripts with 93% L
gene amino acid similarity) in common carp in Australia.
Intriguingly, both fish hosts are members of the Cyprinidae that
date as far back as the Cretaceous to Jurassic periods (Hughes
et al. 2018; Betancur et al. 2017). Molecular clock dating using
endogenous viral elements also showed that culterviruses likely
emerged early on during the course of vertebrate evolution,
more than fifty million years ago (Shi et al. 2018).

Patterns of long-term virus–host co-divergence can also be
seen in the evolutionary history of the Chordopoxvirinae. Western
carp-gudgeon poxvirus expands the host range of the
Chordopoxvirinae subfamily within the Poxviridae, forming a
highly divergent clade with the only other fish-infecting chor-
dopoxvirus discovered to date, SGPV (Fig. 9). Since its classifica-
tion in 2015, several cases of SGPV have been identified in
farmed salmon with complex gill disease, although the reser-
voir host is unknown (Gjessing et al. 2017). The phylogeny of the
Chordopoxvirinae mirrors that of vertebrate hosts, strongly sug-
gesting long-term virus–host co-divergence (Fig. 9). Similarly,
the phylogeny of the Arenaviridae displays a basal fish clade that
is characterized by long branches with a large degree of diver-
gence (Fig. 4).

On this evolutionary backbone of ancient virus–host co-di-
vergence, we also detected cases of cross-species virus trans-
mission during evolutionary history, although the time-scales
of these events are uncertain. For example, we discovered a
novel reovirus that formed a basal divergent clade to other fish
viruses within the genus Aquareovirus (Fig. 8). Murray–Darling
carp reovirus was more closely related to viruses that infect
scaldfish (Shi et al. 2018) rather than other cyprinid hosts, which
are highly susceptible to reovirus infection (e.g. 80% mortality in
grass carp) (Chen et al. 2018). These patterns were also observed
in the phylogeny of the Rhabdoviridae, with Murray–Darling carp
rhabdovirus forming a distinct phylogenetic clade with other re-
cently discovered rhabdoviruses in fish, the big brown bat
(NCBI/Genbank: QPO14166.1) and the spotted paddle-tail newt
(Shi et al. 2018). Rhabdoviruses exhibit a very broad host range
including invertebrates, plants, mammals, fish, amphibians,
birds and reptiles (Bourhy et al. 2005). Notable among the
Rhabdoviridae are the lyssaviruses that can cause high mortality
in human populations (e.g. rabies lyssavirus). Intriguingly,
Murray–Darling carp rhabdovirus and its closest relatives form a
sister clade to the genus Lyssavirus, suggesting these viruses
may have a fish-infecting ancestor (Fig. 4).

Although carp are widespread and abundant across the
Murray–Darling Basin, they displayed lower viral abundance
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than some of the other hosts sampled (Fig. 2). This could be
partly explained by the large phylogenetic distance between
carp and other fish in the Murray–Darling Basin. For instance,
aside from bony herring, all the fish studied here are members
of the Acanthopterygii (Percomorpha). This could also explain
why invasive mosquitofish harboured similar viruses to native
gudgeon species (e.g. arenaviruses). Although not always the
case (Parrish et al. 2008), cross-species virus transmission often
occurs between phylogenetically related hosts, particularly
those that display conserved cell receptors (Longdon et al. 2014;
Dennehy 2017). In addition, it has been widely suggested that
introduced populations are associated with a lower pathogen
prevalence and diversity than native species (Phillips et al. 2010;
Mark et al. 2003). For example, because invasive species are of-
ten established from a small founder population, they likely
carry and acquire only a small proportion of pathogens in the
novel environment. Once a species rapidly becomes invasive,
the diversity of pathogens in this population should remain
small, such that the lack of disease likely facilitates the success
of invasive species (Mark et al. 2003; Phillips et al. 2010).

It is important to note, however, that there were necessary
variations within our sampling. For instance, carp and native
fish species were sampled together at ten out of thirteen sites,
with carp sampled from all thirteen sites (Fig. 1). In addition, all
other fish species were sampled from one to five sites. While an
artefact of the distribution of the fish, such gaps obviously limit
the power of our statistical analyses and perhaps prevent the
detection of ecological associations on virome composition
within host species, including between invasive and native fish.
In addition, due to animal ethics constraints, we were limited to
only a subset of native fish species. Nevertheless, the native
species examined in this study are generally those present in
the highest densities.

Finally, our analysis detected no viruses that are listed as re-
portable notifiable aquatic diseases in the Murray–Darling Basin
(Australian Health Committee 2020). Such notifiable aquatic dis-
eases include epizootic haematopoietic necrosis virus (EHNV—
Iridoviridae) and spring viraemia of carp virus (SVCV—
Rhabdoviridae). EHNV is known to cause high-impact infections
in redfin perch and is capable of infecting other freshwater fish
in the Murray–Darling Basin, including silver perch (Bidyanus
bidyanus), Macquarie perch (Macquaria australasica), Murray–
Darling rainbowfish, freshwater catfish (Tandanus tandanus) and
invasive mosquitofish (Becker et al. 2013). Although thought to
be endemic to the Murray–Darling Basin (upper Murrumbidgee
River), EHNV was last reported in 2012 (Becker et al. 2019).
Similarly, we did not detect the emerging dwarf gourami iridovi-
rus (Iridoviridae) that causes infectious spleen and kidney necro-
sis in several species of native Australian fish (Go et al. 2006;
Rimmer et al. 2017).

In sum, our metagenomic surveillance revealed a marked
lack of virus exchange between native and invasive fish species
in the Murray–Darling Basin, including those viruses found in
invasive common carp. At face value, these data suggest that
there is minimal virus transmission from common carp to na-
tive fish species, although more extensive sampling is needed
to fully address this issue. By investigating the viromes of native
and invasive fish, we provide the first data on viruses that natu-
rally circulate in a 2,200 km river system, enhancing our under-
standing of the evolutionary history of vertebrate viruses.
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