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Abstract

Overexpression of the epidermal growth factor receptor (EGFR) is a hallmark of head and neck cancers and confers
increased resistance and inferior survival rates. Despite targeted agents against EGFR, such as cetuximab (C225), almost half
of treated patients fail this therapy, necessitating novel therapeutic strategies. Poly (ADP-Ribose) polymerase (PARP)
inhibitors (PARPi) have gained recent attention due to their unique selectivity in killing tumors with defective DNA repair. In
this study, we demonstrate that C225 enhances cytotoxicity with the PARPi ABT-888 in UM-SCC1, UM-SCC6, and FaDu head
and neck cancer cells. The mechanism of increased susceptibility to C225 and PARPi involves C225-mediated reduction of
non-homologous end-joining (NHEJ)- and homologous recombination (HR)-mediated DNA double strand break (DSB)
repair, the subsequent persistence of DNA damage, and activation of the intrinsic apoptotic pathway. By generating a DSB
repair deficiency, C225 can render head and neck tumor cells susceptible to PARP inhibition. The combination of C225 and
the PARPi ABT-888 can thus be an innovative treatment strategy to potentially improve outcomes in head and neck cancer
patients. Furthermore, this strategy may also be feasible for other EGFR overexpressing tumors, including lung and brain
cancers.
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Introduction

The epidermal growth factor receptor (EGFR) plays an essential

role in carcinogenesis by modulating proliferation, differentiation,

and the DNA damage response [1–5]. In particular, overexpres-

sion and amplification of the EGFR is present in 80–100% of

squamous cell carcinomas of the head and neck and portends poor

prognosis, inferior survival, radioresistance, and treatment failures

[3,6]. Thus, EGFR has become heavily targeted as a cancer

therapeutic strategy, and this has improved response rates,

locoregional control, and overall survival in combination with

radiation in head and neck cancer patients [2,7]. However, almost

half of head and neck cancer patients treated with this strategy will

still succumb to this disease. Novel strategies are thus needed to

improve outcomes.

Agents which target cancers that are deficient in homologous

recombination (HR)-mediated DNA double strand break (DSB)

repair, such as poly (ADP-ribose) polymerase (PARP) inhibitors

(PARPi), have gained recent attention due to their highly selective

killing of BRCA-associated, DNA repair defective tumors while

maintaining minimal toxicity in normal tissues [8–10]. Addition-

ally, PARPi has been reported to enhance cytotoxicity in sporadic

tumors when combined with other DNA damaging agents, such as

with platinum and cyclophosphamide in breast cancer and with

temozolomide in glioblastoma [11]. Thus, much effort has been

undertaken to expand the utility of PARPi beyond the realm of

BRCA-associated tumors by combining with agents that alter the

DNA damage/repair pathways.

We and others have previously reported that targeting the

EGFR pathway induces a DSB repair deficiency [4,12–15]. Based

on these observations, we hypothesized that cetuximab (C225), a

potent inhibitor of EGFR, could increase tumor susceptibility to

PARPi. In this study, and consistent with our hypothesis, we

demonstrate that C225 augments cytotoxicity with the PARPi

ABT-888 in UM-SCC1, UM-SCC6, and FaDu head and neck

cancer cells by enhancing the intrinsic apoptotic pathway. Further

dissection of the mechanism of induced cell death reveals that

C225 reduces non-homologous end joining (NHEJ)- and HR-

mediated DNA DSB repair, which results in the persistence of

DNA damage following PARPi. By generating a DSB repair

deficiency, C225 can render head and neck tumor cells susceptible

to PARP inhibition. Thus, the combination of C225 and the

PARPi ABT-888 can be an innovative treatment strategy to

potentially improve outcomes in head and neck cancer patients.
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Furthermore, this strategy may also be feasible in other EGFR-

dysregulated tumors, such as brain and lung.

Results

Cetuximab enhances cytotoxicity with PARPi
We have previously demonstrated that C225, the anti-EGFR

monoclonal antibody, effectively inhibits receptor activity by

blocking the ligand binding site [16]. The effect of C225 on cell

viability and growth has also been well studied [17]. Studies have

shown that EGFR can confer increased resistance to DNA

damage by enhancing cellular DSB repair capacity. Conversely,

inhibition of EGFR can inhibit DSB repair. Based on these

observations, we hypothesized that C225 can enhance cytotoxicity

with the PARPi ABT-888 in UM-SCC1, UM-SCC6, and FaDu

cells, which are well characterized, EGFR overexpressing,

representative squamous cell carcinoma of the head and neck

[17–20].

