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Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses
related to human hepatitis viruses were found in animals other than primates. Herein, we describe both
surprising conservation and striking differences of the unique biological properties and infection
patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver
tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for transla-
tion of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on
pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human
hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
� 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
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Approximately 1.3 million people die annually
from viral hepatitis worldwide.1 These deaths are
predominantly associated with cirrhosis and hep-
atocellular carcinoma (HCC) resulting from
chronic infections with hepatitis B virus (HBV;
887,000 deaths) and hepatitis C virus (HCV;
399,000 deaths),2 as well as hepatitis and liver
failure resulting from acute infections with hepati-
tis A virus (HAV; 11,000 deaths) and hepatitis E
virus (HEV; 44,000 deaths).1 Worldwide, approxi-
mately 5% of people infected with HBV are simul-
taneously infected with hepatitis delta virus
(HDV).1,3

The recent discoveries of novel hepatitis
viruses from animals allow revisiting the enig-
matic evolutionary origins of human hepatitis
viruses. In chapter 1 of this review, we discuss
the diverse animal homologues of all human hep-
atitis viruses that were discovered over the last
decades. In chapter 2, we analyse hepatitis virus
evolution based on the unique genomic and mor-
phologic properties of human and non-human
hepatitis viruses. In chapter 3, we discuss the level
of evolutionary conservation of the characteristic
infection patterns of human hepatitis viruses and
review the ability to translate the recent virus dis-
coveries into tractable animal models. Finally, in
chapter 4, we discuss the evolutionary origins of
human hepatitis viruses in the context of a
plethora of newly discovered animal homologues.
In this chapter, we also evaluate the potential of
animal homologues for past and present cross-
species transmission and compare macro-
evolutionary patterns of the different hepatitis
virus families.
7525907.
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Chapter 1: Milestones towards the

understanding of the evolutionary origins
of hepatitis viruses
In the following section, we outline the path
towards the discovery of human hepatitis viruses
Journal of Hepatology 2
and provide detail on the huge expansion in the
number of animal homologues discovered during
the last decade.

The discovery of human hepatitis viruses
The path towards the discovery of human hepati-
tis viruses started with the differentiation
between 2 forms of transmissible jaundice. Infec-
tious hepatitis linked to epidemic outbreaks of
faecal-orally transmitted jaundice (termed hepati-
tis A) was differentiated from a parenterally trans-
mitted jaundice with a relatively longer
incubation period (termed hepatitis B).4,5 Follow-
ing the discoveries of the causative HAV and HBV
in 1973 and 1970,6,7 the HBV-associated HDV
was discovered in 1980.8 In parallel, it was noted
that most cases of post-transfusion hepatitis were
neither linked to infection with HAV, nor HBV.9

However, it was not until 1989 that the causative
HCV was finally described.10 HEV was discovered
in 1983 as the cause of a predominantly water-
borne acute non-A, non-B hepatitis.11 The discov-
eries of human hepatitis viruses were followed
by milestones of major clinical relevance, includ-
ing tools for reliable diagnosis (e.g., described
in12,13), the development of direct-acting antiviral
treatments against HCV and preventive vaccina-
tions against HAV and HBV14 (Fig. 1). Notably, sci-
entific progress was not evenly distributed among
human hepatitis viruses. The clinical relevance of
HBV and HCV likely contributed to the enormous
achievements attained continuously for these 2
viruses (Fig. 1).

A new era of virus discovery
The first discoveries of non-human hepatitis
viruses were ground breaking, yet sporadic. In
1978, a genetically distant relative of HBV, the
woodchuck hepatitis virus (WHV), was identified
in American woodchucks, a marmot-like rodent
species.15 The discovery of WHV was followed by
the discovery of duck hepatitis B virus (DHBV),
019 vol. 70 j 501–520
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Fig. 1. Selected milestones in hepatitis virus research. References include for HAV,6,19,25,26,28,73,107,219–221 for HBV,7,15–18,30,32–35,67,222–225 for
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Key point

Diverse animals host hep-
atitis viruses, but ongoing
zoonotic transmission is
documented only for hep-
atitis E virus.
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HBV variants in apes, and a divergent HBV species
termed woolly monkey hepatitis B virus
(WMHBV).16–18 For hepatitis viruses other than
HBV, knowledge on potential non-human hosts
remained scarce. In the 1990s, a distinct HAV type
was detected in macaques19 and HEV was recov-
ered from swine.20 In 1995, a non-human primate
(NHP) virus distantly related to HCV, termed GB
virus-B (GBV-B) was isolated from a laboratory
tamarin.21 The tamarin had been inoculated with
the serum of a patient with hepatitis, but since
GBV-B was never detected in humans, it was most
likely a tamarin virus.22

Over the last decades there has been an explo-
sive expansion of the recognized viral diversity in
animals, driven by novel sequencing techniques
and an unprecedented focus on zoonotic patho-
gens which followed the identification of highly
pathogenic viruses such as Ebola virus and SARS-
coronavirus in bats.23,24 A plethora of HAV-
Journal of Hepatology 2019 vol. 70 j 5
related viruses were recovered from various mam-
malian species during 2015–2018, including pre-
dominantly bats and rodents, but also tree
shrews, seals and marsupials.25–29 HBV-related
viruses were detected in bats during 2013–
201530,31 and in a domestic cat in 2018.32 A dis-
tinct HBV species termed capuchin monkey hep-
atitis B virus (CMHBV) was described in 2018.33

Endogenous and exogenous viruses distantly
related to HBV were detected in reptiles, fish and
amphibians.34–37 HCV-related viruses were
detected in horses in 2012, and evidence for spo-
radic spill-over infections of the horse-associated
viruses into dogs and donkeys was found.38–41

Soon afterwards, highly diverse HCV-related
viruses were detected in bats and rodents,42,43 in
cattle,44,45 and in black-and-white colobus mon-
keys.46 Hepatitis D-like agents were recently
detected in ducks and snakes.47,48 Zoonotic HEV
genotypes were discovered in wild boars,
01–520
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camelids, rabbits and rats.49–52,253 In addition,
divergent HEV-related viruses were described in
bats, ferrets, rodents, birds, and fish.53–59 In sum,
homologues of all human hepatitis viruses exist
in diverse animals. Apart from the detection of
zoonotic HEV strains, none of the recent studies
into viral diversity in animals revealed any direct
ancestor of human hepatitis viruses, as outlined
below.
Key point

