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Abstract: Pancreatic cancer is a devastating disease with the worst outcome of any human cancer.
Despite significant improvements in cancer treatment in general, little progress has been made in
pancreatic cancer (PDAC), resulting in an overall 5-year survival rate of less than 10%. This dismal
prognosis can be attributed to the limited clinical efficacy of systemic chemotherapy due to its high
toxicity and consequent dose reductions. Targeted delivery of chemotherapeutic drugs to PDAC cells
without affecting healthy non-tumor cells will largely reduce collateral toxicity leading to reduced
morbidity and an increased number of PDAC patients eligible for chemotherapy treatment. To
achieve targeted delivery in PDAC, several strategies have been explored over the last years, and
especially the use of mesoporous silica nanoparticles (MSNs) seem an attractive approach. MSNs
show high biocompatibility, are relatively easy to surface modify, and the porous structure of MSNs
enables high drug-loading capacity. In the current systematic review, we explore the suitability of
MSN-based targeted therapies in the setting of PDAC. We provide an extensive overview of MSN-
formulations employed in preclinical PDAC models and conclude that MSN-based tumor-targeting
strategies may indeed hold therapeutic potential for PDAC, although true clinical translation has
lagged behind.

Keywords: MSN; PDAC; targeted therapy; drug delivery; antitumor; modification

1. Introduction
1.1. Pancreatic Cancer

Pancreatic ductal adenocarcinoma (PDAC), a neoplasm of the ductal cells in the
exocrine pancreas, accounts for around 85% of pancreatic cancer diagnoses [1–3]. In 2020
the incidence rate (496,000 cases) for PDAC was almost equal to the number of deaths
(446,000), making PDAC the seventh leading cause of cancer-related death in both sexes
worldwide [4]. Median survival rates of PDAC are low at 11–15 months for resectable
pancreatic cancer, 6–10 months for locally advanced cancer, and only 3–5 months for
metastatic disease [5]. The average 5-year overall survival is 10% [6].

Treatment of PDAC depends on its disease stage and comprises surgical resection,
radiation therapy, chemotherapy, and supportive care. Surgical resection is the only treat-
ment with curative potential [7]. Based on disease stage, PDAC patients are divided into
three groups; resectable/borderline resectable (10–20% of cases), non-resectable/locally ad-
vanced (around 30% of cases), and metastatic (around 60% of patients). Resectable/borderline
resectable patients may receive neoadjuvant chemotherapy in combination with radiother-
apy or adjuvant chemotherapy after surgical resection [8–10]. Gemcitabine monotherapy,
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which has been the golden standard for adjuvant treatment of the latter patients, has re-
cently been replaced with fluorouracil, leucovorin, oxaliplatin, and irinotecan combination
therapy (FOLFIRINOX) for patients with good post-operative performance status. The
PRODIGE-24 trial showed significantly increased disease-free survival and increased me-
dian overall survival (OS) of around 20 months for FOLFIRINOX-treated patients [9]. In
non-resectable/locally advanced diseases, nab-paclitaxel or FOLFIRINOX chemotherapy
is the standard treatment option. Although a small percentage of patients do become
eligible for surgery, most patients show limited response and remain ineligible for surgical
resection [11].

Systemic chemotherapy is also the standard treatment option in metastatic disease.
Gemcitabine monotherapy, the golden standard for many years, has been replaced by
FOLFIRINOX as a first-line treatment option, based on improved progression-free survival
(PFS) and OS reported in the ACCORD-11 phase III trial [12]. In addition to FOLFIRI-
NOX, the MPACT phase III clinical trial also demonstrated improved PFS and OS of
nab-paclitaxel/gemcitabine combination therapy compared to gemcitabine monotherapy
in metastatic disease [13]. However, it is important to note that FOLFIRINOX is only
recommended for patients with good performance status due to its significant treatment-
associated toxicity [14]. In older patients, or those with a lower performance status, the ad-
ministration of nab-paclitaxel/gemcitabine combination therapy is preferred over FOLFIRI-
NOX due to its lower cytotoxicity profile. In patients with poor performance status,
gemcitabine-based therapy remains the only treatment option available, but many patients
refrain from treatment in this stage due to the limited benefit and high toxicity [11].

The limited effect of current treatment modalities on the survival in PDAC may be
explained by several factors, including poor delivery of chemotherapeutic agents and
high toxicity profiles of existing drugs [15]. Of note, PDAC is characterized by a desmo-
plastic reaction, and PDAC tissue frequently consists of over 80% non-tumor cells, and
typically a minority of the tumor mass is made up of tumor cells [16]. The physical
barrier posed by the stroma results in poor delivery of chemotherapeutic agents to the
tumor cells, thereby severely hampering treatment efficacy [17]. As a consequence of
poor drug delivery, patients must receive high drug doses to reach effective levels in the
tumor, but the efficacy of such treatments is hampered by systemic toxicity with subse-
quent dose limitations and early cessation of therapy. Indeed, of the patients receiving
gemcitabine or nab-paclitaxel/gemcitabine combination therapy, around 60% and 70%,
respectively, have to discontinue treatment [18]. Of note, treatment-associated toxicities
result in supportive care costs that surpass the cost of first-line treatment in FOLFIRINOX
and nab-paclitaxel/gemcitabine combination therapy [18].

