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Abstract
Objective Metabolic syndrome (MetS) has a high prevalence in the United States (US); however, limited research 
comprehensively evaluates the relationship between muscle quality index (MQI) and MetS. This study aims to 
investigate the association between MQI and MetS.

Methods Adults aged 20–60 years from the 2011–2014 National Health and Nutrition Examination Survey were 
included. Handgrip strength (HGS) was measured using a dynamometer, and appendicular skeletal muscle mass 
(ASM) was assessed via dual-energy X-ray absorptiometry. MQI_total was calculated as the sum of HGS from both 
hands divided by ASM. Weighted multivariable logistic regression models and restricted cubic splines (RCS) were used 
to explore the association between MQI_total and MetS, and subgroup, interaction, and sensitivity analyses were 
conducted.

Results A total of 4,503 US residents were included in the study, with 1,165 diagnosed with MetS, yielding a 
prevalence of 25.9% (1,165/4,503). The weighted multivariable logistic regression model indicated that after adjusting 
for multiple covariates, MQI was negatively associated with the risk of MetS (odds ratio [OR] = 0.49, 95%CI: 0.32–0.73). 
Among the different components of MetS, MQI was negatively associated with elevated waist circumference 
(OR = 0.19, 95%CI: 0.12–0.28), elevated high-density lipoprotein cholesterol (OR = 0.66, 95%CI: 0.51–0.85), and elevated 
serum triglycerides (OR = 0.66, 95%CI: 0.51–0.85). RCS revealed a negative linear relationship between MQI and MetS 
(P < 0.001, Pnon−linear = 0.98).
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Introduction
Metabolic syndrome (MetS) is a cluster of metabolic 
disorders characterized by insulin resistance, obesity, 
hyperglycemia, hypertension, and dyslipidemia [1]. The 
prevalence of MetS is increasing globally. In the United 
States (U.S.), the prevalence of MetS among adults is 
high, having increased from 32.9% in 2003 to 34.7% in 
2011 [2]. Recent population studies indicated that the 
prevalence of MetS among U.S. adults had reached to 
41.8% in 2018 [3, 4]. According to the Global Burden of 
Disease Study (GBD) 2021, among the 25 level-3 risk fac-
tors contributing to global disease burden, MetS and its 
components have shown a gradual increase in their share 
of total disability-adjusted life years (DALYs) [5]. Numer-
ous studies have found that it increases the risk of car-
diovascular disease (CVD), diabetes, and stroke, leading 
to adverse chronic disease outcomes [6, 7]. For instance, 
a meta-analysis that included 13 cohort studies found 
that components of metabolic syndrome including low 
high-density lipoprotein (HDL)-C significantly increased 
the risk of stroke by 46% [8]. A meta-analysis showed 
that metabolic syndrome could also increase the risk of 
cancer in the population, and presented population dif-
ferences such as gender and age [9]. At the same time, a 
large cohort study found that the components of MetS 
were associated with an increased risk of all-cause mor-
tality [10]. Metabolic syndrome and its components have 
become the top ten risk factors affecting the global bur-
den of disease. Mets has become an urgent global health 
problem.

European Working Group on Sarcopenia in Older Peo-
ple (EWGSOP) emphasizes that skeletal muscle metabo-
lism and muscle mass decline with age [11]. A 4-year 
follow-up study conducted in Japan, which enrolled 
1,099 subjects aged ≥ 60 years, showed that after the age 
of 50, lower limb muscle strength decreases by 1.5–5.0% 
per year, and appendicular skeletal muscle mass (ASM) 
declines by 1–2% per year [12]. The decline in muscle 
mass and strength increases the risk of chronic diseases 
such as CVD, abnormal glucose metabolism, chronic 
obstructive pulmonary disease, and cancer [13]. Com-
pared to muscle strength and muscle mass, the MQI 
integrates both handgrip strength (dominant and non-
dominant) and ASM, reflecting both the quality and 
quantity of muscle, making it a more comprehensive 
indicator that is widely used [14, 15]. Previous research 
has found that low MQI was associated with the risk 
of periodontitis [16]CVD [17]and sleep problems [18]. 
Previous studies have reported a negative association 

between muscle strength and MetS in men [19]. Evidence 
also suggests that the decline in skeletal muscle mass may 
promote insulin resistance and hyperglycemia, thereby 
accelerating the progression of MetS [20, 21]. However, 
research on the association between comprehensive 
muscle mass indicators and MetS remains limited.

Herein, we aim to investigate the association between 
MQI, a composite measure of muscle strength and mass, 
and MetS in U.S. adults aged 20 to 60 years, thereby sup-
plementing the limited research on integrated muscle 
health indicators and their metabolic health implications.