The de novo emergence of
virus properties such as
envelopment and recom-
bination events may have
contributed to the rise of
viruses eventually patho-
genic for humans
Chapter 2: Conservation and de novo
emergence of unique properties of
hepatitis viruses
Human hepatitis viruses are assigned to diverse
virus families and genera (Table 1). Namely, they
belong to the families Picornaviridae, genus Hepa-
tovirus (HAV), Hepadnaviridae, genus Orthohepad-
navirus (HBV), Flaviviridae, genus Hepacivirus
(HCV), and Hepeviridae, genus Orthohepevirus
(HEV). The genus Deltavirus (HDV) is unassigned
to any virus family. In general, human and non-
human hepatitis virus homologues resemble each
other in major genomic properties such as struc-
ture of the genomic nucleic acid, open reading
frame (ORF) composition, genome length and
presence and type of noncoding regions (Table 1,
Fig. 2). Nonetheless, there are striking differences
among viruses from the same family or genus.
Hypothetically, de novo emergence of genomic
features and recombination events during evolu-
tion may have contributed to the rise of viruses
eventually pathogenic to humans. A prototypic
example for micro-evolutionary events within ani-
mal reservoirs enabling efficient human infection
is the recombination event leading to the func-
tional tetherin antagonist in chimpanzee-
associated ancestors of the HIV-1 group M.60

Envelopment might not be conserved among
animal hepatitis viruses
Recent studies revealed that HAV and HEV,
thought previously to be non-enveloped viruses,
exist in an enveloped form in blood, referred to
as quasi-envelopment (Fig. 2).73,74 In contrast to
enveloped viruses, there is no hint of virus-
encoded proteins in the quasi-envelope of HAV
and HEV, which raises questions on how quasi-
enveloped viruses enter susceptible cells (sum-
marised in75). Interestingly, some non-primate
HAV- and HEV-related viruses (henceforth, hepa-
toviruses and hepeviruses) lack critical genome
structures involved in quasi-envelopment. This
includes the apparent absence of a C-terminal
VP1 capsid protein extension termed pX in some
HAV-related bat viruses25 and the lack of short
amino acid motifs termed late domain motifs in
several divergent hepeviruses from diverse mam-
mals and birds.29 In contrast, HBV-related viruses
(henceforth, hepadnaviruses) are enveloped
viruses, yet fish were recently found to host a
non-enveloped Hepadnaviridae sister family,
Journal of
termed Nackednaviridae.36 The discovery of
nackednaviruses suggested that envelopment
emerged de novo in hepadnaviruses capable of
infecting mammals and ultimately humans.36 A
hallmark of HCV infection is the formation of
lipoviral particles, which incorporate both
host-derived lipoproteins and virus-derived
glycoproteins.76 Interestingly, equine hepacivirus
capsid proteins associate with intracellular lipid
components, suggesting similarities between the
replication of HCV and non-human HCV-related
viruses (henceforth, hepaciviruses).77 However,
whether the formation of lipoviral particles is
evolutionarily conserved among non-human
hepaciviruses remains unknown.

On the one hand, it is thus possible that envel-
opment and quasi-envelopment are not conserved
among animal hepatitis viruses. On the other
hand, ancestral animal hepatitis viruses may
exploit unknown strategies for envelopment that
differ from those found in human viruses.29
Recombination events occurred during
hepatitis virus evolution
Recombination events among viruses can occur
when 1 cell is co-infected with 2 different viruses
that interact during replication. For all human
hepatitis viruses, recombination has been exhaus-
tively described.78–83 The plethora of recently dis-
covered viruses has enabled revisiting the
occurrence of recombination events during the
genealogy of human hepatitis viruses and their
animal homologues.

For hepatoviruses there is evidence for recom-
bination in the coding sequence of very distantly
related viruses associated with different host
orders, which hints at a broad host range.29 In
addition, variations in the 50-genome ends of ani-
mal hepatoviruses harbouring the internal ribo-
some entry site (IRES) hint at ancient
recombination events involving different viral
families.25 For hepadnaviruses, the mosaic gen-
ome structure of extinct and extant HBV geno-
types suggests that recombination has been a
major micro-evolutionary feature of HBV evolu-
tion.80,190 Recombination among viruses associ-
ated with different host species was also
described among primate and bird hepad-
naviruses.84 Whether inter-host recombination
events also occurred during the genealogy of the
newly identified bat and cat hepadnaviruses
demands further investigation. For non-human
hepaciviruses, recombination events among
diverse hosts have not been unambiguously pro-
ven yet.85 However, as with hepatoviruses, hints
for ancient recombination events are found in
the 50-genome ends of non-primate hepaciviruses,
likely involving viruses belonging to different gen-
era.42 For hepeviruses, there is evidence for
recombination involving different host orders,
similar to hepatoviruses.29 Importantly, the
camelid-associated HEV genotypes 7 and 8 show
Hepatology 2019 vol. 70 j 501–520 503



Table 1. Properties of human hepatitis viruses.

HAV HBV HCV HDV HEV

Virus family, genus Picornaviridae,
Hepatovirus

Hepadnaviridae,
Orthohepadnavirus

Flaviviridae,
Hepacivirus

Unassigned, Deltavirus Hepeviridae,
Orthohepevirus

Genome type Positive-sense
linear ssRNA

Circular, partially
dsDNA (full length
negative-sense, partial
positive-sense),
replication via reverse
transcription

Positive-sense linear
ssRNA

Viroid-like, negative-sense
circular ssRNA

Positive-sense linear
ssRNA

Approx. genome
length (nt)

7,500 3,200 9,600 1,700 7,200

Virion diameter (nm) 27–32 42 55–65 36–43 30–34
Envelope No/quasi-

enveloped
Yes Yes Yes No/quasi-enveloped

Course of infection Acute61 Acute/chronic
(children 30–90%;
adults <5%)62

Acute/chronic
(80–85%)63

Acute/chronic
(>80% if superinfection)64

Acute/chronic (<1%)65

Predominant
transmission routes

Mainly faecal-oral,
parenteral

Vertical, parenteral,
sexual

Parenteral Parenteral, sexual Faecal-oral, food-
borne, parenteral

Cellular receptor Unknown66 NTCP, heparan sulfate
proteoglycans67,68

CD81, SR-B1, LDL
receptor, claudin-1,
occludine69–71

NTCP, heparan sulfate
proteoglycans67,72

Unknown

dsDNA, double-stranded DNA; nt, nucleotide; NTCP, sodium taurocholate co-transporting polypeptide; ssRNA, single-stranded RNA.
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evidence of recombination at the boundary of
ORFs encoding non-structural and structural pro-
teins.29 Whether recombination events in these
HEV strains contribute to their zoonotic potential
is an intriguing question. Notably, recombination
events likely enabled the rise of the family Hepe-
viridae per se, as the different hepevirus ORFs are
derived from diverse alphavirus- and astrovirus-
like ancestors.86

To summarise, recombination was likely a fre-
quent event during the genealogy of hepatitis
viruses. Whether transmission to humans is a con-
sequence of recombination events in animal reser-
voirs requires further elucidation.