1.2. Targeted Delivery

To prevent toxicity-dependent dose-limitations, targeted delivery of chemotherapeutic
drugs to cancer cells without affecting healthy non-tumor cells is an attractive therapeutic
avenue to pursue. Such an approach would not only largely reduce morbidity but may
also increase the number of patients eligible for chemotherapy treatment and increase
efficacy by boosting local drug concentrations in the tumor. Proof of concept for targeted
therapy was obtained by coupling paclitaxel to albumin nanoparticles (nab-paclitaxel),
which increased the intratumoral activity of paclitaxel compared to free paclitaxel in
preclinical models [19]. After a Phase III trial in which nab-paclitaxel (with gemcitabine)
was associated with significantly better survival rates than gemcitabine alone, nab-paclitaxel
was approved by the FDA for the treatment of PDAC [13]. Targeting nab-paclitaxel to
the tumor site was hypothesized to depend on the binding of the albumin-moieties to
the protein Secreted Protein Acidic and Rich in Cysteine (SPARC/osteonectin/BM40)
overexpressed by fibroblasts in the stromal compartment [20]. However, subsequent
preclinical work showed that nab-paclitaxel delivery and antitumor activity is independent
of SPARC [21,22], implying that the increased efficacy of nab-paclitaxel hinges on improved
bioavailability rather than specific targeting. Nevertheless, as already outlined above,
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nab-paclitaxel remains widely used as the first-line treatment in the setting of PDAC due to
its relatively favorable toxicity profiles.

Several alternative targeted delivery strategies have been explored in PDAC over the last
decades. These strategies employ—amongst others—liposomes [23–26], poly(lactic-co-glycolic
acid) (PLGA)-based polymeric nanoparticles [27–29], solid lipid nanoparticles [30–32], and
mesoporous silica nanoparticles (MSNs) of which especially the use of MSNs seems an
attractive approach. MSNs are nanoscale silica-based particles with a porous structure
as implied by their name. This porous structure enables high drug-loading capacity and
time-dependent drug release. Additional advantages of MSNs include the tunable particle
and pore sizes, high biocompatibility, the possibility of functionalizing the inner core
and outer surface, and the possibility of controlled release through the use of a gatekeeper
system [33,34]. The use of a gatekeeper system allows the targeted delivery and spatial- and
temporal release of, for instance, chemotherapeutics or RNAi (siRNAs or shRNAs) from
MSNs specifically (in)to PDAC cells and can be achieved by internal and external stimuli,
such as pH gradients, enzymes, light or magnetic field [34–36]. In this review, we explore
the suitability of MSN-based targeted therapies in the setting of PDAC by providing a
systematic literature overview.

2. Materials and Methods

To explore the potential promise of MSNs for the management of PDAC, a systematic
literature search was performed in MEDLINE/PubMed, Web of Science Core Collection,
and the EMBASE database. The combination of search terms ‘PDAC’, ‘pancreatic’ or ‘pan-
creatic ductal adenocarcinoma’ with ‘MSN’, ‘mesoporous’, or ‘silica’ was used to retrieve
all papers that focus on MSNs in PDAC until November 30th, 2021. The exact search can be
found below. All retrieved papers were screened by title and abstract for eligibility. Review
papers, conference manuscripts, papers without full-text, papers not written in English
or of poor quality, and papers that did not focus on MSNs or PDAC cytotoxicity were
excluded. PubMed search query: (“pancreatic cancer” AND MSN) OR (“pancreatic cancer”
AND mesoporous) OR (“pancreatic cancer” AND silica) OR (PDAC AND MSN) OR (PDAC
AND Mesoporous) OR (PDAC AND silica) OR (pancreatic ductal adenocarcinoma AND
silica) OR (pancreatic ductal adenocarcinoma AND mesoporous) OR (pancreatic ductal
adenocarcinoma AND MSN)Web of Science Core Collection search query: ((((((((ALL =
(“pancreatic cancer” AND silica)) OR ALL = (“pancreatic cancer” AND mesoporous)) OR
ALL = (“pancreatic cancer” AND MSN)) OR ALL = (PDAC AND silica)) OR ALL = (PDAC
AND mesoporous)) OR ALL = (PDAC AND MSN)) OR ALL = (“pancreatic ductal adenocar-
cinoma” AND silica)) OR ALL = (“pancreatic ductal adenocarcinoma” AND mesoporous))
OR ALL = (“pancreatic ductal adenocarcinoma” AND MSN)EMBASE database search
query: pancreatic cancer’ AND msn OR (‘pancreatic cancer’ AND mesoporous) OR (‘pan-
creatic cancer’ AND silica) OR (‘pdac’ AND msn) OR (‘pdac’ AND mesoporous) OR (‘pdac’
AND silica) OR (‘pancreatic ductal adenocarcinoma’ AND msn) OR (‘pancreatic ductal
adenocarcinoma’ AND silica) OR (‘pancreatic ductal adenocarcinoma’ AND mesoporous).

3. Results

A total of 457 papers were retrieved from the different databases (Figure 1). After
removing duplicates, 140 eligible papers were identified that were thoroughly screened for
experimental data on MSNs in PDAC. This resulted in the inclusion of 42 papers in this
systematic review (Table 1). As outlined below, MSN-based targeted therapies may use
classical MSNs or may exploit hybrid MSN-based strategies comprised of MSNs combined
with a liposomal, gold, or magnetic iron oxide component. Both these systems are mainly
used for cytotoxicity experiments but are also under consideration for imaging purposes.
A schematic representation of the MSN-based nanoparticles and their applications can be
seen in Figure 2.
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Figure 1. Flowchart explaining the systematic literature search. All retrieved papers were screened,
and duplicates were removed, followed by exclusion based on title and abstract, full text, or quality.

Figure 2. Diagram summarizing loading strategies of different molecules (siRNA/DNA, oxygen,
sonosensitizer (e.g., IR780), anticancer drugs (e.g., gemcitabine, cisplatin, curcumin, irinotecan,
paclitaxel, palbociclib, and oxaliplatin), anti-stroma drugs (e.g., TGF-β inhibitor), antifibrotic drugs
(e.g., pirfenidone), photosensitizers (e.g., ZnPcOBP and methylene blue), methods to prolong half-
life, increase specificity and cellular uptake (passive targeting molecules (e.g., polyethyleneimine),
PDAC targeting molecules/proteins (e.g., folic acid, transferrin, urokinase plasminogen activator, V7
peptides, cyclosporine A, IGF1, c(RGDfE), and CCKBR aptamer), stroma targeting molecules (e.g.,
iRGD), gatekeeper with pH sensitive linkers (e.g., chitosan, disulfide bonds, and poly(D,L-lactide-
co-glycolide) (PLGA)), gatekeepers with protease linkers (e.g., ADAM9-responsive linker capped
with avidin, thermoresponsive gatekeeper (e.g., aliphatic azo group capped with β-cyclodextrin),
antibodies (e.g., tMUC-antibody, GPC1-antibody, Cetuximab, anti-claudin 4, and anti-mesothelin),
and hybrid MSNs.
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Table 1. MSN-based Therapies for Improved Drug Delivery in PDAC.

