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Abstract: Image denoising is a challenging task that is essential in numerous computer vision and
image processing problems. This study proposes and applies a generative adversarial network-based
image denoising training architecture to multiple-level Gaussian image denoising tasks. Convo-
lutional neural network-based denoising approaches come across a blurriness issue that produces
denoised images blurry on texture details. To resolve the blurriness issue, we first performed a
theoretical study of the cause of the problem. Subsequently, we proposed an adversarial Gaussian
denoiser network, which uses the generative adversarial network-based adversarial learning pro-
cess for image denoising tasks. This framework resolves the blurriness problem by encouraging
the denoiser network to find the distribution of sharp noise-free images instead of blurry images.
Experimental results demonstrate that the proposed framework can effectively resolve the blurriness
problem and achieve significant denoising efficiency than the state-of-the-art denoising methods.

Keywords: image denoising; residual learning image denoising (RLID); direct image denoising
(DID); convolutional neural networks (CNNs); generative adversarial network (GAN)

1. Introduction

Image denoising has become a popular topic in the field of low-level and high-level
vision problems, but it remains an essential and difficult task. Due to the image sensing
process, the various inevitable noises reduce the visual quality of an image. The elimination
process of noise from the observed image is essential in numerous computer vision and
image processing issues [1–4]. Image denoising plays an important role in the fields of
computer vision and image processing with diverse applications like medical imaging,
remote sensing, military and surveillance, robotics, and artificial intelligence, where obtain-
ing the original image content is crucial for strong performance [5]. The image degradation
concept can be described mathematically as x = y + n, where x is the degraded form
of the original image y, and n is the added noise, generally referred as additive white
Gaussian noise (AWGN) as shown in Figure 1. Methods of image denoising concentrate on
restoring the denoised image y from its cross ponding noisy image x through eliminating
or reducing noise n. To date, a denoising method that has given very satisfactory results is
that based on first generation [6,7] and second generation wavelets such as curvelets [8,9]
or contourlets [10,11]. These methods carry out a multiresolution analysis [12] or multiscale
analysis for denoising an additive white and Gaussian noise. The most targeted applica-
tions are in the field of medical imaging [13,14]. Image denoising techniques can be divided
into two main groups: model-based and discriminative learning-based image denoising
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techniques. Model-based approaches can tackle image denoising issues by varying noise
levels; however, the noise levels must be identified in advance. Despite having some
weaknesses, they have demonstrated good results. A significant obstacle to model-based
denoising approaches is that they typically take advantage of handcrafted image priors
(e.g., priors of sparsity [15,16] and priors of non-local self-similarity (NSS) [17–20]), which
are incapable of characterizing complicated image structures. Another drawback is that the
complicated optimization method being conducted during inference is time-consuming,
thus taking a considerably long denoising time. They also cannot eliminate variant noises
in spatial terms. Block-matching and 3D filtering (BM3D) [18] is one of the most famous
and state-of-the-art techniques among the many NSS models.
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network. This approach is built on the statistical rule that a network will be directed by 
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surrounding pixels is taken as the corresponding clean pixel as per the image’s local re-
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pairs of images. Nevertheless, their denoising result was constrained by the prior infor-
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Figure 1. Sample of degraded image. (a) presents an original image y, (b) demonstrates the AWGN image n, and (c) shows
the resultant image x = y + n.

Discriminative learning-based approaches have been adopted to resolve the draw-
backs of model-based approaches and address the disadvantages above-mentioned. Dis-
criminative denoising techniques aim to learn a noise model from a specified collection of
distorted training data and corresponding clean image pairs in the training process. These
techniques do not require any adaptive refinement during the test interval, leading to a
faster denoising speed, which is the main benefit. In particular, the convolutional neural
network (CNNs) based approaches are now the most famous in the discriminatory learning
techniques because CNNs has characteristics such as sparse relation and weight sharing.
These properties are simpler to train the CNN-based models and more comfortable to
prevent the issue of overfitting.

In theory, approaches based on CNNs can also be divided into three groups. The first
group includes the prior information-based approaches. These procedures train a denoiser
network as per certain statistical rules. For example, NOISE2NOISE [21] uses several
different pairs of independently distorted images of identical scenes to train its denoising
network. This approach is built on the statistical rule that a network will be directed by the
L2 loss to find the mean solution for all possible solutions. In addition, NOISE2VOID [22]
provides a simplified approach in which only several single noisy images of various scenes
are used to train the denoising network. The average of the target noisy pixel’s surrounding
pixels is taken as the corresponding clean pixel as per the image’s local resemblance. This
method can overcome the need to train a denoising network for many pairs of images.
Nevertheless, their denoising result was constrained by the prior information used.

The second group is a simple denoising method, which split up noise from the given
distorted input image [23–25]. Feedforward denoising (Dn)-CNN [23] harnesses the deep
convolutional neural networks’ achievement on image denoising tasks and is a popular
traditional approach due to the good denoising efficiency. Instead of learning direct clean
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targeted images, Dn-CNN maps residual images (noise images) and produces target images
by subtracting residual images from the input images. Through CNN model parameters,
Dn-CNN finds the mapping relationship between the noisy and targeted clean images.
Distinct loss functions and different motivations have developed CNN models [26,27].
These models use reconstruction or pixel-wise losses [26,28–30] to produce output images,
being the most popular methods. For example, the least-squares or least absolute losses
in pixel space are utilized to calculate the targeted and constructed images’ variance. The
pixel-wise calculation can produce reasonable images. Though, during some instances,
these loss functions mostly catch low frequency rather than high frequency elements of
images, resulting in certain critical performance drawbacks (e.g., image artifacts and image
blurring) [31,32].