Materials and methods
This cross-sectional study utilized data from the 2011–
2014 National Health and Nutrition Examination Survey 
(NHANES) cycles. NHANES is a nationally representa-
tive survey that collects information on health, nutri-
tion, and lifestyle behaviors across various demographic 
groups in the U.S. The NHANES was approved by the 
Research Ethics Review Board of the National Center for 
Health Statistics. Data used in this study were obtained 
from the following website: ( h t t p  s : /  / w w w  n .  c d c  . g o  v / n c  h 
s  / n h  a n e  s / D e  f a  u l t . a s p x). The study included  i n d i v i d u a l s 
who met the following criteria: (1) age: 20–60 years; (2) 
complete handgrip strength (HGS) data; (3) complete 
data on MetS diagnostic criteria (including National 
Cholesterol Education Program Adult Treatment Panel 
III (NCEPA ATP III) and International Diabetes Federal-
2009(IDF-2009); (4) complete data on other covariates. A 
total of 4,503 participants were included in the final anal-
ysis. See Fig. 1 for further details.

Exposure measurement
MQI is a composite index that combines HGS and 
appendicular skeletal muscle mass (ASM) to assess mus-
cle quality [14]. HGS was measured using a Takei dyna-
mometer (TKK5401; HGS was measured using a Takei 
dynamometer (TKK5401; Takei Scientific Instruments, 
Tokyo, Japan), and ASM was assessed using dual-energy 
X-ray absorptiometry (DXA), calibrated daily [22]. MQI 
consists of three components: MQI_arm, defined as 
the ratio of dominant HGS to the dominant arm’s ASM 
(HGSdominant/ASMdominant−arm); MQI_app, defined as 
the ratio of dominant HGS to total ASM (HGSdominant/
ASMtotal); and MQI_total, defined as the sum of hand-
grip strength from both the dominant and non-dominant 
hands divided by total ASM (HGStotal/ASMtotal) [14]. 
Considering the differences in body composition among 
different racial and gender groups [23]cut-off values were 

Conclusion Low MQI is associated with an increased risk of MetS, exhibiting a linear relationship. These findings 
suggest that improving muscle quality may be an effective strategy for the prevention of MetS.
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set for MQI_total. Low MQI_total was defined as being 
below 1 standard deviation (SD) of the reference mean 
for young adults, and very low MQI_total was defined 
as being below 2 SDs of the reference mean for young 
adults. The young adult group included both males and 
females aged 20–39 years with a normal body mass index 
(BMI) range.

Definition of outcomes
The diagnosis of MetS was based on the criteria estab-
lished by National Cholesterol Education Program 
Adult Treatment Panel III (NCEP ATP III) [24]. MetS 
was diagnosed when three or more of the following five 
conditions were present: (1) Central obesity: waist cir-
cumference ≥ 102  cm for men, ≥ 88  cm for women; (2) 
Hypertriglyceridemia: serum triglycerides ≥ 150  mg/
dL; (3) Low HDL cholesterol: serum HDL choles-
terol < 40  mg/dL for men, < 50  mg/dL for women; (4) 
Hypertension: systolic blood pressure (SBP) ≥ 130 mmHg, 
diastolic blood pressure (DBP) ≥ 85 mmHg, or current 
antihypertensive treatment; (5) High fasting glucose: 
fasting glucose ≥ 100 mg/dL, or current antidiabetic treat-
ment. All data were collected using standardized meth-
ods. Another diagnosis of MetS was based on the criteria 
established by the International Diabetes Federation 2009 
(IDF-2009). The detailed IDF-2009 criteria are described 

in the Supplementary Method. MetS diagnosed accord-
ing to the IDF-2009 criteria was used only for sensitivity 
analysis.

Definition of covariates
The study included the following characteristics: age 
(years), sex (male or female), marital status (unmarried, 
divorced/separated/widowed, married/cohabitating), 
education level (less than high school, high school, col-
lege or above), race/ethnicity (non-Hispanic White, Mex-
ican American, non-Hispanic Black, other races), and 
poverty income ratio (PIR) categorized into three levels: 
low income (< 1.3), middle income (1.3–3.5), and high 
income (> 3.5). BMI was categorized into three groups: 
underweight (< 18.5), normal weight (18.5–24.9), and 
overweight/obese (≥ 25.0) [25]. Smoking status was clas-
sified into three categories: never smokers (less than 100 
cigarettes in lifetime), former smokers (more than 100 
cigarettes in lifetime but not currently smoking), and cur-
rent smokers (more than 100 cigarettes in lifetime and 
currently smoking daily) [26]. Alcohol consumption was 
classified as: never drinkers (fewer than 12 drinks in a 
lifetime), former drinkers (12 or more drinks in the past 
year but not in the last year, or 12 or more drinks in a life-
time but not in the last year), light drinkers (≤ 1 drink per 
day for women, ≤ 2 drinks per day for men), moderate 