MSN Modification Aim of
Modification

Experimental
Model

Drug/
Treatment Main Outcome Ref.

MSN PEG
PEI

↑ Biodistribution
↑ Uptake • PDAC cells Paclitaxel •↑ cellular uptake compared to unmodified MSN

•↑ cytotoxicity compared to free drug [37]

MSN FC-Chain Oxygen Delivery • PDAC cells
• Subc. Mouse Sonodynamic Therapy

•↓ cell proliferation of multi-treatment MSNs compared to single
treatment MSNs
•↓ tumor volume compared to untreated, single-treatment MSNs
•↑ improved survival compared to untreated, single-treatment MSNs

[38] *

MSN Folate ↑ Uptake • Subc. mouse Camptothecin •↓ tumor volume compared to untreated, free drug and unmodified
MSNs [39]

MSN
LY364947

PEG
PEI

TGF-β inhibition
↑ Biodistribution
↑ Uptake

• PDAC cells
• Orth.. mouse
• Subc. mouse

LY364947
(TGFb inhibitor)

•↓ pericytes coverage compared to free TGF-β inhibitor
•↑ delivery Gemcitabine-loaded-liposomes compared to single-treatment
•↓ tumor volume compared to untreated, free drug and unmodified
MSNs

[40] *

MSN ACVA
β-cyclodextrin

Cargo Release
Gatekeeper • PDAC cells Doxycycline • Thermoresponsive release of cargo

•↑ cytotoxicity compared to untreated and empty MSN [41]

MSN PEG ↑ Biodistribution • PDAC cells Curcumin •↑ curcumin formulation [42]

MSN Gemcitabine Gatekeeper • PDAC cells
• Subc. Mouse Pirfenidone/Gemcitabine

•↓ expression stromal components
•↓ IC50 compared to free drug
•↓ tumor volume compared to untreated and free drug
•↑ survival compared to untreated and free drug
• No adverse effects major organs after three weeks of treatment

[43] *

MSN
Cetuximab
Imidazole

PEG

↑ Uptake
Gatekeeper

↑ Biodistribution
• PDAC cells ZnPcOBP

(Photodynamic Therapy)
•↑ cellular uptake compared to unmodified MSN
•↑ cytotoxicity compared to empty and unmodified MSN [44] *

MSN Chitosan Cargo Release • PDAC cells N6L
(Nuceolin antagonist) • pH-sensitive cargo release [45]

MSN
Transferrin
Chitosan

PLGA

↑ Uptake
Cargo Release
Cargo Release

• PDAC cells Gemcitabine •↑ cytotoxicity compared to unmodified MSN
• pH-sensitive cargo release [46]

MSN Transferrin
PEG

↑ Uptake
↑ Biodistribution

• PDAC cells
• Subc. mouse Curcumin

•↑ cellular uptake compared to unmodified MSN
•↓ tumor growth and metastasis compared to free drug and unmodified
MSN

[47]



Pharmaceutics 2022, 14, 390 6 of 17

Table 1. Cont.

MSN Modification Aim of
Modification

Experimental
Model

Drug/
Treatment Main Outcome Ref.

MSN
tMUC-antibody

PEG
PEI

↑ Uptake
↑ Biodistribution
↑ Uptake

• PDAC cells
• Genetic mouse

Gemcitabine-/
cisplatin prodrug

•↑ cellular uptake compared to unmodified MSN
•↑ cytotoxicity double-loaded MSNs compared to a single drug and
mixed
•↑ cellular uptake compared to unmodified MSN
•↓ tumor volume and weight compared to control, free drug and
unmodified MSN
• No adverse effects major organs

[48] *

MSN Cetuximab
PEG

↑ Uptake
↑ Biodistribution

• PDAC cells
• Orth. mouse Zinc phthalocyanine •↑ cellular uptake compared to free drug and unmodified MSN

•↓ tumor volume [49]

MSN ADAM9-linker
Biotin-avidin

Cargo Release
Gatekeeper

• PDAC and white
blood cells Paclitaxel •↑ cytotoxicity in PDAC compared to white blood cells [50]

MSN • PDAC cells
• Intraperi. mouse Paclitaxel •↑ cellular drug concentration compared to free drug

•↑ drug concentration in tumor compared to free drug [51]

MSN L-arginine CO2 adsorption/
release

• PDAC cells
• Subc. mouse Sonodynamic Therapy •↑ cytotoxicity compared to single-treatment

•↓ tumor volume compared to single-treatment [52]

MSN GPC1-antibody ↑ Uptake • PDAC cells Gemcitabine/
Ferulic Acid •↑ cytotoxicity compared to unmodified MSNs [53]

MSN Chitosan
UPA

Cargo Release
Cargo Release • PDAC cells Gemcitabine • pH-specific cargo release [54]

MSN • PDAC cells Doxorubicin • Delivery of doxorubicin to cytoplasm PDAC cells [55]

MSN Quantum Dots Cargo Loading • PDAC cells Doxorubicin/
Camptothecin

•↑ cytotoxicity multidrug-loaded MSNs compared to single drug-loaded
MSNs [56]

MSN • PDAC cells Paclitaxel • Dose-dependent cytotoxicity [57]

Lipo-MSN
• PDAC cells
• Subc. mouse
• Orth. mouse

Paclitaxel/
Gemcitabine

• Synergy of paclitaxel and gemcitabine upon co-delivery
•↑ tumor shrinkage compared to free drug, MSN-loaded and combination
therapy
•↓ primary tumor growth and metastasis

[58]

Lipo-MSN PEG ↑ Biodistribution
• PDAC cells
• Subc. mouse
• Orth. mouse

Palbociclib/
Hydroxy-chloroquine

•↑ cytotoxicity co-delivery compared to free and single drug MSNs
•↓ tumor size co-delivery compared to free drug and single drug MSNs
•↓ tumor size co-delivery compared to free drug and single drug MSNs

[59]

Lipo-MSN • Orth. mouse Irinotecan •↓ tumor size and improved survival compared to free drug and Onivyde
•↓ liver, GIT, and bone marrow toxicity [60]
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Table 1. Cont.