The third group is the generative methods that reduce noise through two stages:
modeling of noise and supervised denoising. For supervised denoising, the noise mod-
eling process first designs real-world noise utilizing real-world residual images and then
produces several clean noisy image pairs. The generated image pairs are used to train a
denoising network and find the mapping relationship in the supervised denoising process.
For example, GCBD [33] uses generative adversarial networks (GANs) [34] that design
real-world noise and produce several pairs of clean noisy images by the addition of their
created noise with a single clean image dataset. GANs have shown remarkable outcomes in
image generation tasks. GANs, presented by Goodfellow et al. [34], consists of a generator
network and a discriminator network, aimed at modeling the distribution of the real im-
ages via refining created samples that are very close to the actual images. The GAN-based
model produces more realistic and sharper images than CNN-based models [35–37], which
is a substantial benefit of using it. Image denoising tasks based on paired images could
be formulated as a paired image-to-image translation task. GANs and conditional GAN
(cGANs) [38] procedures had proven to be the traditional method for image-to-image trans-
lation problems [35,39]. Pix2pix-cGAN [35], based on cGAN, has become a popular method
to resolve the paired image-to-image transformation problems and map the distribution
of the actual images conditioned on the input images [37,40–43]. In the literature, most
of the methods used residual learning for image denoising tasks. For example, based on
Wasserstein generative adversarial networks (WGAN) [44], Chen et al. [45] proposed an
image denoising training scheme and used residual learning for the generator network.
In the residual learning image denoising methods, the network learns the residual image
(noise image) first and subtracts the residual image from the input image to get the clean
image. This method is beneficial for low levels of noise. Nevertheless, this method does not
simplify well enough for numerous noise levels and generates over-smoothed results for
the higher noise level and giving up the fine image details. Hence, the visual performance
of the produced images is not pleasing [46].

We proposed the adversarial Gaussian denoiser network (AGDN) using adversarial
and reconstruction losses to overcome image artifacts for the high levels of image denoising
tasks that construct the sharp and target-oriented images. Instead of using the skip-
connections, the proposed model uses residual blocks [47] between the encoder and decoder
networks for the deep sparse understanding of the input images.

The remaining research is as follows. In Section 2, the previous image denoising
research is presented in detail. Section 3 explains the proposed methodology, objective
function, and network architecture. The experiments, datasets, model parameters, results,
the study of various loss functions, and network configurations with different methods are
discussed in Section 4. Our conclusions and future studies are discussed in Section 5.

2. Related Work

Discriminative learning-based techniques have become quite common due to sensible,
practical, remarkable results, and a short testing time. In this section, we describe in detail
the three types of discriminatory learning-based approaches.
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This form of denoising technique explicitly learns a prior model. In model-based
approaches, the model first learns the image prior and then implements adaptive refine-
ment in the testing phase. However, discriminative learning methods [48–51] aim to
learn by minimizing a predefined loss function during the training phase, and there is
no optimization required in the testing time. Barbu [52] introduced the active Markov
random-field (MRF) architecture by merging MRF with a faster testing process for image
denoising. A non-local range (NLR)-MRF was introduced by Sun and Tappen [53] to boost
the performance of maximum a posteriori (MAP) by parameters optimizing a continuous-
valued MRF during the testing phase. Both algorithms were trained by the minimization
of the objective function through gradient-based learning techniques. While the above
methods can discriminatively pick up the prior parameters, their inference attributes are
phase-invariant, subsequently less simplification control for different noise levels.

Schmidt and Roth [48] proposed the cascade of shrinkage fields (CSF) approach and
the trainable nonlinear reaction-diffusion (TNRD) model proposed by Chen et al. [49]
provide some illustrative examples of discriminative-based learning models. CSF merges
the random field-based scheme using the half-quadratic optimization architecture and the
process of optimization in the single learning algorithm. TNRD finds an improved expert’s
image prior field with gradient-descent inference through the constant number of iterations.
TNRD utilizes additional filters by bigger kernel sizes, dynamic punishments in random
forms, and changing each iteration parameter. CSF and TNRD demonstrated good results
in computational performance and denoising quality. However, their efficiency is limited
to specified categories of prior because of their limitation in capturing the complete image
structure. Moreover, with many handcrafted parameters, TNRD and CSF are well-tuned to
some amount of noise. Subsequently, they do not apply to multiple image denoising tasks.

Recently, due to CNN’s significant success in computer vision, image denoising work
has attracted wide attention and made much improvement by utilizing CNN models.
Simple discriminative learning models discover mapping functions and predict the image
prior implicitly by using CNN’s strength. Jain and Seung [54] introduced a scheme that
used the five-layer CNN of sigmoid non-linearity. Mao et al. [55] introduced a full convolu-
tion layer encoder-decoder framework with synchronous skip connections aimed at the
image reconstruction tasks. Xie et al. [56] introduced a denoising algorithm that combines
denoising auto-encoder and sparse coding by a training method that applies a pre-trained
denoising auto-encoder aimed at image denoising tasks. However, those initial denoising
approaches [54–56] failed to cope with the benchmark denoising methods.

Zhang et al. [23] introduced the Dn-CNN for image denoising tasks. The Dn-CNN is
a discriminative-based learning method that discovers a relationship between the given
distorted image and targeted clean image by utilizing the CNN model’s parameters and
demonstrated impressive denoising results. These models were trained to learn the residual
images between noisy images and noise-free images. They utilized batch-normalization
methods to boost performance and speed up the learning procedure. Zhang et al. [57]
introduced deep denoising networks that offer a trade-off between the inference time
and the output. They used a dilated convolution layer [58] to have a model with a larger
receptive area.

Moreover, Zhang et al. [24] introduced a flexible and faster denoising (FFD)-CNN-
based image denoising approach (FFDNet) to resolve several noise levels and spatially
different noises with a single model. This method receives a configurable noise-level map
as the extra input with a down-sampled distorted image. It utilizes feedforward CNNs to
construct the targeted clean image. Rather than using the dilated convolution method to
raise the receptive fields, it works with downsampled sub-images that help attain the larger
receptive fields without creating any image artifacts. Furthermore, the downsampling
process significantly reduces the testing time.

In GAN-based models, the generator network is similar to the CNN’s encoder-decoder
structure. The deep-CNNs suffer from a disappearing gradient issue during the training
process. Consequently, many previous studies [45,46,59] have utilized skip-connections in a
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generator network to easily allow a gradient to earlier network layers. Unfortunately, such
skip-connections bring unwanted data straight from the input images to the constructed
images, reducing the constructing images’ visual quality. The denoising tasks for the
low level of noise can benefit from any of the above-mentioned methods. However,
these denoising methods sacrifice adequate image information when dealing with higher
noise levels, resulting in image artifacts and over-smoothed images. Consequently, the
produced images have poor visual quality. We must factor the following information
into the denoising model’s optimization process to construct target-oriented and visually
pleasing images.