Fig. 1 The flowchart of this study. Abbreviations: NHANES, National Health and Nutrition Examination Survey; MetS, Metabolic Syndrome
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drinkers (≥ 2 drinks per day for women, ≥ 3 drinks per 
day for men, or binge drinking 2–5 times per month), 
and heavy drinkers (≥ 3 drinks per day for women, ≥ 4 
drinks per day for men, or binge drinking > 5 times per 
month) [27]. Physical activity status was calculated 
according to weekly metabolic equivalent of task (MET) 
minutes (MET-minutes/week), which included the sum 
of the following three aspects: work-related physical 
activity (vigorous work days × vigorous work minutes 
× 8, moderate work days × moderate work minutes × 
4), recreational activities (vigorous recreational activity 
days × vigorous recreational activity minutes × 8, mod-
erate recreational activity days × moderate recreational 
activity minutes × 4), and walking or bicycling (walking 
or bicycling frequency × walking or bicycling duration 
× 4). The sum of these three components was classified 
into three levels: low (< 360 min/week), moderate (360–
3600  min/week), and high (> 3600  min/week) [28]. The 
study also considered the history of hypertension (sys-
tolic blood pressure[SBP] ≥ 140 mmHg and/or diastolic 
blood pressure[DBP] ≥ 90 mmHg, use of antihypertensive 
medication, or a diagnosis of hypertension by a physician 
or healthcare professional), history of hyperlipidemia 
(defined by any of the following: triglycerides ≥ 150  mg/
dL, total cholesterol [TC] ≥ 200  mg/dL, low-density 
lipoprotein cholesterol[LDL-C] ≥ 130  mg/dL, or high-
density lipoprotein cholesterol[HDL-C] ≤ 40  mg/dL for 
men and ≤ 50  mg/dL for women), and history of diabe-
tes (defined by any of the following: diagnosis of diabetes 
by a physician or healthcare professional, use of antidia-
betic medication or insulin, random blood glucose ≥ 11.1 
mmol/L, glycated hemoglobin (HbA1c level) ≥ 6.5%, fast-
ing glucose ≥ 7.0 mmol/L, or 2-hour oral glucose toler-
ance test (OGTT) blood glucose level ≥ 11.1 mmol/L). 
Additionally, energy intake (kcal/day), as well as blood 
biochemical markers such as [HbA1c, %], alanine ami-
notransferase [ALT, U/L], aspartate aminotransferase 
[AST, U/L)], serum creatinine (µmol/L), serum uric acid 
(µmol/L), and total cholesterol (mmol/L), were included.

Statistical analysis
Statistical analyses were conducted using R version 
4.3.1. Due to NHANES’ multi-stage sampling design, 
we applied weighted calculations in accordance with 
NHANES guidelines. Data from the 2011–2012 and 
2013–2014 survey cycles were used, with the sample 
weight calculated as (1/2) × WTMEC2YR 11–12 + (1/2) 
× WTMEC2YR 13–14, where WTMEC2YR 11–12 and 
WTMEC2YR 13–14 represent the weight coefficients 
for each cycle. Continuous variables are presented as 
mean ± SD, while categorical variables are shown as per-
centages (%). To examine the association between MQI 
and MetS, weighted binary logistic regression was used, 
with three models developed sequentially: (1) Model 1: 

Unadjusted; (2) Model 2: Adjusted for gender, age, edu-
cation level, race, and PIR; (3) Model 3: Further adjusted 
for smoking status, alcohol consumption, METs, serum 
ALT, AST, uric acid, total cholesterol, creatinine, energy 
intake.

To assess the robustness of the results, three sensitiv-
ity analyses were performed. First, subgroup analyses 
and interaction tests were conducted based on covari-
ates such as age group, gender, and race/ethnicity. Sec-
ond, associations between MQI and the components 
of MetS—elevated waist circumference, hypertension, 
reduced HDL-C, elevated triglycerides, and elevated 
fasting glucose—were analyzed. Third, restricted cubic 
spline regression was applied to explore the relationship 
between MQI and MetS. Lastly, to account for variations 
in MetS diagnostic criteria, IDF-2009 criteria were used. 
All statistical tests were two-sided, with a significance 
level of P < 0.05.

Results
After preliminary data processing, a total of 4,503 par-
ticipants were included in this study. The basic charac-
teristics of the study population were shown in Table 1. 
Among the 4,503 participants, 1,165 were diagnosed with 
MetS, resulting in a prevalence of 25.87% (1,165/4,503). 
The average age of MetS patients was 44.26 ± 0.44 years, 
while the average age of non-MetS participants was 
37.49 ± 0.44 years. Compared to individuals without 
MetS, those with MetS were generally older, had lower 
education levels, and exhibited lower levels of physical 
activity. In terms of laboratory markers, MetS patients 
were more likely to have elevated HbA1c, ALT, AST, and 
total cholesterol levels. Regarding MQI, the proportion 
of participants with normal MQI (including MQI_total, 
MQI_arm, and MQI_app) was lower in the MetS group 
compared to the non-MetS group, indicating overall 
lower muscle quality in MetS patients. The association 
between age and MQI was presented in Supplementary 
Table S1, and the variance inflation factors for all covari-
ates were provided in Supplementary Table S2.