MSN Modification Aim of
Modification

Experimental
Model

Drug/
Treatment Main Outcome Ref.

Lipo-MSN • PDAC cells P1A1
(Platinum-acridine) •↑ cytotoxicity compared to empty MSN and free drug [61]

Lipo-MSN iRGD
PEG

↑ Uptake
↑ Biodistribution • Orth. mouse Irinotecan •↑ cellular uptake compared to unmodified Lipo-MSN

•↑ survival and ↓metastasis compared to unmodified Lipo-MSN [62]

Lipo-MSN PEG ↑ Biodistribution • Orth. mouse Oxaliplatin/
fDACHPt

•↓ tumor weight and metastasis, improved survival compared to free
drug [63]

Lipo-MSN PEG ↑ Biodistribution • Orth. mouse Irinotecan •↓ tumor weight and metastasis compared to free drug
•↑ survival compared to free drug and Onivyde [64] *

Lipo-MSN PEG ↑ Biodistribution • Orth. mouse Irinotecan
•↓ tumor weight and metastasis, improved survival compared to free
drug
•↓ liver, GIT, and bone marrow toxicity

[65]

Lipo-MSN PEG ↑ Biodistribution • Orth. mouse Irinotecan •↓ tumor weight and metastasis compared to free drug and Onivyde [66] *

Lipo-MSN Cyclosporine A
PEG

↑ Uptake
↑ Biodistribution

• PDAC cells
• Subc. mouse

Bortezomib/
IR-820

(Photothermal Therapy)

•↑ cellular uptake compared to unmodified Lipo-MSN
•↓ tumor volume and growth compared to free drug and unmodified
Lipo-MSN

[67]

Lipo-MSN PEG ↑ Biodistribution • Subc. mouse
• Orth. mouse

Oxaliplatin/
Indoximod

•↓ tumor size and metastasis compared to free drug, single-drug
Lipo-MSNs
•↑ survival compared to free drug, single-drug Lipo-MSNs
•↓ tumor size and metastasis compared to free drug, single-drug
Lipo-MSNs
•↑ survival compared to free drug, single-drug Lipo-MSNs

[68]

Gold-MSN IGF-1 ↑ Uptake • PDAC cells
• Subc. mouse Gemcitabine/Perfluorohexane

•↑ cytotoxicity compared to untreated, free drug, unmodified MSNs
• Complete response compared to untreated, free drug, unmodified MSNs
• No adverse effects major organs

[69] *

Gold-MSN Transferrin
PEG

↑ Uptake
↑ Biodistribution

• PDAC cells
• Subc. mouse Gemcitabine

•↑ cellular uptake compared to unmodified Gold-MSN
•↓ tumor volume compared to free drug, empty and unmodified
Gold-MSN

[70] *

Gold-MSN • PDAC cells Methylene Blue
(Photodynamic Therapy) •↑ cytotoxicity Gold-modified MSNs compared to unmodified [71]

Gold-MSN V7-peptide
Chitosan

↑ Uptake
Cargo Release • PDAC cells Gemcitabine •↑ cytotoxicity compared to free drug and empty MSNs [72]
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Table 1. Cont.

MSN Modification Aim of
Modification

Experimental
Model

Drug/
Treatment Main Outcome Ref.

Iron-MSN • PDAC cells
• Orth. mouse Camptothecin

•↑ cytotoxicity compared to free drug, empty MSN, and unmodified MSN
•↓ tumor volume compared to untreated and free drug
• No adverse effects major organs

[73] *

Iron-MSN Dicarboxylic acid Cargo Release • PDAC cells Cisplatin •↑ cytotoxicity compared to free drug
•↓ cytotoxicity nonmalignant human pancreatic duct cells [74]

Iron-MSN • PDAC cells
• Subc. Mouse

Gemcitabine/
Losartan

•↑ cytotoxicity compared to free drug
•↓ tumor weight and volume compared to monotherapy
• No adverse effects major organs

[75] *

Iron-MSN • PDAC cells Doxycycline • Dose-dependent cytotoxicity [76]

Iron-MSN c(RGDfE)
PEG

↑ Uptake
↑ Biodistribution • PDAC cells Gemcitabine •↑ uptake compared to unmodified Iron-MSNs [77]

Iron-MSN

CCKBR aptamer
G16
PEG

citrate

↑ Uptake
↑ Uptake

↑ Biodistribution
↑ Biodistribution

• PDAC cells
• Orth. mouse

FdUMP/
dFdCMP

•↓ proliferation compared to free drug and empty MSNs
•↓ thymidylate synthase levels compared to unmodified MSNs [78]

• = in vitro, • = in vivo, Orth. = Orthotopic, Subc. = Subcutaneous, Intraperi. = Intrapertitoneal, ↑ = increased, ↓ = decreased, * indicates particularly relevant publication.
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3.1. Cytotoxicity of Classical MSNs in PDAC