• The concept of perfect mapping targeted noise-free images should not be influenced
by the appearance of given noisy images, which must be the foundation of any
denoiser network.

• Rather than depending solely on output qualitative metric values, the graphic visual
quality factor of generated images must be considered during the optimization process.
This principle ensures that the produced images are realistic and visually pleasing.

Based on the above criterion, we proposed the adversarial Gaussian denoiser network
(AGDN) for all levels of image denoising tasks. The AGDN contains a denoiser network and
the discriminative network. The denoiser network transforms the noisy input images into
noise-free targeted images, whereas the discriminator network distinguishes between the
fake and real images. This study employs the pixel reconstruction L1 loss and adversarial
losses in the loss function. We used the traditional L1 loss to push constructed images to
stay close to clean targeted images. In the meantime, we utilized the adversarial loss to
calculate the constructed image distribution, that is, to push the constructed distribution to
converge into clean targeted distribution, which usually results in less blurry, sharper, and
pleasing images. This study’s contributions are as follows:

• This work presents a novel approach for all the levels of Gaussian image denoising
tasks. It uses the direct image denoising method via an encoder-decoder denoiser
trained by adversarial and reconstruction losses.

• This study introduces an optimized technique based on conditional GAN (cGANs)
architecture for image denoising tasks.

• We deeply analyzed the traditional two methods (i.e., residual learning image denois-
ing method and direct image denoising method) for image denoising tasks on the
denoiser network’s two different primary configurations. The results demonstrate
that the proposed method is an agreeable alternative for image denoising tasks.

• We also achieved quantitative and qualitative results using AGDN, which expresses
that the proposed method generates better results than the state-of-the-art methods.

Table 1 presents the comparison among the proposed AGDN and current state-of-the-
art methods.
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Table 1. Comparison of the proposed and state-of-the-art methods.

Methods Advantages Disadvantages

Model-Based Methods Priors of Sparsity [15,16],
Non-local Self-Similarity

(NSS) [17–20]

• Advantage of
handcrafted image priors

• Performed well for low
noise levels

• Limited for high noise
levels

• The inference phase is
time-consuming

Discriminative
Learning-based methods

NOISE2NOISE [21],
NOISE2VOID [22]

• These methods can
overcome the need to
train a denoising
network for many pairs
of images.

• Constrained by the prior
information used

Dn-CNN [23],
ID-MSE-WGAN [45]

• Fast inference time
• Performance is suitable

for low noise levels

• Produce image artifacts
for higher levels of noise

FFDNet [24] • Fast and flexible
• Capture larger receptive

field by downsampling
images

• Can cause loss of
important information by
downsampling images

The perceptually inspired
denoising method [46],

• Fast testing time
• Construction of denoised

images perceptually
strong for low noise
levels

• Used skip-connections to
maintain the content of
the image

• The skip-connections
cause the flow of
unwanted information to
the output images and
hence producing image
artifacts for higher levels
of noise

The proposed AGDN • Fast inference time
• Construct sharp,

pleasing, and
target-oriented images
for all levels of noise

• Used residual blocks for
deeper network

• Need to train extra
discriminator Network

• Take slightly extra time
during training

3. Methodology

We proposed an image denoising training scheme by merging adversarial losses with
reconstruction losses and learn the clean target images directly instead of residual images
to resolve the blurriness and image artifacts issue. Additionally, we fine-tune the training
specifics of pix2pix-cGAN to make it appropriate for image denoising tasks.

In this study, we used two kinds of pair training examples, that is, a set of noisy input
images {xi}N

i=1 ∈ X, and a set of clean target images {yi}N
i=1 ∈ Y. The denoiser network V

was trained so that the constructed noise-free images V(x) were similar to the actual clean
target images, and we simultaneously trained the discriminator network, D, to differentiate
the fake constructed noise-free photos from the actual clean photos. The denoiser learns
the transformation from a noisy-domain to a clean real-domain through minimizing the
adversarial losses, attempting to trick the discriminative network. The denoising network
contains an encoder network En, residual blocks layer R, and the decoder network De. The
encoder includes a set of downsampling convolutional layers that transform a noisy image
into some feature domains En(x). Later, these feature domains, En(x), feed to the residual
blocks [47]. The output feature maps of residual blocks, R(En(x)), becomes the input of
the decoder network De. At that point, a series of up sampling transposed convolution
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layers decode the transformed feature maps into fake constructed clean image V(x). The
output of the denoising network is described in Equation (1).

V(x) = De(R(En(x))) (1)

Figure 2 illustrates the entire network framework known as the adversarial Gaussian
denoiser network (AGDN).
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3.1. Objective Function

The generator and discriminator networks were trained by GAN losses [34]. The
GAN losses constitute two parts: the first one is termed as the mini-max GAN loss, and
the second one as the non-saturating GAN loss. Minimax GAN loss refers to the mini-max
simultaneous optimization of the discriminator and generator models. The non-saturating
GAN loss is a modification to the generator loss to overcome the saturation problem by
maximizing the log of the discriminator probabilities for generated images. The generator
network tries to construct an image that should be similar to the image present in the
targeted domain Y, whereas the discriminator network aims to distinguish between the
constructed (i.e., fake) image and targeted (i.e., real) image. Adversarial training is similar
to a two-player mini-max game where the discriminator is trained for maximizing the
probability of correctly classifying the fake images (i.e., coming from the generator and the
real images, i.e., coming from targeted images), while the generator network is trained to
minimize the probability of correctly classifying the constructed image by the discriminator
network. Equation (2) expresses the mini-max game.

min
G

max
D

Ey∈Y[log(D(y))] +Ex∈X [log(1− D(G(x)))] (2)