Table  2 presented the association between MQI_
total and the risk of MetS as well as its components. 
Weighted logistic regression analysis showed a nega-
tive association between MQI_total and the odds ratio 
of MetS across all models (Model 1: OR = 0.34, 95% CI: 
0.29–0.39, P < 0.0001; Model 2: OR = 0.33, 95% CI: 0.28–
0.39, P < 0.0001; Model 3: OR = 0.49, 95% CI: 0.32–0.73, 
P = 0.02). Among the components of MetS, after adjust-
ing for relevant covariates, MQI_total was negatively 
associated with elevated waist circumference (Model 3: 
OR = 0.19, 95% CI: 0.12–0.28, P = 0.003), and negatively 
associated with hypertension (Model 3: OR = 0.82, 95% 
CI: 0.61–1.09, P = 0.11), elevated fasting glucose (Model 
3: OR = 0.84, 95% CI: 0.62–1.14, P = 0.17), reduced serum 
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Variables Overall Non-MetS MetS P value
N = 3338 N = 1165

Age (years) 39.21 ± 0.42 37.49 ± 0.44 44.26 ± 0.44 < 0.001
Gender, % 0.88
Male 2177(52.16) 1565(52.32) 612(51.96)
Female 2326(47.84) 1773(47.68) 553(48.04)
Race, % 0.01
Non-Hispanic White 1876(65.85) 1359(65.26) 517(67.57)
Mexican American 553(9.36) 370(8.82) 183(10.97)
Non-Hispanic Black 946(10.62) 715(10.77) 231(10.17)
Others 1128(14.17) 894(15.15) 234(11.28)
Educational levels, % < 0.001
Above high school 2825(66.46) 2184(69.02) 641(58.98)
High school 955(20.89) 661(19.00) 294(26.42)
Below high school 723(12.65) 493(11.98) 230(14.60)
Marital status, % < 0.001
Never married 1266(25.46) 1083(29.37) 183(14.02)
Divorced/Seperated/Widowed 634(13.29) 410(11.81) 224(17.66)
Married/Living with partner 2603(61.25) 1845(58.82) 758(68.32)
PIR, % 0.09
Q1 (< 1.29) 1504(23.93) 1075(23.38) 429(25.53)
Q2 (1.29–3.48) 1498(33.44) 1095(32.70) 403(35.63)
Q3 (> 3.48) 1501(42.63) 1168(43.92) 333(38.84)
BMI, % < 0.001
Q1 (< 25.0) 1454(31.25) 1393(40.21) 61(5.03)
Q2 (25.0–30.0) 1423(33.65) 1140(37.13) 283(23.45)
Q3 (> 30.0) 1626(35.10) 805(22.66) 821(71.52)
Smoking status, % < 0.001
Never 2680(58.27) 2056(60.53) 624(51.64)
Former 763(19.18) 536(17.92) 227(22.88)
Now 1060(22.55) 746(21.55) 314(25.48)
Drinking status, % < 0.001
Former 483(10.00) 289(8.00) 194(15.91)
Never 544(9.21) 386(8.92) 158(10.05)
Mild 1453(33.32) 1109(33.78) 344(31.97)
Moderate 841(20.11) 653(20.98) 188(17.55)
Heavy 1182(27.36) 901(28.32) 281(24.52)
METs, minute/week 0.02
Q1 (< 360) 1522(32.23) 1082(31.04) 440(35.74)
Q2 (360–3600) 1491(34.01) 1088(33.77) 403(34.70)
Q3 (> 3600) 1490(33.76) 1168(35.19) 322(29.56)
Hypertension < 0.001
No 3245(72.75) 2718(82.47) 527(44.29)
Yes 1258(27.25) 620(17.53) 638(55.71)
Hyperlipidemia < 0.001
No 1663(35.79) 1597(46.17) 66(5.37)
Yes 2840(64.21) 1741(53.83) 1099(94.63)
Diabetes < 0.001
No 4039(91.60) 3237(97.70) 802(73.76)
Yes 464(8.40) 101(2.30) 363(26.24)
Energy intake, kcal/day 2302.59 ± 18.90 2297.79 ± 19.54 2316.64 ± 51.74 0.74
HbA1c, % 5.50 ± 0.02 5.31 ± 0.01 6.04 ± 0.05 < 0.001
ALT, U/L 26.52 ± 0.36 24.56 ± 0.38 32.28 ± 0.81 < 0.001
AST, U/L 25.72 ± 0.32 24.94 ± 0.26 27.98 ± 0.89 0.001