Distinct features of HDV
HDV is not a complete virus but a subviral agent
with a very short, circular RNA genome which
can replicate autonomously within a cell but
requires the surface proteins of HBV for cell
release and uptake (Fig. 2).87 Of all human hepati-
tis viruses, the least is known about the origin of
HDV. HDV has been hypothesised to have origi-
nated from plant viroids, via recombination with
cellular mRNA, or from RNA intermediates of
HBV.88–90 However, these theories are conflicting
and not supported by experimental evidence.
Interestingly, HDV-like agents were recently
detected in a pool of oropharyngeal and cloacal
samples of ducks and in various tissues of
snakes.47,48 The apparent lack of detectable hep-
adnaviruses in these preliminary investigations
seems consistent with the lack of a predicted large
delta antigen containing the C-terminal farnesyla-
tion signal required for interaction with the HBV
envelope (Fig. 2).91,92 On the one hand, this may
indicate that the unique association of HDV with
HBV is not evolutionarily conserved. On the other
hand, divergent helper viruses and divergent
Journal of Hepatology 2019 vol. 70 j 5
mechanisms of envelopment cannot be excluded
based on present knowledge. Although snake and
duck HDV-like agents are genetically clearly dis-
tinct from human HDV, they show typical HDV
genome properties, including the ORF encoding
the small delta antigen, genomic and antigenomic
ribozymes mediating autocatalytic cleavage and
an extremely high degree of genomic self-
complementarity of the circular genome. The
detection of these divergent viruses in ancient ver-
tebrates strongly suggests that other HDV-like
viruses exist, which might include ancestors of
human HDV.
Chapter 3: Evolutionary conservation of
infection patterns
The comparison of hepatitis virus infection pat-
terns among human and non-human hosts might
reveal unique viral properties that eventually
enabled human infection. For example, chronic
courses of viral infections in animal reservoirs
were found to be a strong predictor of human-
to-human transmissibility after zoonotic introduc-
tion into humans.93 Here, we compare transmis-
sion routes, organ tropism, disease outcomes,
receptor usage and immune evasion strategies
among human and non-human hepatitis viruses.

Conservation of transmission routes among
hepatitis viruses
Human hepatitis viruses differ in their transmis-
sion routes. HAV and HEV are mainly transmitted
through the enteric route. Similarly, faecal shed-
ding has been observed invariably in non-human
hosts of hepatoviruses and hepeviruses (Table 2).
In contrast, HBV and HDV are transmitted via
blood and other body fluids, including semen
and vaginal secretions.87,94 In addition, there is a
01–520
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high risk of perinatal transmission of HBV.95 Like
in humans, both perinatal and horizontal HBV
transmission has been described for gibbons.96

For non-primate hosts, vertical hepadnavirus
transmission is known to be effective in rodents
and birds.97,98 Based on a higher prevalence in
female tent-making bats compared to males, pre-
dominantly sexual virus transmission has been
suggested for the Tent-making bat HBV
(TBHBV)254. Transmission routes for other bat or
Journal of
cat hepadnaviruses remain unknown.30,32 HCV is
a blood-borne virus. However, perinatal transmis-
sion rates are much lower for HCV than HBV and
sexual transmission is rare.63,99 HCV is mainly
transmitted via blood transfusions, sharing of
equipment in injecting drug use and reuse of
injection needles in healthcare,1,63 which raises
questions on the transmission mode of HCV in
scattered prehistoric human populations. Here,
fights, use of weapons or tools as well as cultural
Hepatology 2019 vol. 70 j 501–520 505



Table 2. Evolutionary conservation of infection patterns.

Hallmarks of
human infection

Hallmarks of infection in non-human animals

Naturally or experimentally infected with
autochthonous virus

Experimentally infected with human
virus

HAV Long faecal shedding;
Quasi-envelopment;
Never chronic but may cause protracted
infections of up to one year;
Faecal-oral transmission

Bat, rodent, hedgehog, shrew: Acute infection; Faecal
shedding; Hepatotropism25

Woodchuck: Mild fever; Faecal shedding;
Hepatotropism105

Chimpanzee: Faecal shedding; Quasi-
envelopment; Acute hepatitis73,106,107

New and Old World monkeys: Faecal
shedding; Hepatotropism108–110

Guinea pig: Faecal shedding; Hepa-
totropism; Subclinical disease111

HBV Oncogenic (HCC);
Age-dependent chronicity rate;
Vertical, parenteral, sexual transmission;
Acute, fulminant courses in adults

New World primates: Acute and chronic; Hepatitis;
Vertical transmission17,33

Old World primates:
Acute and chronic; Horizontal and vertical transmis-
sion; Hepatitis96,112,113

Bats: Apparently acute and chronic; Sexual transmis-
sion30,254

Woodchuck: Acute and chronic; Hepatitis; Oncogenic;
Hepatotropism114 (summarised in115)
Squirrels: Hepatitis116; Oncogenic117

Cat: Viremia32

Duck: Acute and chronic118; Hepatitis; Vertical trans-
mission; Not oncogenic; No exclusive hepatotropism
(summarised in115,119)

Chimpanzee: Acute and chronic; Hepatitis;
Oncogenic (summarised in120,121)
Tupaia: Acute and chronic; Hepatitis122;
Low viremia (summarised in115)

HCV Oncogenic (HCC);
High chronicity rate;
Parenteral transmission

Cattle: Apparently acute and chronic;
Hepatotropism44,45

Horse: Apparently acute and chronic; Hepa-
totropism102

Rat: Hepatotropism123

Bank vole: Hepatotropism42

Marmoset: Acute and chronic; Hepatitis126

Tamarin: Acute hepatitis; High viral titres127

Chimpanzee: Acute and chronic; Hepatitis;
Oncogenic124,125(summarised in121)
Tupaia: Mild hepatitis; Acute and chronic;
Oncogenic128