The last decade has seen a rise in the number of studies exploring MSNs in PDAC [37–57].
Building on experience with MSNs in other tumor types [79–81], MSNs are preferentially
surface modified to increase biodistribution and/or tumor uptake. Pioneering studies
showed that surface modification by conjugation with polyethyleneimine (PEI) [37], folic
acid [82], or monoclonal antibodies targeting anti-claudin4 and anti-mesothelin [83] indeed
improved nanoparticle uptake by PDAC cells, whereas modification with polyethylene
glycol (PEG) was shown to enhance biodistribution and circulation time in experimen-
tal animal models [40,42]. More recent studies use alternative surface modifications to
target chemotherapeutics to PDAC tumors, and MSNs have been conjugated with transfer-
rin [46,47,83], urokinase plasminogen activator [54], anti-GPC1, anti-tMUC1 [48], or V7 [84]
peptides for this purpose. As envisioned, cellular uptake was increased using tumor-
targeting moieties compared to controls lacking a modification both in vitro [46,47,83] and
in vivo [48,54,84]. A recent study confirmed the importance of tumor-targeting surface
modifications [84]. Utilizing V7 peptide-conjugated MSNs in an orthotopic PDAC model,
MacCuaig and colleagues showed that active targeting of MSNs (i.e., including surface
modifications to increase tumor cell uptake) outperforms passive targeting (i.e., no tumor
targeting modifications on the MSNs) irrespective of nanoparticle size [84]. However, it is
important to note that improved uptake and cytotoxicity in vitro does not always translate
to similar findings in vivo, as PEGylated MSNs showed higher tumor uptake compared to
PEG-transferrin-modified MSNs in one study [47]. More importantly, drug-loaded anti-
tMUC1-conjugated MSNs outperformed MSNs lacking the anti-tMUC1 moiety in reducing
tumor volume and weight in a syngeneic mouse model in which human tMUC expressing
PDAC cells were implanted [48].

In addition to targeting MSNs to tumor cells, MSNs may also be surface modified
to only release their cargo in the proximity of tumor cells. To this end, several so-called
gatekeeper systems have been developed that prevent drug release in the circulation and/or
at healthy, non-tumor-bearing organ sites. The addition of pH-sensitive gatekeepers such
as chitosan, disulfide bonds, and poly(D,L-lactide-co-glycolide) showed pH-specific cargo
release in vitro [45,46] and in tissue-mimicking phantoms [54,84]. The reduction in tumor
weight and volume upon administration to PDAC bearing mice suggests that pH-based
gatekeepers also hold promise for in vivo settings [43]. Unfortunately, no in vitro or in vivo
experiments have been performed to compare the cytotoxicity of MSNs with and without a
pH-sensitive gatekeeper to prove its superior sensitivity for the tumor microenvironment
compared to healthy tissue. MSNs may also achieve specific drug release in the vicinity of
tumor cells capped and locked by protease linkers that are specifically cleaved by tumor-
enriched proteases. Indeed, conjugating MSNs with an ADAM9-responsive peptide linker
more efficiently killed PDAC cells than white blood cells in vitro [50].

As opposed to tumor intrinsic properties, external cues can also be applied to remove
the gatekeeper from MSNs thereby inducing drug release. Removing a thermo-responsive
gatekeeper using an alternating magnetic field (AMF) led to rapid drug release and efficient
PDAC cell death whereas no cell death was observed in the absence of AMF [41]. Alter-
natively, external stimuli may be applied to activate MSNs to induce cell death. Photonic
stimulation of MSNs loaded with the photosensitizer ZnPcOBP caused a high phototoxic
effect compared to free ZnPcOBP on PDAC cells in vitro. This effect was further enhanced
by surface modification with Cetuximab, a monoclonal antibody that targets the Epidermal
Growth Factor Receptor [44]. Of note, the observed photokilling of

ZnPcOBP-loaded Cetuximab-conjugated MSNs correlated with (epidermal growth
factor receptor (EGFR) expression levels in the PDAC cells. Similarly, the delivery of oxygen
and the sonosensitizer IR780 by MSNs to the hypoxic tumor environment reduced tumor
volume and improved survival in experimental animals upon sonodynamic therapy [38].
This method, however, relies on ultrasound irradiation and the presence of EGFR on
tumor cells, which might not be translatable to real-world clinical routines and possibili-
ties. Despite the substantial number of in vitro studies with MSNs in PDAC, only several
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papers study the potential of MSNs in preclinical animal models. To target, the stromal
compartment, MSNs coated with PEI/PEG/LY364947 (a small molecule TGF-β inhibitor)
were administered to tumor-bearing mice [40]. Of note, the number of pericytes in the
stroma surrounding the tumor cells was reduced and subsequent treatment with PEGylated
gemcitabine-loaded liposomes efficiently reduced tumor weight as compared to control
mice that were only treated with gemcitabine-loaded liposomes [40]. Importantly, combina-
tion therapy of PEI/PEG/LY364947 coated MSNs with gemcitabine-loaded liposomes did
not induce cytotoxicity (i.e., body weight loss or nephrotoxicity) as opposed to free gemc-
itabine. Of note, this promising study was already published in 2013, and no follow-up has
yet been reported. Gao and co-workers employed MSNs loaded with the antifibrotic drug
pirfenidone that were subsequently capped with gemcitabine to simultaneously target
the stromal and tumor compartment combined with ultrasound destruction [43]. This
intriguing approach almost completely halted tumor growth for three weeks and prolonged
survival compared to both free gemcitabine and pirfenidone [43]. However, half of the
mice succumbed to the disease after seven weeks, indicating that the observed tumor
growth inhibition was an early response not sustained over time. In addition, although the
increased cytotoxicity of the MSNs was not accompanied by any toxicity after three weeks
of treatment, ultrasound destruction is well-known to induce damage to healthy tissues,
limiting the applicability in clinical trials. One possibility to circumvent this caveat would
be to monitor biological tissue damage using, for example, the IMWPE-PNN method [as
described in Bei Liu et al. [85]]. The combination of cisplatin and gemcitabine is associated
with high toxicity, yet recent clinical trials imply an added benefit of including cisplatin
in existing PDAC treatment regimens [86,87]. Based on this notion, a very recent study
designed MSNs with cisplatin and gemcitabine prodrugs to the inner and outer surface,
respectively. Systemic administration of these MSNs to two genetic tumor-bearing mouse
models significantly suppressed tumor growth and eliminated the off-target toxicities of
the highly toxic chemotherapy combination. By mimicking advanced stages of PDAC
in vivo over a study course of three months, they were able to show therapeutic effect by
a decrease in pancreas weight, attributed by a reduction of the tumor mass. [48]. In vivo
study designs like these might improve the clinical translation.