To test this hypothesis, head and neck cancer cell viability

following C225 and ABT-888 was investigated using the ATPlite

assay. The doses of C225 and ABT-888 chosen have been

previously reported to be within physiologic range [2,7,9,21]. As

shown in Fig. 1A, differential susceptibility to C225 and ABT-888

was observed in all cell lines examined (50 to 75% reduction in cell

viability with combination treatment), suggesting that C225 indeed

increases cell death with ABT-888. Surprisingly, UM-SCC1 cells

were also susceptible to PARPi alone (approximately 75%

reduction in cell viability with 10 mM ABT-888).

Figure 1. Cetuximab (C225) enhances cytotoxicity with the PARP inhibitor ABT-888 in head and neck cancer cells. (A) Combination
C225 and ABT-888 reduces the viability of UM-SCC1, UM-SCC6, and FaDu head and neck cancer cells. Cells were treated with either vehicle or 2.5 mg/
mL C225 for 16 hours and subsequently exposed to vehicle or 10 mM ABT-888. Twenty-four hours following ABT-888, cell viability was assayed with
the ATPlite system (Perkin Elmer). Shown is the representative data of at least 3 independent experiments of the cell viability following various
treatments as measured by relative ATP levels (mean +/2 SEM, *p,0.01, **p,0.001 compared to vehicle control). (B–D) Combination C225 and ABT-
888 reduces the colony forming ability of (B) UM-SCC1, (C) UM-SCC6, and (D) FaDu head and neck cancer cells. Cells were treated with either vehicle
or 2.5 mg/mL C225 for 16 hours. Following the treatment period, cells were seeded for colony formation assays and subjected to various doses of
ABT-888. Shown is the mean survival fraction (+/2 SEM) from at least 3 independent colony formation assay experiments following treatment
(**p,0.001).
doi:10.1371/journal.pone.0024148.g001

Enhanced Cytotoxicity with Cetuximab and ABT-888
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To confirm these findings, we also performed colony forming

assays in the presence of C225 in combination with various doses

(1–20 mM) of ABT-888. Consistent with the cell viability data, the

addition of C225 to ABT-888 significantly reduced the colony

forming ability of UM-SCC1, UM-SCC6, and FaDu cells in a

dose-dependent manner (Fig. 1B-D). Interestingly, UM-SCC1

cells were again particularly susceptible to ABT-888 alone. These

results indicate that inhibition of EGFR with C225 can render

cells more susceptible to the PARPi ABT-888.

Enhanced cytotoxicity with cetuximab and ABT-888
involves activation of the intrinsic pathway of apoptosis

To elucidate the mechanism by which C225 and ABT-888

induce cellular cytotoxicity, we first examined activation of cellular

apoptosis, since PARPi-mediated cytotoxicity has been shown to

involve the apoptotic pathway [8]. We assessed cellular annexin V

positivity, an early indicator of apoptosis induction. As shown in

Fig. 2A and 2B, activation of apoptosis was significantly greater in

both UM-SCC6 and FaDu cells with C225 and ABT-888

compared to either agent alone. Activation of apoptotic pathways

ultimately leads to cleavage of caspase 3, which in turn initiates the

cascade of proteolysis of integral cellular proteins and results in

programmed cell death. To confirm that C225 and ABT-888

induce apoptosis in head and neck cancer cells, we assessed the

levels of total and cleaved caspase 3. As shown in Fig. 2C,

increased cleaved caspase 3 with a concomitant reduction of total

or uncleaved caspase 3 was observed in FaDu cells following

2.5 mg/mL C225 and 10 mM ABT-888. Consistent with previous

reports, C225 alone induced apoptosis in treated cells [17,22]. A

similar increase in caspase 3 cleavage was observed following

C225 and ABT-888 in UM-SCC6 (Fig. 2D).

There are two major cellular apoptotic processes, consisting of

the intrinsic and extrinsic pathways [23]. The extrinsic pathway is

activated by proapoptotic ligand-mediated stimulation of cellular

death receptors and, in turn, cleavage of caspase 8. In contrast, the

intrinsic pathway is triggered by stress signals from within the cell,

which ultimately results in cleavage of caspase 9.

We hypothesized that PARPi-induced apoptosis is due to

intracellular stress signals from DNA damage leading to activation

of the intrinsic apoptotic pathway. Consistent with this hypothesis,

C225 and ABT-888 triggered cleavage of caspase 9 in FaDu

(Fig. 2E) and UM-SCC6 (Fig. 2F). These data support activation

of the intrinsic apoptotic pathway following C225 and ABT-888

treatment.