HDV HBV-dependent infection;
Co-infection with HBV: Mild to severe
acute disease;
Superinfection with HBV: Mostly chronic,
worsens disease outcome compared to
HBV mono-infection

Snake:
No hepatotropism; Apparently independent of HBV48

Chimpanzee: Hepatotropism;
HBV co-infection and superinfection;
Co-infection: Mild disease;
Superinfection: Acute severe disease, >50%
subclinical chronic HDV infection129,130

(summarised in131);
Woodchuck: Uses WHV envelope;
Hepatotropism;
Acute and chronic (summarised in131)

HEV Low chronicity rate;
Quasi-envelopment;
Mainly faecal-oral transmission;
Zoonotic

Rabbit: Faecal shedding; Acute and chronic hepatitis;
Viremia132

Rat: Faecal shedding; Apparent hepatotropism; Mild
hepatitis133,134

Ferret: Faecal shedding; Viremia; Acute and chronic
hepatitis135

Bat: Faecal shedding; Viremia54

Swine: Faecal shedding; Viremia; Acute and
chronic136,137

Moose: Faecal shedding; Mild hepatitis138

Chicken: Hepatitis-splenomegaly syndrome59

Camel: Faecal shedding; Viremia51,52

Chimpanzee: Severe acute hepatitis139

Macaque: Faecal shedding; Viremia;
Hepatitis140,141

Swine: Faecal shedding; Mild hepatitis142

HAV, hepatitis A virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HDV, hepatitits delta virus; HEV, hepatitis E virus; HCC, hepatocellular carcinoma; WHV, woodchuck
hepatitis virus.
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or religious practices such as tattooing, circumci-
sion, acupuncture or scarification might have
enabled virus transmission.100 Transmission
routes among non-human hepaciviruses are
unclear. In small mammals, transmission of hep-
aciviruses through biting and scratching associ-
ated with mating and territorial behaviour is
conceivable.101 In horses, parenteral transmission
of equine hepacivirus has been suggested,102,103

possibly including sexual transmission and veteri-
nary practices.41,102 Transmission via human-
Journal of Hepatology 2019 vol. 70 j 5
aided routes would suggest a relatively recent
spread of this virus among equines worldwide
and is consistent with the low virus diversity
found in equines.38,41,102,104 Similar transmission
routes are conceivable for cattle
hepaciviruses.44,45

In sum, virus transmission seems to be evolu-
tionary conserved among enteric hepatitis viruses
and their homologues, while transmission routes
of non-human hepadnaviruses and hepaciviruses
are poorly understood.
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Determinants of hepatotropism are poorly
understood
For HAV and HEV, little is known about the viral
and host factors that promote liver tropism in
humans. In bat hepatoviruses, but in none of the
other non-primate hepatoviruses, almost equal
amounts of virus were detectable in the liver and
spleen.25 However, whether this is due to seques-
tered macrophages containing hepatovirus genetic
material, as observed during experimental infec-
tions of mice with HAV,143 or due to extrahepatic
viral replication remains to be determined.

For HBV and HDV, after low-specific binding to
heparin-sulfate proteoglycans (summarised in144),
hepatocyte entry is mediated via the sodium tau-
rocholate co-transporting polypeptide (NTCP for
the human receptor, Ntcp for the homologous
receptor in animals).67 These liver-specific recep-
tors likely govern the hepatotropism of HBV and
HDV.67 Interestingly, the avian hepadnavirus
DHBV does not show a strict hepatotropism (sum-
marised in119). This is potentially explained by the
usage of a receptor that differs from that used by
HBV. Notably, even among mammalian hepad-
naviruses, Ntcp usage might not be conserved, as
illustrated by the apparent lack of hNTCP usage
of some bat hepadnaviruses and WHV.30,145 In
the snake delta-like agent, the apparent lack of
hepatotropism may be associated with the
absence of a detectable hepadnavirus (Table 2).48

For HCV, an important, yet not exclusive factor
determining hepatotropism in humans is its inter-
action with the liver-specific micro RNA-122
(miR-122).146 All known non-human hep-
aciviruses contain at least one miR-122 binding
site in their 50-genome ends, which may con-
tribute to their apparently conserved
hepatotropism.147,148

Liver tropism is thus a widely, yet not perfectly
conserved attribute of the animal homologues of
human hepatitis viruses. Because the factors
determining hepatotropism of human hepatitis
viruses are not entirely understood, systems
allowing experimental infections with the newly
discovered animal viruses will hopefully provide
urgently needed insights into the determinants
of viral hepatotropism.

Chronic courses of infection occur in diverse
hepatitis virus hosts
Prehistoric human populations were small and
scattered, raising the question of how hepatitis
viruses survived in these populations. This is illus-
trated by the disappearance of HAV in isolated
populations due to the livelong immunity HAV
infections engender (summarised in25). In contrast
to prehistoric humans, other hepatovirus hosts
such as small mammals were abundant and wide-
spread, which presumably aided viral survival in
these populations.25

In contrast to HAV, both HBV and HCV estab-
lish chronic infections in humans, which presum-
Journal of
ably favoured virus maintenance in prehistoric
human populations and among NHPs. Chronic
hepatitis virus infections are commonly defined
as infections that persist for more than 6 months
for HBV and HCV, and 3 months for HEV.149–151

The chronicity rate varies drastically among
human hepatitis viruses. Chronic HEV infections
are very rare (<1% of infections) and almost
exclusively occur in immunocompromised
patients.152 In contrast, chronic HCV infections
are very frequent at up to 80–85% (Table 1).63

For HBV, the chronicity rate varies depending
on the age at which the infection occurs, with
rates of up to 90% for infected neonates, 30% for
children aged 1–5 years and less than 5% for
older children and adults (summarised in62).