GAN-based methods have shown a significant potential to understand generative
models, especially for artificial image generation works [44,60,61]. Therefore, as a result,
we used the GAN-based learning method to solve image denoising problems. The denoiser
network V was utilized to construct a noise-free clean image, V(x), against corresponding
noisy image, x ∈ X, as shown in Figure 2. Meanwhile, each noisy input image xi has a
corresponding noise-free target image yi. We presumed that all noise-free targeted images,
y, belonged to the distribution y ∈ Y, and the constructed noise-free images, V(x), were
encouraged to obtain the same distribution as the noise-free targeted images y (i.e., V(x) ∼
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Y). In addition, to achieve the adversarial learning method, a discriminator network, D, is
introduced, and the adversarial objective function can be described as follows:

min
V

max
D

F(V, D) = Ey∈Y[log(D(y))] +Ex∈X [log(1− D(V(x)))] (3)

As discussed in [62], we utilized the least square loss (LSGAN), which provides a
smooth and non-saturated gradient for the D network. Adversarial loss, LGAN(V, D), is
formulated as follows:

LGAN(V, D) = Ey∈Y

[
(D(y)− 1)2

]
+Ex∈X

[
D(V(x))2

]
(4)

The adversarial losses respond to the numerical calculation to penalize the difference
between the noise-free constructed and noise-free targeted image distributions.

The traditional GAN architecture is unstable since it needs to train two opposing
neural networks. One cause of instability, according to [63], is that there are multiple
solutions during the generator network training. Previous studies have revealed that it is
helpful to merge the GAN objective function with other conventional losses like L2 loss [64],
so that the discriminator’s function remains unchanged, like in Equation (4). However, the
generator’s function is to deceive the discriminator network and generate images nearer to
the target images due to L2 loss. We utilized the L1 loss in the proposed method instead of
the L2 loss because the L1 loss encourages less blurriness. The L1 loss can be expressed
as follows:

LL1(V) = Ex,y[‖y−V(x)‖1] (5)

The adversarial losses assist the denoiser network in protecting the blurriness effect of
L1 loss and remaining near the target images. The total objective function of the denoiser
network can be described as:

LVT = ϕvLGAN(V) + ϕL1LL1(V) (6)

where LVT denotes the total denoiser network loss, that is, the summation of the denoiser’s
adversarial loss, LGAN(V), and L1 reconstruction loss, LL1(V).

3.2. Network Architecture

Figure 2 illustrates the proposed framework contains two CNN networks, that is, the
denoiser network, V, and the discriminator network, D.

Many solutions [45,46,59] to denoising problems utilized skip-connection in the de-
noiser network, transporting the data directly from the input to the output through the
network for resolving the disappearing gradient issue. On one hand, skip-connections help
resolve the vanishing gradient issue. These skip-connections carry unwanted data from
the noisy input through all the decoder network layers and critically influence the quality
of the constructed images for image denoising tasks. To prevent unwanted information
flow and produce visually pleasing results, we utilized the ResNet [47] architecture, similar
to Johnson et al. [65], through an encoder-decoder configuration rather than using skip-
connections, as shown in Figure 2. Our denoiser network consists of three down-sampling
convolution layers of stride-1 and stride-2, nine residual block layers, two up-sampling
transposed convolution layers of stride-2, and one convolutional layer of stride-1. It utilizes
instance normalization [66]; for detailed specifications, see Tables 2 and 3.
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Table 2. Denoiser network of AGDN.

Padding Kernel Size Operation Feature Maps Stride Non-Linearity

Encoder

3 7 Convolution 64 1 ReLU

1 3 Convolution 128 2 ReLU

1 3 Convolution 256 2 ReLU

Residual
Blocks

1 3 Residual block 256 1 ReLU

1 3 Residual block 256 1 ReLU

1 3 Residual block 256 1 ReLU

1 3 Residual block 256 1 ReLU

1 3 Residual block 256 1 ReLU

1 3 Residual block 256 1 ReLU

1 3 Residual block 256 1 ReLU

1 3 Residual block 256 1 ReLU

1 3 Residual block 256 1 ReLU

Decoder

1 3 Deconvolutional 128 2 ReLU

1 3 Deconvolutional 256 2 ReLU

3 7 Convolutional 256 1 Tanh

Table 3. Residual block network.

Padding Kernel Size Operation Feature Maps Stride Non-Linearity Dropout

1 3 Convolution 256 1 ReLU 0.5

1 3 Convolution 256 1 - -

In this study, we utilized the Markovian 70 × 70 PatchGANs [31,35,67] in the discrim-
inator network, D, to examine whether the overlapping 70 × 70 image’ patches are fake or
real. Patch-level discriminators have less parameters than the full-image discriminators
and can work on images of any scale in a fully convolutional fashion [35]; for detailed
specifications, see Table 4.

Table 4. Discriminator network.

Padding Kernel Size Operation Feature Maps Stride Non-Linearity

1 4 Convolution 64 2 LeakyReLU

1 4 Convolution 128 2 LeakyReLU

1 4 Convolution 256 2 LeakyReLU

1 4 Convolution 512 1 LeakyReLU

1 4 Convolution 1 1 Sigmoid

4. Experiments and Results

First, we address the dataset, the training parameters, and the proposed model details
in this section. We compare the AGDN with the traditional techniques and the existing
state-of-the-art approaches. We also analyze the experiment details and quality metrics
used to evaluate the proposed scheme.

4.1. Dataset

This study used the Partial-CelebA dataset [68] and DIV2K dataset [69]. We randomly
selected 1500 and 800 images from the Partial-CelebA and DIV2K datasets, respectively, to
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conduct the training in our experiments for each noise level. Additionally, 500 and 100 test
images were randomly selected from the Partial-CelebA and DIV2K datasets, respectively,
to do the cross validation of the proposed model for each noise level. To make the pair of
noisy and target images, we created distorted images from the dataset images via inducing
AWGN as

xi = yi + n(σ)i

where y is the target original image and x is the corresponding noisy image produced via
AWGN; and n(σ), with standard deviation σ. The number of experiments was undertaken
on four different noise levels by changing the numerical value of σ as 5, 25, 50, and 100 for
both datasets.