Cetuximab inhibits homologous recombination and non-
homologous end-joining repair

The aforementioned data supports that C225 enhances

cytotoxicity with ABT-888 and activates the intrinsic pathway of

apoptosis. Because lethality with PARPi has been reported to be

dependent on defective DSB repair pathways [8,10], and because

EGFR has previously been shown to alter the DNA damage/

response pathways, we next hypothesized that the enhanced

cytotoxicity with C225 and ABT-888 was due to C225 alteration

of DSB repair [13].

There are 2 major DSB repair pathways, HR- and NHEJ-

mediated repair [24]. HR is a high fidelity mechanism of repair

and is the preferred pathway when a homolog is present in G2 and

S phase. Multiple proteins, including BRCA1, BRCA2, and

Rad51, are involved in this intricate process. In contrast, NHEJ is

considered an error prone system because it has to be structurally

diverse to accommodate many different substrates. It occurs

preferentially when a homolog is absent, outside of G2 and S

phase. NHEJ is dependent on DNA-dependent protein kinase

(DNA-Pk) catalytic subunit, the Ku70/80 heterodimer, and the

XRCC4-ligase IV complex.

To test whether enhanced cytotoxicity by C225 and PARPi

involves C225-mediated inhibition of DSB repair, we evaluated

the effect of C225 on HR- and NHEJ-mediated DSB repair

induced following c-irradiation (IR), a potent activator of DNA

DSB repair. To assess the effects of C225 on HR-mediated repair,

we analyzed the kinetics of IR-induced Rad51 foci, well

established markers of HR repair, at various times following

4 Gy IR. As shown in Fig. 3, IR increased the percentage of cells

with Rad51 foci, peaking at 4–8 hours following IR. Consistent

with our hypothesis, C225 attenuated HR by more than 50% in

irradiated UM-SCC1 (Fig. 3A), UM-SCC6 (Fig. 3B), and FaDu

(Fig. 3C) head and neck cancer cells. These results revealed that

C225 induces a HR deficit, and the cellular susceptibility to

PARPi following C225 was consistent with PARP inhibition

targeting cells that are deficient in HR-mediated repair.

PARP inhibited cells have also been reported to be susceptible

to inhibitors of DNA-Pk, a critical player in NHEJ [25]. This

suggests that NHEJ may be an alternative DSB repair pathway

besides HR to confer resistance to PARPi. Additionally, EGFR

has been reported to interact and translocate with DNA-Pk to the

nucleus to activate NHEJ repair processes [13,26,27]. It is thus

possible that C225-mediated cellular susceptibility to PARPi is also

due to C225 alteration of the NHEJ pathway.

To analyze the effects of C225 on NHEJ, we assessed the

kinetics of phospho-Threonine 2609 (Thr2609) DNA-Pk foci, well

established markers for IR-induced NHEJ-mediated repair

[28,29], at various time points following 4 Gy IR. As expected,

IR significantly increased the number of cells with phospho-

Thr2609-DNA-Pk-foci at both 30 minutes and 1 hour following

IR in UM-SCC1 (Fig. 4A), UM-SCC6 (Fig. 4B), and FaDu

(Fig. 4C). Interestingly, the addition of C225 significantly

attenuated this response by more than 30% in all cell lines

examined.

EGFR has also been shown to phosphorylate and activate

DNA-Pk [13,26,27]. To determine whether inhibition of NHEJ by

C225 is due to reduced phosphorylation of DNA-Pk, we next

examined levels of phospho-DNA-Pk following C225. As shown in

Fig. 4D, C225 reduced DNA-Pk phosphorylation without altering

total DNA-Pk in UM-SCC1, UM-SCC6, and FaDu cells, which is

consistent with C225-mediated inhibition of NHEJ-mediated

repair.

Taken together, these data indicate that C225 induces a DSB

repair deficiency of the 2 major DSB repair pathways, NHEJ and

HR, and enhanced cytotoxicity by C225 with PARPi is due to

inhibition of both major DSB repair pathways.

EGFR inhibition increases DNA damage
C225 induces a DSB repair deficiency in head and neck cancer

cells (Fig. 3 and 4). We hypothesized that C225-treated cells should

exhibit increased markers of DNA DSBs. To assess DNA DSBs,

we examined the effect of C225 on c-H2AX foci, which are well

documented markers of DNA DSBs [30], in UM-SCC1, UM-

SCC6, and FaDu cell lines. As shown in Fig. 5A, all cell lines

exhibited significantly increased DNA damage following C225 as

demonstrated by increased percentage of cells with c-H2AX foci

in a dose-dependent manner. This was confirmed via Western blot

analysis, which revealed increased c-H2AX levels following

various doses of C225 in UM-SCC1, UM-SCC6, and FaDu cells

(Fig. 3B). These results indicated that inhibition of EGFR with

C225 increases DNA DSB damage in treated cells, which is

consistent with C225-induced inhibition of DSB repair.