Interestingly, chronic courses of infection are
not unique for human HBV and HCV. Similar to
human HBV infection, the chronicity rate of the
rodent-associated WHV is age-dependent. While
animals infected as newborns generally develop
chronic infections, WHV usually causes acute
self-limiting infections in animals infected at older
ages (summarised in115). Chronic courses of hep-
adnavirus infections also occur in ducks, squirrels,
and NHPs (Table 2).30,96,112,113,116–118,153 Whether
chronic hepadnavirus infections occur in bats is
unclear.30

Among non-human hepaciviruses, studies
reporting chronic infections are scarce. Chronic
hepacivirus infections with prolonged viremia for
more than 6 months were sporadically observed
in experimentally infected horses and naturally
infected cattle.44,102,154 The chronicity rates in
horses and cattle thus seem to be much lower than
in human HCV infections.44,102,103 For other non-
human hepaciviruses, whether chronic infections
occur remains unknown. Similarly, chronic
courses of hepevirus infections in non-human
hosts are largely unknown. Nonetheless, an appar-
ent chronic HEV infection in wild boars and pro-
longed viral shedding in experimentally infected
immunocompromised domestic swine, rabbits,
and ferrets suggest that chronicity is not limited
to human HEV infections.132,135,137,155

To conclude, many questions regarding chronic
infections in animal hepatitis viruses are still
unanswered. Translational animal models to
assess therapeutics for chronic hepatitis B and E,
and investigating viral pathogenesis will require
some correlate of chronic infection, which may
be conceivable given the evolutionary conserva-
tion of chronicity among several animal hepad-
naviruses and hepaciviruses.

Mechanisms leading to HCC differ among
hepatitis viruses
Chronic hepatitis virus infections can result in sev-
ere disease outcomes, including cirrhosis and
HCC.156 In humans, chronic HBV infections result
in HCC in 15–40% of cases157 and chronic HCV
infections in approximately 2.5% of cases.158
Hepatology 2019 vol. 70 j 501–520 507



Key point

Some biological properties,
such as hepatotropism,
receptor usage or mecha-
nisms leading to HCC differ
among human hepatitis
viruses and ancestral
viruses carried by animals
other than primates.

Review

508
Interestingly, woodchucks infected with WHV
and ground squirrels infected with the genetically
related ground squirrel hepatitis virus are at a high
risk of developing HCC when infected at birth
(summarised in159) (Table 2). While oncogenesis
in woodchucks is mainly caused by N-myc gene
activation via targeted insertion of hepadnaviral
DNA into host DNA, oncogenesis in ground squir-
rels is associated with an activation of c-myc
genes.160 For human HBV, the mechanisms of
oncogenesis remain poorly understood. HBV DNA
fragments can integrate into the hepatocyte gen-
ome during viral replication.161 However, in con-
trast to rodent hepadnaviruses, no specific
integration site associated with oncogenesis has
been identified. Accumulation of integration
events into genes that may enhance oncogenesis,
such as those encoding the telomerase reverse
transcriptase (TERT), a histone H3 lysine 4 methyl-
transferase (MLL4), and cyclin E1 (CCNE1) have
been described,162,163 but their contribution to
oncogenesis is unclear. Furthermore, integration
sites in tumour cells seem to be enhanced in sites
critical for chromosome stability, such as in prox-
imity to telomeres.163 In addition, the viral HBx
protein promotes oncogenesis through complex
interactions with the host cell, such as altering
the expression of host oncogenes and tumour sup-
pressors, stimulating cell-cycle entry by activating
cyclins and cyclin-dependent kinase pathways and
blocking apoptosis (summarised in164). In humans,
HBx also interacts with the structural mainte-
nance of chromosomes (Smc) complex Smc5/6
and stabilises the extrachromosomal cccDNA
(covalently closed circular DNA) produced during
HBV replication.165 Interestingly, HBx presumably
emerged de novo in mammals during hepad-
navirus evolution.37 Although the role of the HBx
protein in non-human hepadnavirus infections is
unknown, conservation of the HBx gene in mam-
malian orthohepadnaviruses suggests that HBx-
mediated oncogenesis may be conceivable in
diverse mammals. In concordance, ducks infected
with avian hepadnaviruses lacking an HBx do not
develop HCC (summarised in115).

In contrast to HBV, integration of viral genetic
material into the host genome does not occur dur-
ing HCV infections. Here, the core protein and
non-structural proteins NS3 and NS5A promote
HCC development by altering the expression of
host genes involved in diverse oncogenic path-
ways, including proteins involved in cell-cycle
control (such as p53, p21, cyclins) and apoptosis
(summarised in164). Strikingly, HCC development
has not been observed in any non-human hep-
acivirus host yet. Hypothetically, oncogenesis
might either be unique to human HCV infections,
or oncogenesis in animals has not been observed
due to the relatively short life spans of the investi-
gated animals, e.g. mice and rats infected with rat
hepaciviruses.166 In contrast to these rodents,
some bat species have a comparably long life span
Journal of Hepatology 2019 vol. 70 j 5
of up to 30 years.167 However, whether bats can
get chronically infected with hepaciviruses and if
this infection leads to oncogenesis is unknown.
In addition, it has been hypothesised that bats
may have a lower risk of developing cancer than
other mammals, potentially because of their
unique physiological and immunological proper-
ties.168 In horses and cattle, chronic courses of
hepacivirus infections have been described and it
would be intriguing to study whether these large
and relatively long-lived animals develop HCC.
However, costly long-term infection studies and
longitudinal epidemiological investigations will
be needed to address this question.

If and how animals infected with hepatitis
viruses develop HCC is not well understood. HCC
can be induced in mice, but this requires genetic
engineering of the mouse genome, the use of
chemotoxic agents, injection of tumour cells or
xenograft approaches (summarised in169). Both
HBV and HCV can cause chronic infections and
HCC in chimpanzees, but using chimpanzees as
animal models is strongly restricted for ethical
reasons. An essential step towards an animal
model for oncogenic hepatitis is the identification
of a tractable, long-living host with oncogenic
mechanisms similar to human HBV and HCV
infections.