4.2. Parameter and Model Details

In this sub-section, we describe the parameter and the model details. For the model’s
training stabilization, we substituted the metric of negative-log-likelihood with the least-
square-loss [62] in the case of GAN loss (LGAN). The least-square-loss works more con-
sistently during training and generates good results, which are close to the target images.
In particular, for LGAN(V, D), the V, was trained to minimize Ex∼pdata(x)

[
(D(V(x))− 1)2

]
and the D, was trained to minimize Ey∼pdata(y)

[
(D(y)− 1)2

]
+ Ex∼pdata(x)

[
(D(V(x))2

]
.

Moreover, when optimizing D, here the discriminator’s criterion was divided by 2, which
slows down the learning-rate of D compared to V. We used the Adam optimizer [70] with
a learning rate of α = 0.0002, β1 = 0.5, and a minibatch stochastic gradient decent (SGD).
We used the relu non-linear activation function, along with the slope of 0.2, in the denoiser
network, V, excluding the final layer utilized tanh activation. For all the experiments, the
batch-size was fixed to 1. The loss function parameters for training were set to ϕg = 1 and
ϕL1 = 10 in Equation (6).

4.3. Evaluation Criteria

We used qualitative and quantitative tests to assess the quality of the resulting images
for performance validation of the image denoising works. We specifically present the
target and resultant images for the qualitative evaluation. We used quantitative mea-
surements including peak signal to noise ratio (PSNR), structural similarity index mea-
surement (SSIM) [71], visual information fidelity (VIF) [72], and universal quality index
(UQI) [73] on test images to evaluate the output of different methods. Such quantitative
measurement evaluation was built on the images’ luminance channel. The Fréchet in-
ception distance (FID) score [74] calculates the gap between the actual distribution and
the constructed distribution.

4.4. Loss Functions Ablation Study

We trained our model on different loss functions to check their impact on the higher
noise levels by setting the sigma value to 25, 50, and 100. We ran tests to compare the effect
of different loss functions. Figure 3 illustrates the qualitative performance of the different
loss functions mentioned below on a higher noise level.
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• L2 loss alone causes the reconstruction of noise-free images with many image artifacts.
• L2 with adversarial loss guides to sharper outputs; however, it brings more visual artifacts.
• L1 alone produces sensible results, but their resultant images were not much sharper.
• The proposed loss function’s performance illustrates the significant improvement and

constructs a sharper quality and similar images to the targeted images.

Tables 5–7 quantitatively compare the cases above-mentioned by utilizing the PSNR,
SSIM, UQI, VIF, and FID metrics on the higher-levels of noisy images (i.e., sigma 25, sigma
50, and sigma 100, respectively). Table 5 shows that L2 loss alone achieves good scores
than L2 loss with adversarial loss and L1 loss alone in PSNR, SSIM, UQI, VIF, and FID.
Figure 3 shows that L1 loss alone produces blurry results and the second row of Figure 3
illustrates that the L2 loss alone and L2 loss with adversarial loss produced image artifacts.
The proposed loss function overcame the blurriness issue of L1 loss alone. Tables 5–7 and
Figure 3 demonstrate that the proposed method achieved the best possible score in PSNR,
SSIM, UQI, VIF, and FID scores, pointing out that the results were more similar to the
targeted output, had a recognizable structure, and were visually pleasing.

Table 5. Quantitative results for the noise level of sigma 25 compared with different loss functions.
Bold results show good scores.

PSNR (dB) SSIM UQI VIF FID

Input 17.48 0.5725 0.8173 0.2384 106.4
L2 27.15 0.9142 0.9457 0.4765 44.99

L2 + Adv_loss 26.22 0.9028 0.9381 0.4546 48.07
L1 25.62 0.8924 0.9371 0.4355 51.49

Proposed 27.41 0.9184 0.9483 0.4879 42.73
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Table 6. Quantitative results for the noise level of sigma 50 compared with different loss functions.
Bold results show good scores.

PSNR (dB) SSIM UQI VIF FID

Input 14.66 0.5570 0.7618 0.2089 131.0
L2 26.48 0.9130 0.9432 0.4835 43.41

L2 + Adv_loss 26.35 0.9082 0.9427 0.4801 45.31
L1 25.41 0.8858 0.9180 0.4257 53.64

Proposed 26.54 0.9148 0.9437 0.4850 42.24

Table 7. Quantitative results for the noise level of sigma 100 compared with different loss functions.
Bold results show good scores.

PSNR (dB) SSIM UQI VIF FID

Input 12.74 0.3792 0.7204 0.1104 252.9
L2 24.39 0.8503 0.9243 0.4259 80.11

L2 + Adv_loss 24.18 0.8442 0.9257 0.4169 84.82
L1 24.83 0.8840 0.9261 0.4421 59.53

Proposed 24.90 0.8850 0.9251 0.4434 59.33

4.5. Analysis of Residual Learning and Direct Image Denoising Training on Different
Configurations

In the residual learning image denoising (RLID) method, the network learns the
residual image (noise image) first. It then subtracts the residual image from the input image
to get a noise-free target image. In the direct image denoising (DID) method, the model
directly tries to learn the noise-free target image, as shown in Figure 4. We have trained
both methods and the primary two configurations of the image generating network as
shown in Figure 5 on multiple noise levels for image denoising tasks. We conducted tests
to compare both methods on two primary configurations of the image generating network.
Table 8 compares the cases above-mentioned quantitatively by utilizing the PSNR, SSIM,
UQI, VIF, and FID metrics on low and high levels of denoising tasks.
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Figure 4. Different approaches for image denoising tasks.

Figure 6 shows that the U-NET structure with the DID method achieved better results
than the RLID method. Furthermore, the encoder-decoder structure using the RLID method
outperformed the U-NET structure using both methods (i.e., RLID and DID methods).
However, it did not perform well on higher noise level images (e.g., σ = 100) and produces
image artifacts. The DID method using the encoder-decoder structure did not produce
image artifacts compared to the RLID method, but constructed the blurry output images.
To overcome the blurriness issue, we introduced adversarial loss to the proposed method’s
objective loss function. The last row of Figure 6 shows the sharp, pleasing, and consistently
excellent results of the proposed method for low and higher noise levels.
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Figure 5. The different network structures for the image generation network. The left one is the encoder-decoder structure,
where first the image is encoded to some latent space, and then decoded for target image reconstruction. The right one is
the U-NET structure, where the encoder and decoder are connected with skip-connections.