In addition to conventional chemotherapeutics, MSNs also open up new avenues
for drugs whose clinical potential is hampered by their hydrophobicity and consequent
bio-distribution. The clinical efficacy of curcumin, a candidate anticancer drug [88] that
potentiates the effect of gemcitabine [89,90], is limited by its poor solubility. Loading
curcumin into MSNs was found to inhibit tumor growth and minimize distant metastasis
in a subcutaneous xenograft model [47]. Of note, subsequent administration of gemc-
itabine potentiates the effect of curcumin-loaded MSNs in vitro, but in vivo validation is
lacking [47].

Overall, a picture emerges in which classical MSNs are attractive vehicles to deliver
drugs to PDAC tumors. Different surface modifications have shown promising character-
istics in preclinical PDAC models, and several MSN formulations warrant follow-up in
future clinical studies.

3.2. Liposome-Coated MSNs

Amongst all nanomedicine platforms, liposomes—spherical vesicles composed of
a lipid bilayer—are most used and several FDA-approved liposome formulations (most
notably liposomal irinotecan, Onivyde, in the setting of PDAC) are used in the clinic.
Based on the favorable characteristics of liposomes, several papers describe the coating
of MSNs with a lipid bilayer to improve stability after systemic administration, thereby
overcoming one of the major limitations of MSNs in vivo. The majority of lipid membrane-
enhanced MSNs lack a targeted delivery moiety [58–61,63–66,68], however iRGD- [62] and
cyclosporine A-conjugated [67] liposome-coated MSNs have been designed to improve
tumor targeting and cellular uptake. Non-targeted irinotecan-loaded liposome-coated
MSNs consistently outperform irinotecan-loaded liposomes, including FDA-approved
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Onivyde, in terms of drug delivery, cytotoxicity, survival as well by reducing bone marrow,
gastrointestinal and liver toxicity [64,66]. Indeed, compared to free drug and Onyvide, the
liposome-coated MSNs amounted to a 79- and 8.7-fold increase in tumor drug content,
respectively. In line, irinotecan-loaded liposomes significantly increased survival compared
to Onyvide in an orthotopic PDAC model [66]. Modifying the liposome-coated MSNs with a
tumor-homing and penetrating iRGD-peptide enhanced survival even further and resulted
in reduced metastasis [62]. The significant improvement of irinotecan-loaded liposome-
coated MSNs over the last five years resulting in their superiority over Onyvide, poses
it as an interesting candidate for progressing to clinical testing. Further research showed
that combining different drugs in lipid-modified MSNs greatly improves tumor reduction
compared to free drugs or corresponding monotherapies. Indeed, gemcitabine/paclitaxel-
loaded MSNs outperform gemcitabine-loaded MSN monotherapy and combination therapy
of free gemcitabine and nab-paclitaxel [58]. Moreover, co-administration of palbociclib- and
hydroxychloroquine-loaded MSNs [59], or indoximod- and oxaliplatin-loaded MSNs [68]
reduced PDAC growth more efficiently compared to mono MSN therapy or free drug
combinations. Besides, the co-delivery of chemotherapeutic-loaded liposome-coated MSNs
can also be adjusted to facilitate photothermal and photodynamic-induced cancer cell
apoptosis [67]. The increased uptake dependent on cyclosporine A conjugation improved
the apoptotic effects of bortezomib in combination with the cytotoxic effects of the near
infrared (NIR) dye IR-820 upon NIR irradiation in a subcutaneous PDAC model [67].
In conclusion, liposome-coated MSNs confer great versatility and show great promise
in preclinical research, notably by outperforming the FDA-approved classical liposomal
formulation Onivyde upon loading with irinotecan.

3.3. Gold-MSN Hybrid Nanocarriers

Gold-MSN hybrid nanocarriers are typically employed for imaging purposes (see
below for details), but they may also be used to potentiate treatment response. By extending
the lifetime of highly toxic singlet oxygen species necessary for photosensitization, the
cytotoxic potential of the involved photosensitizer molecules is increased [91]. Indeed, the
conjugation of gold-nanoparticles to MSNs loaded with the photosensitizer methylene
blue decreased PANC-1 cell viability following photodynamic therapy (PDT) compared
to MB-loaded MSNs lacking a gold nanoparticle tethered to the outer layer in vitro [71].
The superior efficacy of gold-MSNs has been confirmed in preclinical animal models by
two research groups [69,70]. Both studies employing gold-MSNs in vivo used conjugated
MSNs, with IGF1 [69] or transferrin [70], to increase their cellular uptake. In a patient-
derived xenograft PDAC mouse model, gemcitabine-loaded IGF1-conjugated gold-MSNs
reduced tumor growth by around 70% [69]. Combining the gold-MSNs with photothermal
therapy further enhanced efficacy leading to complete eradication of the xenograft and
an astounding survival rate of 100% [69]. Next to their remarkable antitumor efficacy,
the gold-MSNs did not seem to induce any cytotoxicity off-target. Albeit promising,
intratumoral injection for photoablation limits the therapeutic efficacy to the primary
tumor, leaving metastatic foci unharmed. Moreover, such a treatment would be hard
to implement in the clinic and would require incorporation in local ablation modalities.
In line with these intriguing data, gemcitabine-loaded transferrin-conjugated gold-MNs
also greatly enhanced chemosensitivity of PDAC cells and induced effective regression
of human pancreatic cancer xenografts in mice by the combination of photothermal- and
chemotherapy [70]. The impressive antitumor efficacy was in part attributed to an increased
penetration of gemcitabine after photothermal therapy. However, it is important to note
that photothermal ablation is not readily translatable to human PDAC due to the tissue
absorption of laser light causing a decrease in intensity of approximately 10-fold every
2 cm deeper [92]. Consequently, it would be necessary to address whether MSN-based
therapies involving photothermal ablation by laser light can be applied in a clinical setting.
Additionally, it would be interesting to assess if loading gold-MSNs with drugs with a
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higher cytotoxic activity towards PDAC cells, such as nab-paclitaxel, may even further
reduce tumor growth.