Enhanced Cytotoxicity with Cetuximab and ABT-888
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Combination cetuximab and ABT-888 generates
persistent DNA damage

PARPi inhibits the base excision repair pathway responsible for

the resolution of DNA single strand breaks (SSBs). SSBs which

persist in dividing cells are ultimately converted to DSBs and

repaired by HR-mediated repair. Given that C225 reduces DSB

repair capacity and that C225 enhances cytotoxicity with ABT-

888, we hypothesized that the combination C225 and ABT-888

would result in further persistent DNA DSB damage. To evaluate

this, we performed a time course analysis of c-H2AX foci with

vehicle, C225 alone, ABT-888 alone, or combination C225 and

ABT-888. As shown in Fig. 6, compared to vehicle control, C225

Figure 2. Enhanced cytotoxicity in head and neck cancer cells involves the intrinsic pathway of apoptosis. (A–B) % of apoptotic cells
following combination cetuximab (C225) and ABT-888 treatment in (A) FaDu and (B) UM-SCC6 cells. Cells were treated with either vehicle or 5 mg/mL
C225 for 16 hours and subsequently exposed to 10 mM ABT-888 for 24 hours. Following treatment, cells were then stained and processed for
Annexin V as a marker for apoptosis. Shown is the % of Annexin V positive cells (mean +/2 SEM, *p,0.01, **p,0.001 compared to vehicle control).
Of note, combination of C225+PARPi was statistically different from either agent alone (*p,0.01) (C–D) C225 and ABT-888 increased apoptosis in (C)
FaDu and (D) UM-SCC6 cells as evidenced by cleavage of caspase 3. (E–F) C225 and ABT-888 activated the intrinsic apoptotic pathway in (E) FaDu and
(F) UM-SCC6 cells as evidenced by cleavage of caspase 9. Cells were subjected to either vehicle or 2.5 mg/mL C225 for 16 hours and subsequently
subjected to ABT-888. 6 and 24 hours following the treatment period, cell lysates were harvested, and levels of total and cleaved caspase 3 (24 hours)
and 9 (6 hours) were detected by Western blot analysis. A dramatic concurrent reduction in total caspase was also observed. Actin was used as a
loading control. Shown is a representative Western blot of at least 3 independent experiments.
doi:10.1371/journal.pone.0024148.g002

Enhanced Cytotoxicity with Cetuximab and ABT-888
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alone as expected induced 2–3 fold the % of cells with increased

DNA damage in UM-SCC1 (Fig. 6A), UM-SCC6 (Fig. 6B), and

FaDu (Fig. 6C) head and neck cancer cells. Interestingly, the

combination of C225 and ABT-888 resulted in a significantly

greater number of cells with persistent DNA damage in all cell

lines examined (Fig. 6). Moreover, the UM-SCC1 cells (Fig. 6A),

which exhibited exquisite sensitivity to ABT-888 alone, also had

persistent DNA damage with ABT-888 alone. In contrast, in UM-

SCC6 (Fig. 6B) and FaDu (Fig. 6C) cells, ABT-888 alone did not

result in significant increase in cells with evident DNA DSB

damage. These results demonstrate that cytotoxicity from C225

and PARPi may be due to the inability of treated cells to resolve

DNA DSBs, the most critical lesion in cells.

Figure 3. Cetuximab (C225) attenuates homologous recombi-
nation (HR) repair. C225 attenuates IR-induced Rad51 foci, well
characterized markers of homologous recombination (HR)-mediated
DNA DSB repair in (A) UM-SCC1, (B) UM-SCC6, and (C) FaDu cells. Cells
were treated with vehicle, 2.5 mg/mL C225, or 5.0 mg/mL C225 for
16 hours and subsequently subjected to mock or 4 Gy irradiation (IR).
At the indicated times following IR, cells were processed for
immunofluorescence staining for Rad51 foci. Shown is the representa-
tive data of 3 independent experiments the % of cells (mean +/2 SEM)
with .10 foci (*p,0.05, **p,0.01 compared to vehicle at each
respective time point). The inset in (A) is a representative image of UM-
SCC1 cells exhibiting Rad51 foci following IR.
doi:10.1371/journal.pone.0024148.g003