Table 1 The characteristics of the study population
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Table 2 Associations between the muscle quality index and metabolic syndrome, along with its components
MetS and its components OR (95% CI) P value
MetSa (1165/4503)
Model 1 0.34 (0.29, 0.39) < 0.001
Model 2 0.33 (0.28, 0.39) < 0.001
Model 3 0.49 (0.32, 0.73) 0.02
Elevated waist circumference (2250/4503)
Model 1 0.17 (0.14, 0.19) < 0.001
Model 2 0.16 (0.13, 0.19) < 0.001
Model 3 0.19 (0.12, 0.28) 0.003
Hypertension (1258/4503)
Model 1 0.54 (0.47, 0.63) < 0.001
Model 2 0.61 (0.52, 0.71) < 0.001
Model 3 0.82 (0.61, 1.09) 0.11
Elevated fasting glucose (933/4503)
Model 1 0.56 (0.46, 0.67) < 0.001
Model 2 0.54 (0.44, 0.67) < 0.001
Model 3 0.84 (0.62, 1.14) 0.17
Reduced high-density lipoprotein cholesterol (1412/4503)
Model 1 0.53 (0.46, 0.61) < 0.001
Model 2 0.52 (0.45, 0.60) < 0.001
Model 3 0.66 (0.51, 0.85) 0.01
Elevated total triglycerides (1549/4503)
Model 1 0.73 (0.62, 0.85) < 0.001
Model 2 0.64 (0.55, 0.75) < 0.001
Model 3 0.77 (0.59, 0.97) 0.03
Model 1: Unadjusted for any covariates; Model 2: Adjusted for age, gender, educational level, ethnicity, PIR, and marital status, building on Model 1; Model 3: Further 
adjusted for alcohol consumption, smoking status, METs, ALT, AST, uric acid, HbA1c, total cholesterol, energy intake (kcal/day), and serum creatinine
a Criteria for MetS are based on the NCEP-ATP III guidelines

Abbreviations: MetS, metabolic syndrome. OR, odd ratios. CI: confidence interval. PIR, poverty income ratio. MET, metabolic equivalent of task. ALT, alanine 
aminotransferase. AST, aspartate aminotransferase. HbA1c, glycated hemoglobin. NCEP-ATP III, National Cholesterol Education Program Adult Treatment Panel III

Variables Overall Non-MetS MetS P value
N = 3338 N = 1165

Creatinine, µmol/L 76.87 ± 0.47 76.92 ± 0.53 76.73 ± 0.66 0.80
Uric acid, µmol/L 318.64 ± 1.86 309.58 ± 2.05 345.16 ± 2.85 < 0.001
Total cholesterol, mmol/L 4.97 ± 0.02 4.89 ± 0.03 5.22 ± 0.04 < 0.001
MQI_total < 0.001
Extremely low 1067(25.82) 609(20.45) 458(41.57)
Low 903(18.48) 620(17.77) 283(20.57)
Normal 2533(55.69) 2109(61.79) 424(37.86)
MQI_.arm < 0.001
Extremely low 646(16.74) 308(11.43) 338(32.28)
Low 922(20.61) 598(19.05) 324(25.21)
Normal 2935(62.65) 2432(69.52) 503(42.51)
MQI_.app < 0.001
Extremely low 659(17.08) 342(12.54) 317(30.38)
Low 980(22.01) 633(19.93) 347(28.11)
Normal 2864(60.91) 2363(67.53) 501(41.51)
MQI_arm: Ratio of dominant HGS to the dominant arm’s ASM

MQI_app: Ratio of dominant HGS to total ASM

MQI_total: Sum of HGS of both hands divided by total ASM

Abbreviations: MetS, metabolic syndrome; PIR, poverty income ratio; BMI, body mass index; METs, metabolic equivalent of tasks; HbA1c, glycated hemoglobin ALT, 
alanine aminotransferase; AST, aspartate aminotransferase; HGS, handgrip strength; ASM, appendicular skeletal muscle

Table 1 (continued) 
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HDL cholesterol (Model 3: OR = 0.66, 95% CI: 0.51–0.85, 
P = 0.01), and elevated serum triglycerides (Model 3: 
OR = 0.77, 95% CI: 0.59–0.97, P = 0.03).

The dose-response relationship between MQI_total 
and MetS indicated that an increase in MQI was asso-
ciated with a reduced risk of developing MetS. How-
ever, the nonlinearity test showed a P-value greater than 
0.05, suggesting a linear relationship between MQI_total 
and MetS (Poverall < 0.001, P non−linear = 0.968) (Fig.  2A). 
For the elevated waist circumference and elevated tri-
glycerides, there were an approximate negative linear 
association between MQI_total and elevated waist cir-
cumference (Poverall <0.001, Pnon−linear = 0.335, Fig.  2B), 
as well as elevated triglycerides (Poverall <0.001, Pnon−linear 
= 0.356, Fig. 2C). For the other components, there were 
non-linear association between MQI_total and hyperten-
sion (Poverall <0.001, Pnon−linear = 0.035, Fig. 2D), elevated 
fasting glucose (Poverall <0.001, Pnon−linear = 0.029, Fig. 2E), 
reduced HDL-C (Poverall <0.001, Pnon−linear = 0.028, 
Fig. 2F).