Table 8. Quantitative results of different methods with primary two configurations of generating the
model on several noise levels. Bold results show good scores.

Method/Noise Level σ = 5 σ = 25 σ = 50 σ = 100 Average

PSNR (dB)

U-NET-RLID 31.65 26.92 25.54 21.49 26.40
U-NET-DID 31.28 27.23 26.06 22.67 26.81

Enc-Dec-RLID 31.67 27.45 26.85 24.79 27.69
Enc-Dec-DID 28.75 25.62 25.40 24.83 26.15

Proposed AGDN 28.85 27.41 26.54 24.90 26.92

SSIM

U-NET-RLID 0.9638 0.9097 0.8199 0.6502 0.8359
U-NET-DID 0.9605 0.9076 0.8734 0.7361 0.8694

Enc-Dec-RLID 0.9604 0.9014 0.9165 0.8482 0.9066
Enc-Dec-DID 0.9571 0.8924 0.8857 0.8840 0.9048

Proposed AGDN 0.9570 0.9184 0.9148 0.8850 0.9188

UQI

U-NET-RLID 0.9650 0.9418 0.9306 0.8967 0.9335
U-NET-DID 0.9633 0.9459 0.9359 0.9122 0.9393

Enc-Dec-RLID 0.9675 0.9488 0.9366 0.9266 0.9449
Enc-Dec-DID 0.9557 0.9371 0.9179 0.9261 0.9342

Proposed AGDN 0.9565 0.9483 0.9437 0.9251 0.9434

VIF

U-NET-RLID 0.6275 0.4750 0.3857 0.2560 0.4360
U-NET-DID 0.6186 0.4674 0.4183 0.2997 0.4510

Enc-Dec-RLID 0.6273 0.4735 0.4906 0.4233 0.5037
Enc-Dec-DID 0.6055 0.4355 0.4256 0.4421 0.4772

Proposed AGDN 0.6062 0.4879 0.4850 0.4434 0.5056

FID

U-NET-RLID 20.55 45.34 79.58 133.8 69.82
U-NET-DID 20.86 44.65 61.60 107.5 58.65

Enc-Dec-RLID 19.77 46.63 42.26 88.91 49.39
Enc-Dec-DID 23.40 51.49 53.64 59.53 47.01

Proposed AGDN 23.79 42.73 44.24 59.33 42.52
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Figure 6. Sample results of the image denoising task using different methods and network structures. The first row is
the input images of different noise levels. The second row shows the results produced by the RLID method using the
U-NET structure. The third row presents the U-NET structure results via the DID method. The fourth row shows the
encoder-decoder structure results using the RLID method. The fifth row presents the encoder-decoder structure results via
the DID method. The sixth row demonstrates the results of the proposed AGDN.

We observed from Figure 6 that the RLID method produces visual artifacts. It failed to
produce pleasing images for the higher noise level, which shows that the model learns from
direct clean targeted images easier than learning the noise image first and then constructing
the target image. The U-NET structure failed to reconstruct the target images for high-level
noisy input images because the skip-connections carry unwanted details from the input
images, severely influencing the output images, causing distorted results, and failing to
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construct the clean target images. However, the DID using an encoder-decoder structure’s
network produces good and less image artifacts for low and higher noise levels.

4.6. Comparison with Baseline Methods

For evaluation purposes, we compared our proposed method with the latest state-of-
the-art image denoising approaches. The compared techniques included Dn-CNN [23],
FFDNet [24], perceptually inspired denoising method [46], and ID-MSE-WGAN [45]. The
Dn-CNN and ID-MSE-WGAN predicted the noise first and then constructed the target
images by subtracting that learned noise from the input images. These methods construct
reasonable images for low noise levels; however, for higher noise levels, these methods
produce image artifacts. To capture larger receptive fields, the FFDNet utilizes down-
sampled sub-images. However, downsampling of images can cause the loss of important
information in the images. The perceptually inspired denoising method [46] uses skip-
connections in the encoder-decoder network for securing larger receptive fields. However,
the skip-connections cause unwanted information flow from the encoder layers to the
decoder layers, producing unpleasant images [32].

4.6.1. Partial-CelebA Dataset

We attempt to denoise the AWGN’s multiple noise levels on the Partial-CelebA dataset,
as shown in Figure 7. More examples are given in Figures 8–10. The network is trained on
1500 images and tested on 500 images of the Partial-CelebA dataset for each noise level. We
run tests on 500 test images for fair comparison and take the average to calculate quantita-
tive scores of PSNR, SSIM, UQI, and VIF. Table 9 presents the quantitative comparison of
state-of-the-art methods and the proposed method. Table 9 shows that for the noise level of
sigma 5, the ID-MSE-WGAN, the perceptually inspired method, and the Dn-CNN achieve
reasonably good scores in PSNR, SSIM, UQI, VIF, and FID. However, when the noise level
increases, these methods fail to construct pleasing images. One possible reason is that the
Dn-CNN and the ID-MSE-WGAN learn the noise image first instead of directly learning
the target image. As the noise level increases, it becomes harder for the network to learn
noise images first and then construct the target images compared to learning the target
image directly.
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AGDN, respectively.
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Figure 8. Second sample results of image denoising tasks on the Partial-CelebA dataset. The first to last column images
were generated by the noise level of sigma 5, 25, 50, and 100, respectively. First-row shows the input images, second-row
to the last-row presents the results of the Dn-CNN, ID-MSE-WGAN, FFDNet, the perceptually inspired method, and the
proposed AGDN, respectively.
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Figure 9. Third sample results of image denoising tasks on the Partial-CelebA dataset. The first to last column images
generated by the noise level of sigma 5, 25, 50, and 100, respectively. First-row shows input images, second-row to the
last-row presents the results of the Dn-CNN, ID-MSE-WGAN, FFDNet, the perceptually inspired method, and the proposed
AGDN, respectively.