3.4. Magnetic Iron Oxide-MSN Hybrid Nanocarriers

A relatively recently developed hybrid MSN nanocarrier system combined MSNs with
an iron oxide component [73–78]. These hybrid MSNs allow simultaneous MRI contrast
imaging and drug delivery, thereby enabling the visualization of therapy efficacy in a
non-invasive manner. Although the number of papers describing theranostic magnetic
iron oxide-MSNs is limited, they seem to hold promise in the setting of PDAC. Indeed,
tumor microenvironment-triggered release of poorly water-soluble camptothecin molecules
from magnetic iron oxide-MSNs reduced tumor growth in vivo [73]. This study, however,
was limited to 13 days, and, therefore, long-term efficacy must be demonstrated in future
research. The safety and biocompatible nature of the magnetic iron oxide-MSNs was
confirmed by histological analysis, and no overt signs of toxicity were observed in other
organs. As described above, in PDAC, MSNs may be employed in a ‘two-hit’ approach
in which the first hit targets the stroma to then improve tumor delivery of drugs carried
by the MSNs (second hit). Based upon this notion, Li and colleagues treated tumor-
bearing mice with magnetic iron oxide-MSNs loaded with losartan that inhibits type I
collagen and hyaluronic acid present in PDAC stroma. Mono treatment of losartan-loaded
magnetic iron oxide-MSNs marginally reduced tumor volume, but subsequent treatment
with gemcitabine-loaded magnetic Iron Oxide-MSNs very efficiently diminished tumor
growth by over 70%. Notably, monotherapy with gemcitabine-loaded magnetic iron oxide-
MSNs was less effective and reduced tumor growth by around 40% [75]. Unfortunately,
the endpoint was after only three weeks, limiting the observation of long-term effects.
Similar to surface modifications described above, magnetic iron oxide hybrid MSNs may
also be further modified to increase specificity or efficacy. As the first example of such
an approach, Sun and colleagues showed that adding a c(RGDfE) moiety improved the
cellular uptake by PDAC cells [77]. Whether this modification or alternative modifications
used for targeting purposes in classical MSNs, also improves efficacy in preclinical PDAC
animal models need to be established. Preclinical assessment needs to be improved by
extending the treatment and follow-up period of in vivo experiments. Furthermore, the
wide variety of magnetic iron oxide molecules used in hybrid-MSNs complicate the ability
to compare studies and address superiority, future standardization experiments might be
particularly useful for this type of MSNs.

4. Conclusions

The preclinical studies discussed in this systematic review suggest that MSN-based
tumor-targeting strategies may hold therapeutic potential for PDAC. Indeed, MSNs-based
therapies show antitumor activity in PDAC mouse models and seem to reduce adverse
toxicity. Several issues need to be kept in mind before MSNs can move forward to clinical
development in PDAC management. The MSNs employed in the (preclinical) studies are
rather variable with respect to their synthesis and surface modifications, and no direct
comparisons have been made between these MSNs. Indeed, the MSN formulations have
been tested in different preclinical models with varying drug concentrations, controls,
endpoints, and treatment modalities. Hence, it will be pivotal to compare different MSN
formulations head-to-head in similar models with predefined endpoints. Only when such
studies have been performed will we be able to select the most promising MSN-based
strategy to test in clinical studies. Unfortunately, clinical translation remains slow. Even
though the safety of MSNs has been widely demonstrated in clinical trials, it has taken over
more than two decades for gold-MSNs to reach clinical trials [93]. This slow progression
may be explained by the over-interpretation of results combined with the majority of
papers not passing the critical assessment of their translatable applicability. Additionally,
multiple MSN-based nanoplatforms showing pre-clinical promise are not followed up
or improved over time, raising the question of whether follow-up was not performed or
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whether it yielded less than encouraging results. Another important limitation of several
of the discussed studies is the lack of proper controls to address potential side effects of
the MSN formulations. To conclude that MSN-loaded drugs confer reduced cytotoxicity,
it is pivotal to include relevant control cells in vitro and proper toxicity readouts in vivo.
As most chemotherapeutics show bone marrow toxicity induces neuropathy and diarrhea,
preclinical mouse models should be designed to assess these common side effects. In vitro,
one should consider including blood, neuronal, or (gut) epithelial cells to assess the effect of
the MSNs on the relevant cell types. Irrespective of these latter considerations, MSN-based
targeted therapies seem to hold promise for treating PDAC, a disease that is in dire need of
improved therapeutic options.
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35. Knežević, N.Ž.; Jean-Olivier, D. Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles.
ChemPlusChem. 2015, 80, 26–36. [CrossRef]

36. Mekaru, H.; Lu, J.; Tamanoi, F. Development of mesoporous silica-based nanoparticles with controlled release capability for
cancer therapy. Adv. Drug Deliv. Rev. 2015, 95, 40–49. [CrossRef]