Receptor usage differs across hepatitis virus
homologues
A crucial step during viral infection and a major
factor limiting cross-species transmission is the
interaction of viral proteins with host cell mem-
brane structures enabling viral attachment and
entry into cells. Strikingly, the cellular receptor
molecules of HAV and HEV are still unknown.
Recent data revealed that contrary to textbook
knowledge, TIM1 is not essential for HAV entry
into hepatocytes or epithelial cells.66,170

HBV host specificity seems to be determined by
a few essential amino acids of the cellular receptor
NTCP/Ntcp. Interestingly, human HBV can use the
Ntcp of great apes and New World monkeys, but 1
specific amino acid exchange in the Ntcp is needed
for a cross-species transmission of human HBV to
Old World monkeys.33,171 Similarly, 1 amino acid
exchange in the woodchuck Ntcp enables an effi-
cient infection with HBV.172 However, additional
unidentified host-specific co-factors might be
essential for viral entry and infection. For example,
while HDV infection of mouse hepatocytes can be
enabled by alteration of just 3 amino acid residues
in the murine Ntcp, HBV infection is not possible
in these animals.173 In addition, HBV infection
can be enabled in pig and macaque hepatocytes
expressing the human NTCP, but not in similarly
engineered hepatocytes of mouse, rat, and dog ori-
gin.174 Strikingly, HBV can readily infect primary
hepatocytes of the Asian tree shrew,175 which
implies that both the HBV cellular receptor and
potential co-factors are conserved in this animal.
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For HCV, a complex interaction of various
receptor molecules has been described69–71

(Table 1). Like HBV, the host range of HCV seems
to be limited by its receptors. Interestingly,
rodents can be infected with HCV following mod-
ifications of either the host or the virus. On the
host side, human liver-chimeric mice susceptible
to HCV provide promising opportunities to cir-
cumvent host specificity.176 On the viral side, only
3 amino acid exchanges within the viral envelope
proteins of HCV have been shown to allow infec-
tion of mouse hepatocytes in vitro, but additional
adaptations might be necessary for efficient repli-
cation in vivo.177 Among non-human hep-
aciviruses, entry mechanisms have not been well
studied, but the inability of the equine hepacivirus
to infect human cells in vitro suggests a high level
of host specificity.154 Recently detected hep-
aciviruses might provide exciting new opportuni-
ties for animal models, as exemplified by a rat
hepacivirus capable of infecting immunocompe-
tent laboratory mice and rats.166 Notably, any
tractable animal model of human hepatitis would
greatly benefit from susceptibility to human
viruses or recombinants thereof, which has rarely
been achieved.
Viral immune evasion strategies differ in host
specificity
In addition to viral entry, cross-species transmis-
sion is limited by host immune responses and
the ability of viruses to evade these responses
after host switching. Among other mechanisms,
HAV and HCV evade the human innate immune
response by cleavage of the mitochondrial antivi-
ral signalling protein (MAVS). MAVS is an essen-
tial part of interferon pathways induced by viral
double-stranded RNA.178 MAVS is cleaved by the
HAV protease precursor 3ABC 178 and the HCV
protease NS3/4A179 at different sites. Strikingly
different levels of host specificity are evident in
HAV- and HCV-mediated MAVS cleavage. HAV-
mediated MAVS cleavage seems to be rather
host-specific based on the inability of human
HAV to cleave murine MAVS.143 The ability of
non-human hepatoviruses to cleave cognate and
heterologous MAVS has not been studied yet
and requires further investigation. Interestingly,
for hepaciviruses, MAVS cleavage via the NS3/4A
protease is conserved among equine, bat, rodent,
and primate hepaciviruses,178,180,181 hence
reflecting a conserved immune evasion strategy.
Strikingly, human MAVS can be cleaved by all of
these diverse non-human hepaciviruses,181 hint-
ing at a less host-specific mechanism compared
to HAV.

In conclusion, both virus-receptor interactions
and host immune responses can restrict cross-
species transmission. Understanding the underly-
ing mechanisms is essential for adapting potential
novel animal models to human hepatitis viruses.
Journal of
Chapter 4: Evolutionary origins of hepatitis
viruses
The plethora of newly discovered viruses provides
insights into the genealogy of human hepatitis
viruses.182 Here, we discuss hypotheses on the
when, the whence, and the where of human hep-
atitis virus evolution.

The age of human hepatitis viruses is
underestimated
For all human hepatitis viruses, projections of the
most recent common ancestors (MRCA) based on
extant viruses yield surprisingly similar results in
the range of several thousand years before pre-
sent.183–185 Hypothetically, environmental factors
such as the formation of large human populations,
rearing of livestock and changes in land use might
have contributed to the rise of hepatitis viruses in
humans and explain the similarities of calculated
MRCA. However, projections of ancient MRCA need
to be treated with caution, because of the technical
constraints of bioinformatic programmes, recom-
bination events, and an inevitable sampling bias.
These limitations are best illustrated by variations
of the projected origins of HBV, which vary by sev-
eral orders of magnitude.186–188 In addition,
ancient HBV sequences frommummies and human
remains revealed that HBV strains closely related
to contemporary strains already occurred in the
Neolithic, strongly suggesting that HBV is much
older than previously thought.189–191 The avian-
associated hepadnaviruses were dated to have
emerged around 6,000 years ago and thus again
in a similar range as those yielded by projections
of human-associated hepatitis virus MRCA.186

Again, the limitations of such projections became
evident when endogenous hepadnavirus elements
were identified in the genomes of birds and rep-
tiles.37,192–195 According to these molecular fossils,
hepadnaviruses must have occurred in the Early
Mesozoic > 200 million years ago (mya), predating
the rise of mammals (Fig. 3A) and again exceeding
the MRCA from bioinformatic calculations by sev-
eral orders of magnitude.196

Ancient origins of non-human hepatitis viruses
Interestingly, hepatitis viruses are found in diverse
vertebrate taxa (Fig. 3A), hinting at a long evolu-
tionary association between vertebrates and hep-
atitis viruses. The common ancestors of
vertebrates date back to the Ordovician, approxi-
mately 450 mya, from where they diversified into
fish, amphibians, reptiles, birds, and mammals.
Notably, all of these vertebrate taxa harbour
viruses with some genetic relationship to human
hepatitis viruses. Remarkably, viruses and viral
elements with genetic or structural relationships
to hepatoviruses, hepadnaviruses, hepaciviruses,
and hepeviruses also exist in arthropods,197–200

which are evolutionarily ancient animals that
evolved approximately 500 mya.201 These recent
Hepatology 2019 vol. 70 j 501–520 509
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[Organism] AND host [All Fields]”, Human, n = 68,867, NHP, n = 156, Aves, n = 87, Chiroptera, n = 73, Rodents, n = 25 and Cetartiodactyla, n = 10; for HCV (January
18, 2018): ‘‘Hepacivirus [Organism] AND host [All Fields]”, Human, n = 132,645, NHP, n = 491, Perissodactyla, n = 456, Rodentia, n = 182, Carnivora, n = 25,
Cetartiodactyla, n = 18 and Chiroptera, n = 12; for HDV (January 17, 2018): ‘‘Deltavirus [Organism] AND host [All Fields]”, Human, n = 912; for HEV (January 17,
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complete polymerase CDS from non-human hosts were selected. Complete polymerase CDS of reference sequences from242 and the capuchin monkey hepatitis
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sequences. HCV: All sequences with complete polyprotein CDS from non-human hosts were selected. Complete polyprotein CDS of reference sequences from
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Aves, n = 11, Carnivora, n = 13 and Lagomorpha, n = 17 sequences. CDS, coding sequences; HAV, hepatitis A virus; HBV, hepatitis B virus; HCV, hepatitis C virus;
HDV, hepatitis delta virus; HEV, hepatitis E virus; NHP, non-human primates. Bars are coloured according to host taxon.
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observations further corroborate an ancient evolu-
tionary origin of hepatitis viruses.