Sensors 2021, 21, 2998 19 of 30Sensors 2021, 21, x FOR PEER REVIEW 20 of 29 
 

 

Method/Noise 
Level 

𝝈 = 𝟓 𝝈 = 𝟐𝟓 𝝈 = 𝟓𝟎 𝝈 = 𝟏𝟎𝟎 

Input 

    

Dn-CNN 

    

ID-MSE-
WGAN 

    

FFDNet 

    

Perceptually 
Inspired 

    

Proposed 
AGDN 

    

Figure 10. Fourth sample results of image denoising tasks on the Partial-CelebA dataset. The first to last column images 
generated by the noise level of sigma 5, 25, 50, and 100, respectively. First-row shows input images, second-row to the 
last-row presents the results of the Dn-CNN, ID-MSE-WGAN, FFDNet, the perceptually inspired method, and the pro-
posed AGDN, respectively. 

4.6.2. DIV2K Dataset 
On the DIV2K dataset, we also intend to denoise the AWGN’s multiple noise levels, 

as shown in Figures 11–14. The network was trained on 800 images and validated on 100 
images of the DIV2K dataset for each noise level. We conducted tests on 100 test images 
and averaged the results to measure quantitative PSNR, SSIM, UQI, VIF, and FID score 
for a valid assessment. Table 10 provides a quantitative comparison of the proposed and 
state-of-the-art methods. Table 10 shows that for the low noise level sigma value of 5, the 
Dn-CNN achieved higher quantitative scores of PSNR, SSIM, UQI, and a reasonable score 

Figure 10. Fourth sample results of image denoising tasks on the Partial-CelebA dataset. The first to last column images
generated by the noise level of sigma 5, 25, 50, and 100, respectively. First-row shows input images, second-row to the
last-row presents the results of the Dn-CNN, ID-MSE-WGAN, FFDNet, the perceptually inspired method, and the proposed
AGDN, respectively.



Sensors 2021, 21, 2998 20 of 30

Table 9. Quantitative results of baseline methods with the proposed method on several noise levels.
Bold results show good scores.

Method/Noise Level σ = 5 σ = 25 σ = 50 σ = 100 Average

PSNR (dB)

Noisy Input 28.64 17.48 14.66 12.74 18.38
Dn-CNN 31.23 25.78 24.77 20.26 25.51

ID-MSE-WGAN 31.30 26.12 25.15 24.23 26.70
FFDNet 28.66 26.95 26.30 24.39 26.58

Perceptually Inspired 31.28 26.63 25.86 22.37 26.53
Proposed AGDN 28.85 27.41 26.54 24.90 26.92

SSIM

Noisy Input 0.9653 0.5725 0.5570 0.3792 0.6185
Dn-CNN 0.9594 0.8554 0.7805 0.5862 0.7953

ID-MSE-WGAN 0.9657 0.9020 0.8890 0.8492 0.9014
FFDNet 0.9583 0.9130 0.9120 0.8503 0.9084

Perceptually Inspired 0.9605 0.9076 0.8734 0.7361 0.8694
Proposed AGDN 0.9570 0.9184 0.9148 0.8850 0.9188

UQI

Noisy Input 0.9265 0.8173 0.7618 0.7204 0.8065
Dn-CNN 0.9672 0.9390 0.9265 0.8804 0.9282

ID-MSE-WGAN 0.9677 0.9358 0.9261 0.9276 0.9393
FFDNet 0.9555 0.9480 0.9429 0.9243 0.9426

Perceptually Inspired 0.9633 0.9459 0.9359 0.9122 0.9393
Proposed AGDN 0.9565 0.9483 0.9437 0.9251 0.9434

VIF

Noisy Input 0.7016 0.2384 0.2089 0.1104 0.3148
Dn-CNN 0.6221 0.4258 0.3546 0.2232 0.4064

ID-MSE-WGAN 0.6275 0.4605 0.4801 0.4243 0.4981
FFDNet 0.6123 0.4821 0.4972 0.4249 0.5041

Perceptually Inspired 0.6186 0.4674 0.4183 0.2997 0.4510
Proposed AGDN 0.6062 0.4879 0.4850 0.4434 0.5056

FID

Noisy Input 19.78 106.43 131.0 252.9 127.5
Dn-CNN 20.46 88.12 124.2 228.5 115.3

ID-MSE-WGAN 19.70 47.93 45.62 87.61 50.21
FFDNet 22.03 42.99 44.40 80.11 47.38

Perceptually Inspired 20.86 44.65 61.60 107.5 58.65
Proposed AGDN 23.79 42.73 44.24 59.33 42.52

Additionally, the perceptually inspired method fails because they use skip-connections
in its denoiser network. The skip-connections cause the flow of unwanted information
directly from the encoder layers to the decoder layers. When the noise level increases, there
is more chance to transfer the noisy texture of the input images in the generated images.
We observed from Figures 7–10 that the FFDNet constructed reasonable images for the
low noise levels, but produced image artifacts for high-level noise. The proposed method
achieved excellent scores for the high noise level compared to the baseline methods. After
the examination, we found that the proposed approach captured more content information
and constructed sharp, artifact-free, and more similar clean images to the clean targeted
images. Moreover, the quantitative comparison in Table 9 also describes that the proposed
method achieved a high average score for all the noise levels in PSNR, SSIM, UQI, VIF, and
FID, which means that the proposed method can significantly achieve improved results.



Sensors 2021, 21, 2998 21 of 30

4.6.2. DIV2K Dataset

On the DIV2K dataset, we also intend to denoise the AWGN’s multiple noise levels,
as shown in Figures 11–14. The network was trained on 800 images and validated on
100 images of the DIV2K dataset for each noise level. We conducted tests on 100 test images
and averaged the results to measure quantitative PSNR, SSIM, UQI, VIF, and FID score
for a valid assessment. Table 10 provides a quantitative comparison of the proposed and
state-of-the-art methods. Table 10 shows that for the low noise level sigma value of 5,
the Dn-CNN achieved higher quantitative scores of PSNR, SSIM, UQI, and a reasonable
score in FID. However, when the noise level increased, the Dn-CNN method obtained an
inferior FID score, which showed that the constructed image domain was far from the
targeted domain. One possible reason is that the Dn-CNN aims to learn the residual image
first instead of directly learning the targeted image. When the noise level starts to rise,
learning noise images first and then constructing target images becomes more difficult for
the network than learning the target image directly.