Table 3 presents the results of subgroup analyses based 
on various factors, including age, gender, race, educa-
tional level, marital status, PIR, smoking status, drinking 
status, physical activity, hypertension, diabetes, energy 
intake, HbA1c, ALT, AST, creatinine, uric acid, and 
total cholesterol. Notably, significant differences were 
observed with respect to creatinine levels and total cho-
lesterol (P for interaction = 0.01 and 0.04, respectively), 
suggesting that creatinine and cholesterol play a mod-
erating role in the relationship between MQI_total and 

MetS. The results suggested that MQI may have exerted 
a stronger protective effect against MetS in populations 
with lower creatinine and cholesterol levels compared 
to those with higher levels. No significant interac-
tions were found in other subgroup analyses (all P for 
interaction > 0.05).

Considering the different diagnostic criteria for MetS, 
we conducted a sensitivity analysis using the IDF criteria 
to diagnose MetS (Supplementary Table S3). In Model 1 
(with no covariates included), MQI_total was negatively 
associated with MetS (OR = 0.37, 95% CI: 0.33–0.42, 
P < 0.0001). After adjusting for relevant covariates, a neg-
ative association persisted in both Model 2 (OR = 0.36, 
95% CI, 0.31–0.41, P < 0.0001) and Model 3 (OR = 0.53, 
95% CI: 0.36–0.77, P = 0.02).

Discussion
To our knowledge, this is the first study to examine the 
relationship between comprehensive muscle quality, as 
assessed by the MQI, and MetS. Our findings revealed 
that low MQI was associated with an increased risk of 
MetS, and MQI showed a negative association with MetS 
components, including elevated waist circumference, 
hypertension, elevated fasting glucose, reduced serum 
HDL cholesterol, and elevated serum triglycerides. Sub-
group and sensitivity analyses yielded robust results.

Previous studies have partially explored the relationship 
between muscle mass and MetS. For instance, Kim et al. 
found a strong correlation between reduced muscle mass 
and MetS, with each quartile increase in appendicular 

Fig. 2 The relationships between muscle quality index and the risk of metabolic syndrome (A), as well as its components—elevated waist circumference 
(B), elevated TGs (C), hypertension (D), elevated fasting glucose (E), and reduced HDL-C (F) using restricted cubic splines. The restricted cubic splines 
model was adjusted for age, gender, ethnicity, educational level, marital status, PIR, smoking status, drinking status, METs, energy intake, uric acid levels, 
AST levels, ALT levels. Abbreviations: MQI, muscle quality index; MetS, metabolic syndrome; HDL-C, high density lipoprotein cholesterol; TGs, triglycerides; 
PIR, poverty income ratio; METs, metabolic equivalent of tasks; AST, aspartate aminotransferase; ALT, alanine aminotransferase
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Variables OR (95% CI) P value P for interaction
Age, years 0.23
< 50 0.57 (0.44, 0.74) < 0.001
≥ 50 0.97 (0.62, 1.52) 0.70
Gender, % 0.16
Male 0.46 (0.26, 0.83) 0.02
Female 0.51 (0.36, 0.72) 0.01
Race, % 0.34
Non-Hispanic White 0.52 (0.35, 0.76) 0.01
Mexican American 0.33 (0.22, 0.51) < 0.001
Non-Hispanic Black 0.55 (0.30, 1.00) 0.05
Others 0.38 (0.22, 0.66) 0.01
Educational levels, % 0.83
Above high school 0.47 (0.30, 0.72) 0.01
High school 0.64 (0.30, 1.35) 0.15
Below high school 0.37 (0.23, 0.61) 0.01
Marital status, % 0.09
Never married 0.34 (0.19, 0.59) 0.01
Divorced/Seperated/Widowed 0.48 (0.21, 1.12) 0.07
Married/Living with partner 0.53 (0.36, 0.76) 0.01
PIR, % 0.66
Q1 (< 1.3) 0.40 (0.26, 0.61) 0.004
Q2 (1.3–3.5) 0.49 (0.30, 0.80) 0.01
Q3 (> 3.5) 0.50 (0.32, 0.78) 0.01
Smoking status, % 0.61
Never 0.57 (0.38, 0.85) 0.01
Former 0.61 (0.33, 1.13) 0.10
Now 0.30 (0.20, 0.47) < 0.001
Drinking status, % 0.98
Former 0.33 (0.18, 0.61) 0.003
Never 0.79 (0.35, 1.74) 0.50
Mild 0.56 (0.34, 0.93) 0.03
Moderate 0.69 (0.39, 1.23) 0.18
Heavy 0.29 (0.19, 0.44) < 0.001
METs, minute/week 0.99
Q1 (< 360) 0.53 (0.38, 0.75) 0.004
Q2 (360–3600) 0.60 (0.42, 0.84) 0.01
Q3 (> 3600) 0.35 (0.19, 0.61) 0.004
Hypertension 0.09
No 0.50 (0.37, 0.67) 0.001
Yes 0.49 (0.34, 0.71) 0.004
Hyperlipidemia 0.13
No 0.32 (0.13, 0.77) 0.02
Yes 0.50 (0.38, 0.66) < 0.001
Diabetes 0.45
No 0.50 (0.39, 0.64) < 0.001
Yes 0.30 (0.10, 0.84) 0.03
Energy intake, kcal/day 0.34
Q1 (< 1727.0) 0.56 (0.39, 0.79) 0.01
Q2 (1727.0-2526.0) 0.53 (0.38, 0.76) 0.005
Q3 (> 2526.0) 0.34 (0.20, 0.59) 0.003
HbA1c, % 0.94
Q1 (< 18.0) 0.18 (0.13, 0.23) < 0.001
Q2 (18.0–26.0) 0.20 (0.15, 0.26) < 0.001