37. Xia, T.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J.I.; Nel, A.E. Polyethyleneimine coating enhances the
cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 2009, 3,
3273–3286. [CrossRef]

http://doi.org/10.1016/S0140-6736(16)00141-0
http://doi.org/10.1016/j.bbcan.2015.04.003
http://doi.org/10.1016/j.canlet.2017.01.041
http://doi.org/10.1056/NEJMra0901557
http://doi.org/10.1080/17512433.2017.1365598
http://doi.org/10.1158/1078-0432.CCR-05-1634
http://doi.org/10.4161/cbt.7.11.6846
http://doi.org/10.1158/1535-7163.MCT-15-0764
http://www.ncbi.nlm.nih.gov/pubmed/26832793
http://doi.org/10.1136/gutjnl-2013-305559
http://www.ncbi.nlm.nih.gov/pubmed/24067278
http://doi.org/10.1016/S0140-6736(15)00986-1
http://doi.org/10.1093/annonc/mdr379
http://www.ncbi.nlm.nih.gov/pubmed/21896540
http://doi.org/10.1371/journal.pone.0193644
http://doi.org/10.1002/jps.24693
http://doi.org/10.3892/ol.2021.12894
http://doi.org/10.1021/acs.molpharmaceut.0c01225
http://doi.org/10.3390/cells10102734
http://doi.org/10.1186/s13578-015-0041-y
http://www.ncbi.nlm.nih.gov/pubmed/30416852
http://doi.org/10.3389/fonc.2021.594917
http://www.ncbi.nlm.nih.gov/pubmed/34354940
http://doi.org/10.1002/adhm.201200176
http://www.ncbi.nlm.nih.gov/pubmed/23184490
http://doi.org/10.3390/nano7070189
http://doi.org/10.1002/cplu.201402369
http://doi.org/10.1016/j.addr.2015.09.009
http://doi.org/10.1021/nn900918w


Pharmaceutics 2022, 14, 390 15 of 17

38. Chen, J.; Luo, H.; Liu, Y.; Zhang, W.; Li, H.; Luo, T.; Zhang, K.; Zhao, Y.; Liu, J. Oxygen-Self-Produced Nanoplatform for Relieving
Hypoxia and Breaking Resistance to Sonodynamic Treatment of Pancreatic Cancer. ACS Nano 2017, 11, 12849–12862. [CrossRef]

39. Lu, J.; Li, Z.; Zink, J.I.; Tamanoi, F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery
system: Enhanced efficacy by folate modification. Nanomedicine 2012, 8, 212–220. [CrossRef]

40. Meng, H.; Zhao, Y.; Dong, J.; Xue, M.; Lin, Y.S.; Ji, Z.; Mai, W.X.; Zhang, H.; Chang, C.H.; Brinker, C.J.; et al. Two-wave
nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano
2013, 7, 10048–10065. [CrossRef]

41. Chen, W.; Cheng, C.A.; Zink, J.I. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
ACS Nano 2019, 13, 1292–1308. [CrossRef] [PubMed]

42. Seeta Rama Raju, G.; Pavitra, E.; Nagaraju, G.P.; Ramesh, K.; El-Rayes, B.F.; Yu, J.S. Imaging and curcumin delivery in pancreatic
cancer cell lines using PEGylated alpha-Gd2(MoO4)3 mesoporous particles. DaltoN. Trans. 2014, 43, 3330–3338. [CrossRef]
[PubMed]

43. Gao, F.; Wu, J.; Niu, S.; Sun, T.; Li, F.; Bai, Y.; Jin, L.; Lin, L.; Shi, Q.; Zhu, L.M.; et al. Biodegradable, pH-Sensitive Hollow
Mesoporous Organosilica Nanoparticle (HMON) with Controlled Release of Pirfenidone and Ultrasound-Target-Microbubble-
Destruction (UTMD) for Pancreatic Cancer Treatment. Theranostics 2019, 9, 6002–6018. [CrossRef] [PubMed]

44. Er, Ö.; Colak, S.G.; Ocakoglu, K.; Ince, M.; Bresolí-Obach, R.; Mora, M.; Sagristá, M.L.; Yurt, F.; Nonell, S. Selective Photokilling of
Human Pancreatic Cancer Cells Using Cetuximab-Targeted Mesoporous Silica Nanoparticles for Delivery of Zinc Phthalocyanine.
Molecules 2018, 23, 2749. [CrossRef]

45. Poostforooshan, J.; Belbekhouche, S.; Shaban, M.; Alphonse, V.; Habert, D.; Bousserrhine, N.; Courty, J.; Weber, A.P. Aerosol-
Assisted Synthesis of Tailor-Made Hollow Mesoporous Silica Microspheres for Controlled Release of Antibacterial and Anticancer
Agents. ACS Appl. Mater. Interfaces 2020, 12, 6885–6898. [CrossRef] [PubMed]

46. Saini, K.; Bandyopadhyaya, R. Transferrin-Conjugated Polymer-Coated Mesoporous Silica Nanoparticles Loaded with Gemc-
itabine for Killing Pancreatic Cancer Cells. ACS Appl. Nano Mater. 2020, 3, 229–240. [CrossRef]

47. RS, P.; Mal, A.; Valvi, S.K.; Srivastava, R.; De, A.; Bandyopadhyaya, R. Noninvasive Preclinical Evaluation of Targeted Nanoparti-
cles for the Delivery of Curcumin in Treating Pancreatic Cancer. ACS Appl. Bio. Mater. 2020, 3, 4643–4654. [CrossRef]

48. Tarannum, M.; Hossain, M.A.; Holmes, B.; Yan, S.; Mukherjee, P.; Vivero-Escoto, J.L. Advanced Nanoengineering Approach
for Target-Specific, Spatiotemporal, and Ratiometric Delivery of Gemcitabine-Cisplatin Combination for Improved Therapeutic
Outcome in Pancreatic Cancer. Small 2021, e2104449. [CrossRef] [PubMed]

49. Er, O.; Tuncel, A.; Ocakoglu, K.; Ince, M.; Kolatan, E.H.; Yilmaz, O.; Aktaş, S.; Yurt, F. Radiolabeling, In Vitro Cell Uptake, and In
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