Additionally, Figures 11–14 show that the images generated by the perceptually in-
spired method contain more noise content compared to the proposed method at higher
noise levels. The perceptually inspired method’s skip-connections cause the flow of un-
wanted information directly from the encoder layers to the decoder layers, hence containing
more noise content in the constructed images at higher noise levels. However, the pro-
posed method had an inferior performance to maintain the color content compared to the
perceptually inspired method, but removed more noise content from the resultant image
and remained closer to the actual structure content of the noise-free target image. Table 10
shows that the AGDN achieved the best possible PSNR, SSIM, UQI, VIF, and FID scores.
Hence, the constructed noise-free images were more similar to the targeted noise-free
images and had a recognizable structure, and were visually pleasing.
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Figure 13. Third example results of image denoising tasks on the DIV2K dataset. The first to last column images generated
by the noise level of sigma 5, 25, 50, and 100, respectively. First-row shows input images, second-row to the last row presents
the results of Dn-CNN, ID-MSE-WGAN, FFDNet, the perceptually inspired method, and the proposed AGDN, respectively.
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Table 10. Quantitative results of baseline methods with the proposed method on the DIV2K dataset
of multiple noise levels. Bold results show good scores.

Method/Noise Level σ=5 σ=25 σ=50 σ=100 Average

PSNR (dB)

Noisy Input 29.57 18.09 15.00 13.14 18.95
Dn-CNN 33.32 25.61 22.92 20.66 25.62

ID-MSE-WGAN 32.50 25.27 22.71 20.43 25.23
FFDNet 25.90 24.39 21.97 19.15 22.85

Perceptually Inspired 32.54 26.27 23.41 21.15 25.84
Proposed AGDN 32.88 26.01 23.48 21.52 25.97

SSIM

Noisy Input 0.9521 0.7248 0.5399 0.3612 0.6445
Dn-CNN 0.9719 0.8599 0.7683 0.6217 0.8055

ID-MSE-WGAN 0.9670 0.8466 0.7573 0.6347 0.8014
FFDNet 0.9294 0.8618 0.7786 0.6637 0.8084

Perceptually Inspired 0.9643 0.8653 0.7868 0.6725 0.8222
Proposed AGDN 0.9673 0.8709 0.7897 0.6815 0.8274

UQI

Noisy Input 0.9508 0.8382 0.7825 0.7440 0.8289
Dn-CNN 0.9740 0.9493 0.9312 0.9008 0.9388

ID-MSE-WGAN 0.9707 0.9340 0.9164 0.8973 0.9296
FFDNet 0.9362 0.9271 0.9046 0.8715 0.9099

Perceptually Inspired 0.9686 0.9414 0.9295 0.9112 0.9377
Proposed AGDN 0.9715 0.9472 0.9285 0.9135 0.9402

VIF

Noisy Input 0.7931 0.4121 0.2500 0.1272 0.3956
Dn-CNN 0.7851 0.4638 0.3390 0.2219 0.4525

ID-MSE-WGAN 0.7889 0.4655 0.3361 0.2263 0.4542
FFDNet 0.6253 0.4615 0.3458 0.2491 0.4204

Perceptually Inspired 0.7598 0.4787 0.3516 0.2408 0.4577
Proposed AGDN 0.7890 0.4696 0.3479 0.2524 0.4647

FID

Noisy Input 11.33 87.80 157.0 225.1 120.3
Dn-CNN 11.63 70.64 120.4 179.1 95.44

ID-MSE-WGAN 11.21 67.80 118.9 174.3 93.05
FFDNet 24.52 69.06 108.0 152.5 88.52

Perceptually Inspired 12.90 68.73 112.8 158.2 88.16
Proposed AGDN 15.11 68.29 107.1 150.7 85.30

5. Conclusions

We introduced a robust image denoising scheme that was adversarial inspired and
constructed sharp and visually pleasing images for all noise levels. This paper proposed
a novel adversarial Gaussian denoiser network (AGDN) for image denoising tasks as
a general-purpose framework for all noise levels. We merged the adversarial and the
per-pixel Euclidean reconstruction losses as the state-of-the-art loss function for image
denoising tasks. The proposed loss function helps our model to focus on target-oriented
and fine image detail preservation. Additionally, we investigated two traditional image de-
noising methods (i.e., the residual learning and the direct image denoising methods) on two
primary network configurations. We assessed their results qualitatively and quantitatively.
The denoiser network without skip-connections constructed high quality and graphically
pleasing clean images than a denoiser network with skip-connections for all noise levels.
We conducted substantial experiments on lower and higher noise levels to evaluate the
competence of the AGDN. The proposed method outperformed the current state-of-the-art
methods for image denoising tasks. The experimental results of the multiple noise levels
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of image denoising tasks demonstrated that the adopted method is effective and capable
of multiple practical levels of image denoising applications. We will look for a denoising
approach for future work to manage real complex noise since this work focuses only on
AWGN noise.
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AWGN Additive White Gaussian Noise
NSS Non-Local Self-Similarity
BM3D Block-Matching and 3D filtering
CNNs Convolutional Neural Networks
Dn-CNN Feedforward Denoising CNN
FFDNet Fast and Flexible Denoising Network
GANs Generative Adversarial Networks
cGANs Conditional Generative Adversarial Networks
WGANs Wasserstein Generative Adversarial Networks
AGDN Adversarial Gaussian Denoiser Network
MRF Markov Random-Field
NLR-MRF Non-Local Range MRF
MAP Maximum A Posteriori
CSF Cascade of Shrinkage Fields
TNRD Trainable Nonlinear Reaction-Diffusion
PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity Index Measurement
VIF Visual Information Fidelity
UQI Universal Quality Index
FID Fréchet Inception Distance
RLID Residual Learning Image Denoising
DID Direct Image Denoising
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