Table 3 Subgroup and interaction analyses of the association between muscle quality index and metabolic syndrome
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skeletal mass percentage (ASM%) lowering the risk of 
MetS by 56% 29. Another large retrospective cohort study 
with a 7-year follow-up showed that individuals with a 
skeleton mass index (SMI) increase of 0–1% and > 1% had 
a lower risk of MetS (0.87 and 0.67, respectively) com-
pared to those with SMI changes of < 0%30. Additional 
studies have reported a negative association between 
relative skeletal muscle mass (SMM) ratios (such as the 
skeletal muscle-to-visceral fat ratio [SVR] and the mus-
cle-to-fat ratio [MFR]) and MetS [21]. Handgrip strength, 
a critical indicator of muscle mass, is closely related to 
disease prognosis [31]and prior research has also linked 
handgrip strength with MetS [32, 33]. Our findings are 
consistent with these previous studies. Moreover, a grow-
ing body of research on the association between sarco-
penia and MetS supports the idea that declining muscle 
mass is a key contributor to MetS [20, 34, 35].

Skeletal muscles play a crucial role in glucose metabo-
lism, accounting for up to 85% of insulin-mediated glu-
cose uptake [36]. One characteristic of MetS is insulin 
resistance, and changes in skeletal muscle insulin resis-
tance and glucose metabolism may be significant factors 
in the development of MetS [37]. Skeletal muscle nega-
tively affects its own insulin resistance and lipid metab-
olism through mechanisms such as oxidative stress, 
inflammatory cytokines, and mitochondrial dysfunction 
[38]. Petersen et al. found that young, lean individuals 
with insulin resistance (IR) had higher intramuscular 
lipid content, reduced muscle glycogen synthesis by 61%, 

and a 2.2-fold increase in hepatic de novo lipogenesis 
compared to non-IR individuals, leading to elevated 
plasma triglycerides and decreased HDL levels. This 
suggests that lipid metabolism disorders are one of the 
causes of insulin resistance [39].

The distribution and metabolism of adipose tissue in 
the body are often accompanied by changes in muscle 
mass and quantity, as well as changes in the risk of meta-
bolic syndrome. With aging, changes in fat distribution 
and proportion affect skeletal muscle mass. Brown adi-
pose tissue and white adipose tissue play roles in energy 
storage and energy expenditure, respectively [40]. After 
age 40, brown adipose tissue decreases, reducing fat con-
sumption, which leads to fat accumulation and triggers 
MetS [41]. Studies have shown that the accumulation 
of visceral fat (central obesity) can increase the risk of 
insulin resistance and metabolic diseases, while subcuta-
neous fat (such as fat in the buttocks and flanks) has no 
adverse effects and may even reduce the risk of metabolic 
syndrome [42, 43]. Experimental studies on rodents have 
also shown that subcutaneous transplantation of white 
adipose tissue can improve glucose metabolism in the 
body [44]. At the genetic level, subcutaneous adipocytes 
themselves have high levels of short status homeobox 2 
(Shox2) and glypican-4 (GPC4), which protect against 
metabolic syndrome by inhibiting fat breakdown and 
maintaining insulin sensitivity [45, 46]; however, visceral 
adipose tissue exhibits high levels of HoxC8 and HoxA5 
expression, which are detrimental to the stability of 