The genetic diversity of viruses in a given host
taxon provides insights into the time of virus evo-
lution within that host. In public databases, the
number of HAV, HBV, and HCV genomic sequences
originating from humans highly exceeds the num-
ber of sequences from their non-human homo-
logues (Fig. 3B). In contrast, the majority of HEV
sequences originates from even-toed ungulates,
including swine, camels, cattle, deer, sheep, and
moose. This is consistent with the high impact of
these zoonotic viruses on human health. Interest-
ingly, despite the comparably low number of
genomic sequences available for animal homo-
logues of HAV, HBV, and HCV, the genetic diversity
Journal of Hepatology 2019 vol. 70 j 5
of non-human viruses generally exceeds that of
the human-associated viruses (Fig. 3C). This is
especially conspicuous for viruses hosted by small
mammals, hinting at a longer association of small
mammals with hepatitis viruses compared to
humans. The comparably low diversity in human
hepatitis viruses may additionally be linked to
evolutionary pressures favouring certain geno-
types,202 the rapid expansion of the human popu-
lation potentially favouring certain viruses over
others, and to extinction events best illustrated
by the recent findings of an extinct HBV genotype
in human remains.190,191

In conclusion, hepatitis viruses are presumably
much older than previously thought. The compar-
ison of hepatitis virus diversity in different host
01–520
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taxa suggests that evolution in non-human hosts
generally preceded the introduction of hepatitis
viruses into the human lineage.

Complex macro-evolutionary events during
hepatitis virus evolution
Hypothetically, hepatitis viruses may have accom-
panied speciation of their hosts. Indeed, similari-
ties in the topologies of relatively old vertebrate
lineages such as fish, amphibians and birds and
their hepato-, hepadna- and hepaciviruses may
hint at virus-host co-speciation.36,203 In addition,
evidence for co-speciation exists for the New
World monkey hepadnaviruses CMHBV and
WMHBV.33 However, cross-species transmission
must also have occurred during the evolution of
hepatitis viruses. Apart from the zoonotic HEV
genotypes, examples of cross-species transmission
events include hepatoviruses in marsupials that
are of likely rodent origin,28 horse-associated hep-
aciviruses in dogs and donkeys,38,41 gorillas
infected with chimpanzee hepadnaviruses, oran-
gutans infected with gibbon hepadnaviruses,119

and rat hepeviruses in shrews.204 In addition, the
tentative HBV genotype J likely emerged from a
recombination event involving human- and
gibbon-associated parental strains, hinting at
cross-species viral transmission from gibbons to
humans (summarised in80). Evidence for cross-
species transmission events in hepatitis viruses
might indicate that humans or their primate pre-
cursors acquired hepatitis viruses from another
animal host.

It remains unclear when this hypothetical host
switching into primates occurred. Nonetheless, a
relatively recent introduction of hepatitis viruses
into humans or their primate precursors is
strongly supported by the lack of genetic diver-
sity among primate viruses compared to non-
primate hepatitis virus homologues, and by the
complete absence of human viruses clustering
in basal positions in phylogenetic reconstructions
(Fig. 4A-E).

Interestingly, the frequency of predicted cross-
species transmission events varies among the dif-
ferent hepatitis virus families. While cross-species
transmission may be relatively frequent in the
enterically transmitted hepato- and hepeviruses,
it seems to be comparably infrequent in blood-
borne hepadna- and hepaciviruses.29,36,205 Possi-
ble explanations for this observation include
potentially easier transmission of highly stable
enterically transmitted viruses compared to
viruses likely transmitted exclusively through
contact with body fluids. Additionally, different
levels of host specificity due to receptor interac-
tions or viral immune evasion strategies may play
a role, as outlined earlier.

The macro-evolutionary patterns of hepatitis
virus are thus complex and likely include both
co-speciation and cross-species transmission
events. Apart from certain HEV strains, no recent
Journal of
zoonotic event is evident in the phylogenetic
reconstructions of human hepatitis viruses.

A recent NHP origin of human hepatitis viruses
is unlikely
Since genetic relatedness of hosts facilitates cross-
species transmission of viruses206 one could
assume human hepatitis virus origins in NHPs,
similar to the origins of HIV in monkeys and
apes.207 Indeed, relatives of HAV, HBV, and HCV
are found in NHPs (Fig. 4A). However, for HAV
and HCV these detections are sporadic and the
viruses are not genetically diversified in NHPs22

(Fig. 4A/C). In addition, hepaciviruses from NHPs
do not share a recent common ancestor with
human HCV (Fig. 4C), suggesting a non-recent host
switch into NHPs from an unknown source.
Among primate HBV, diversified strains from Old
World apes are intermixed with human strains
and recombination events among these viruses
hint at past cross-species transmission.119 How-
ever, the relatively large genetic diversity of
human viruses compared to viruses from Old
World apes may hint at an origin of HBV in the
human stem lineage.33,208 Interestingly, both the
WHMBV and the CMHBV surface proteins can
use the hNTCP for cell entry, suggesting zoonotic
potential of these divergent HBV species from
New World monkeys. Nonetheless, the phyloge-
netic relationships of primate HBV suggest that
neither CMHBV, nor WMHBV are direct ancestors
of human HBV.33 Hence, our current knowledge
on primate HAV, HBV and HCV diversity does not
support a recent origin of human viruses in NHP.
Thus, studies investigating hepatitis virus diver-
sity in diverse NHP species and NHP remains are
urgently needed.