Variables OR (95% CI) P value P for interaction
Q3 (> 26.0) 0.15 (0.10, 0.23) < 0.001
ALT 0.47
Q1 (< 18.0) 0.41 (0.28, 0.60) 0.002
Q2 (18.0–26.0) 0.48 (0.27, 0.86) 0.02
Q3 (> 26.0) 0.52 (0.38, 0.72) 0.004
AST 0.15
Q1 (< 20.0) 0.39 (0.26, 0.56) 0.001
Q2 (20.0–25.0) 0.56 (0.34, 0.92) 0.03
Q3 (> 25.0) 0.52 (0.33, 0.82) 0.01
Creatinine, µmol/L 0.01
Q1 (< 66.3) 0.41 (0.28, 0.58) 0.001
Q2 (66.3–82.2) 0.53 (0.30, 0.92) 0.03
Q3 (> 82.2) 0.56 (0.33, 0.95) 0.04
Uric acid, µmol/L 0.77
Q1 (< 279.6) 0.42 (0.27, 0.67) 0.004
Q2 (279.6-350.9) 0.56 (0.42, 0.74) 0.002
Q3 (> 350.9) 0.44 (0.30,0.65) 0.002
Total cholesterol, mmol/L 0.04
Q1 (< 4.4) 0.44 (0.22, 0.86) 0.02
Q2 (4.4–5.3) 0.43 (0.26, 0.71) 0.01
Q3 (> 5.3) 0.57 (0.38, 0.84) 0.01
Abbreviations: MetS, metabolic syndrome; PIR, poverty income ratio; METs, metabolic equivalent of task; HbA1c, glycated hemoglobin; ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; OR, odd ratio; CI, confidence interval

Table 3 (continued) 
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metabolic levels in the body by regulating fat browning 
and deposition [47, 48].

Inflammation is another pathway leading to MetS. 
Skeletal muscle produces irisin and interleukin-6 (IL-6) 
during metabolism, which are critical for maintaining 
insulin resistance and glucose homeostasis [49, 50] Previ-
ous human studies have shown compensatory increases 
in irisin levels in the blood of MetS patients [51]. Ani-
mal studies indicated that irisin induces the browning 
of white adipocytes, improving insulin sensitivity and 
glucose tolerance [52]. IL-6 can activate anti-obesity and 
insulin-sensitizing pathways, such as AMPK and insu-
lin signaling, via the glycoprotein 130 (gp130) receptor 
in skeletal muscle, enhancing glucose uptake [53, 54]. 
Corticosteroids are also one of the main regulatory fac-
tors in the inflammatory response process in the body 
[55]. Studies have found that there are glucocorticoid 
receptors in skeletal muscles, and the glucocorticoid 
level in vivo is also related to the functional changes of 
skeletal muscle [56]. The expression of glucocorticoid 
receptor A in skeletal muscle cells of patients with meta-
bolic syndrome increases, up regulates the expression of 
11-b-hydroxysteroid dehydrogenase isoform 1, further 
reduces the sensitivity of glucocorticoids and enhances 
insulin resistance [57].

Additionally, mitochondrial function and activity 
changes in skeletal muscle are key in the development of 
MetS. Studies by Befroy and Morino et al. have shown 
that although offspring of type 2 diabetes patients have 
normal insulin resistance, reduced mitochondrial content 
impairs oxidative phosphorylation, leading to decreased 
lipid oxidation and the accumulation of lipid metabolites, 
which trigger MetS [58, 59].

Strengths and limitations
This study has several strengths. First, it is the first to 
use nationally representative NHANES data to analyze 
the association between MQI and MetS in U.S. adults. 
Second, the MQI combines both handgrip strength and 
appendicular skeletal muscle mass, providing a com-
prehensive measure of muscle quality while considering 
racial differences in the U.S. population. Third, by incor-
porating a broad range of covariates related to blood bio-
chemistry, nutrition, and lifestyle behaviors, the study 
effectively minimized potential biases. Fourth, since our 
study population consisted of U.S. adults aged 20–60 
years, we adopted the NCEP ATP III criteria to define 
MetS, which are widely used in epidemiological studies. 
However, considering that the IDF-2009 criteria place 
greater emphasis on ethnic and regional differences, par-
ticularly with regard to waist circumference thresholds, 
we included MetS defined by the IDF-2009 criteria in a 
sensitivity analysis. Despite these strengths, the study 
has some limitations. First, this study is a cross-sectional 

analysis, which limits our ability to establish causal rela-
tionships between MQI and MetS, highlighting the need 
for future longitudinal cohort studies. Second, variations 
in the diagnostic criteria for MetS across different racial 
and regional populations indicate that further research 
is necessary to investigate the association between MQI 
and MetS in more diverse populations. Third, although 
we adjusted for as many accessible covariates as pos-
sible, the possibility of residual confounding cannot be 
excluded, as unmeasured variables may still affect the 
observed association. Lastly, existing evidence suggests 
a potential bidirectional relationship between MetS and 
muscle mass, underscoring the need for future studies to 
elucidate the underlying physiological and biochemical 
mechanisms.

Conclusion
Low muscle quality, as assessed by the MQI, is signifi-
cantly associated with the risk of MetS, showing a linear 
dose-response relationship. Therefore, improving muscle 
quality could serve as a promising and effective interven-
tion for the prevention of MetS.
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