The complex where and whence of human
hepatitis viruses
Small mammals such as bats and rodents are par-
ticularly relevant animal reservoirs of human
pathogens.209,210 Their important role as hosts
for zoonotic pathogens has been linked to their
species richness, abundance, worldwide distribu-
tion, the synanthropic behaviour of some species,
the ability of bats to fly, to gregarious populations
of some bat species and to unique immunological
properties of bats.209,211,212 Interestingly, highly
diversified homologues of HAV, HBV, HCV, and
HEV were detected in these 2 mammalian
orders25,28,30,42,43,54,213,214 (Fig. 4), hinting at the
importance of small mammals during hepatitis
virus evolution.

One can assume that the diversity of viruses is
highest in areas of prolonged circulation. Based on
this assumption, the origins of human hepatitis
viruses can be mainly projected to the Old World
(Fig. 5).80,100 In addition, diverse viruses assigned
to HAV and HBV are found in Old World NHPs
which hints at a relatively long association of
hepatitis viruses with primates in the Old World
Hepatology 2019 vol. 70 j 501–520 511
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million generations, sampled every 100 steps. After an exclusion of 5,000 of the total 20,000 trees as burn-in, final trees were annotated with TreeAnnotator
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Genotype; HAV, hepatitis A virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HDV, hepatitis delta virus; HEV, hepatitis E virus; ORF, open-reading frame; S-
HDAg, small form HDV antigen.
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compared to the New World. However, divergent
HBV and HDV genotypes occur in American
natives, namely HBV genotypes F and H and HDV
genotype 3.187,215 Prior to the novel animal
delta-like agents, it was not possible to root the
phylogenetic tree of HDV. Now, upon inclusion of
the novel snake and duck delta-like agents, sur-
prising similarities are found in the sister relation-
ship of the New World HBV and HDV genotypes
Journal of Hepatology 2019 vol. 70 j 5
and Old World genotypes (Fig. 4B,D). Notably,
the existence of these divergent New World geno-
types does not necessarily suggest ancient origins
of HBV and HDV in the New World, because these
genotypes show only limited genetic diversity
compared to the Old World genotypes. It seems
plausible that the ancestors of New World HBV
and HDV genotypes were introduced to the New
World during the peopling of the Americas via
01–520
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the Beringian land bridge approximately 15–23
thousand years ago,216 before then going extinct
in the Old World.33

The evolutionary ancestors of human hepatitis
viruses are unknown. Presumably, a zoonotic
introduction into humans or their primate precur-
sors occurred non-recently in the Old World. Fur-
ther evidence elucidating the genealogy of human
hepatitis viruses can be expected in the coming
years.

Concluding remarks
Major progress has been made in the study of
human hepatitis viruses during the last 60 years.
However, crucial aspects of hepatitis virus evolu-
tion and pathogenesis remain poorly understood.
At the same time, properties we took for certain
have been called into question, such as the pre-
dominant association of hepatitis viruses with
human hosts, the determinants of hepatotropism
and the distinction of typically either enveloped
or non-enveloped viruses. In this review, we dis-
cussed pathogenesis, evolutionary origins and
zoonotic risks of human hepatitis viruses in light
of recent discoveries of a plethora of animal
homologues.

It is anticipated that the newly discovered ani-
mal viruses will help to answer crucial questions
regarding the pathogenesis of hepatitis viruses,
e.g., whether the existence of quasi-enveloped par-
ticles of HAV and HEV is evolutionarily conserved,
and which viral determinants are involved in
oncogenesis and the potential to cause chronic
Journal of
infections. Although hepatotropism is not fully
understood even for the well-investigated HAV,
HCV and HEV, the recent detection of HDV-like
agents in animals apparently showing both a
broad organ tropism and a lack of detectable
helper viruses emphasises the need to investigate
the bases underlying the unique biological proper-
ties of human hepatitis viruses.47,48

The evolutionary origins of human hepatitis
viruses have remained enigmatic. The recent dis-
coveries of highly diverse animal homologues hint
at the evolutionary origins of all human hepatitis
viruses in non-human hosts. These origins may
be rather ancient, and involve old vertebrate lin-
eages such as reptiles, amphibians, birds, fish
and potentially even arthropods197–200,217

(Fig. 6A). Among mammals, small mammals such
as bats and rodents harbour particularly diversi-
fied hepatitis viruses. One may speculate that
arthropod-borne hepatitis virus precursors may
have been passed to insectivorous small mammals
via the blood-borne route or by ingestion of
insects.25,217 These hosts hypothetically acted as
a point of entry for ancient viruses carried by
arthropods or lower vertebrates into mammals.
In small mammals, viruses may then have diversi-
fied and eventually have been transmitted directly
or via intermediate hosts to humans.29,119 It is also
conceivable that several independent introduc-
tions of hepatitis viruses into different vertebrate
lineages from arthropods, lower vertebrates and
yet unknown sources have occurred (Fig. 6B). Pre-
sumably, hepatitis virus evolution combined both
Hepatology 2019 vol. 70 j 501–520 513
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long-term virus-host associations and cross-
species transmission events, such as those pro-
jected for other viruses.29,34,36,119,203,218 Future
discoveries of viruses will identify missing links
in hepatitis virus evolution and may identify direct
ancestors of human hepatitis viruses.

Finally, there is an increasing drive towards the
elimination of viral hepatitis B and C as aspired by
the Word Health Organization.1 Notably, a prereq-
uisite for the eradication of hepatitis viruses in
humans is the absence of an animal reservoir.
The discovery of hepatitis virus homologues in
non-human hosts might imply that reintroduc-
tions into the human population after successful
eradication and cessation of vaccination in the
case of HBV may be possible. This is best illus-
trated by the ability of the surface proteins of
the bat-borne TBHBV to confer viral entry into
human hepatocytes, hinting at the zoonotic poten-
tial of this bat hepadnavirus.30

In summary, the last decades have yielded
unprecedented insight into the evolution of
human hepatitis viruses, refuting their conceptu-
alisation as predominantly human pathogens in
all cases. Beyond enhancing our understanding of
viral evolution, the diverse animal homologues of
human hepatitis viruses allow conceptualisation
Journal of Hepatology 2019 vol. 70 j 5
of new animal models for preclinical testing of
urgently needed therapeutics for chronic hepatitis
B and C, and for determining the many unknowns
of hepatitis virus pathogenesis.
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