Figure 4. Cetuximab (C225) attenuates non-homologous end-
joining (NHEJ) repair. C225 attenuates irradiation (IR)-induced DNA-
Pk Thr2609 foci, well established markers of non-homologous end
joining (NHEJ)-mediated DNA DSB repair in (A) UM-SCC1, (B) UM-SCC6,
and (C) FaDu head and neck cancer cells. Cells were treated with
vehicle, 2.5 mg/mL C225, or 5.0 mg/mL C225 for 16 hours and
subsequently subjected to mock or 4 Gy IR. At the indicated time
following IR, cells were processed for immunofluorescence staining for
DNA-Pk Thr2609 foci. Shown is the representative data of 3
independent experiments the % of cells (mean +/2 SEM) with .10
foci (*p,0.05, **p,0.01 compared to cells not exposed to C225). (D)
C225 reduces phospho-Thr2609 DNA-Pk levels in UM-SCC6 head and
neck cancer cells. Cells were treated with vehicle or 2.5 mg/mL C225 for
16 hours and subsequently subjected to mock or 4 Gy IR. One hour
following IR, cells were processed for Western blot analysis for
phospho-Thr2609 DNA Pk levels. Total DNA Pk was also analyzed and
tubulin was used as loading control.
doi:10.1371/journal.pone.0024148.g004
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Effects of cetuximab and ABT-888 on DNA damage and
repair is not due to cell cycle redistribution

DNA repair pathways, in particular HR, can be dependent on

the cell cycle. Additionally, EGFR is involved in cell proliferation

pathways, and inhibition of EGFR has been shown to induce cell

cycle redistribution [4,31,32]. It is possible that inhibition of HR

by C225 may be an indirect effect of increased cellular

accumulation in the G1 phase of the cell cycle. We thus

investigated the cell cycle distribution of cells treated with vehicle

or C225 to rule out cell cycle effects as a potential confounder by

which C225 alters DNA DSB repair. As shown in Fig. 7, there is

an absence of any cell cycle redistribution following treatment in

UM-SCC1 (Fig. 7A) or UM-SCC6 (Fig. 7B) to account for C225-

mediated reduction in DSB repair at the time points at which HR

repair was measured.

ABT-888 has also been reported to cause senescence when

combined with radiation in breast cancer cells [33]. Additionally,

other PARPi can induce G2/M accumulation of cells [34]. Thus,

to assess cell cycle changes as another potential mechanism of

enhanced cytotoxicity, cell cycle distribution following combina-

tion C225 and ABT-888 was performed in UM-SCC1 cells. As

shown in Fig. 7C, no cell cycle redistribution was observed. These

results demonstrated that C225-induced attenuation of DSB repair

pathways and the subsequent enhanced cytotoxicity with ABT-

888 were not due to cell cycle effects.

Discussion

In this study, we demonstrate that C225, an inhibitor of EGFR,

augments cellular susceptibility to the PARPi ABT-888 in head

and neck cancer cells. The mechanism of enhanced cytotoxicity

Figure 5. Cetuximab (C225) increases DNA damage by inhibiting DNA double strand break (DSB) repair in head and neck cancer
cells. (A) C225 increases the number of cells with DSBs as evidenced by c-H2AX foci, a commonly used marker for DSBs. Shown is the representative
data of 3 independent experiments the % of cells (mean +/2 SEM) with .10 foci (*p,0.05, **p,0.01 compared to vehicle control). (B) C225 increases
c-H2AX protein levels in treated cells. UM-SCC1, UM-SCC6, and FaDu cells were treated with vehicle, 2.5 mg/mL C225, or 5.0 mg/mL C225 for 16 hours.
Following the treatment period, cells were processed for (A) immunofluorescence staining for c-H2AX foci or (B) western blot analysis for c-H2AX
levels. Shown is the representative Western blot of 3 independent experiments.
doi:10.1371/journal.pone.0024148.g005

Enhanced Cytotoxicity with Cetuximab and ABT-888
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Figure 6. Combination cetuximab (C225) and ABT-888 induces persistent DNA double strand break damage in head and neck
cancer cells. (A–C) DNA damage 2, 24, and 48 hours following vehicle, C225, PARPi, or both C225+PARPi was assessed by c-H2AX foci in (A) UM-
SCC1, (B) UM-SCC6, and (C) FaDu cells. Cells were treated with vehicle or various doses of C225 for 16 hours and subsequently exposed to vehicle or
various doses of ABT-888. At the indicated times following PARP inhibition, cells were processed for immunofluorescence staining for c-H2AX foci.
Shown is the representative data of 3 independent experiments the % of cells (mean +/2 SEM) with .10 foci (*p,0.05, **p,0.01 compared to
vehicle control at each respective time point).
doi:10.1371/journal.pone.0024148.g006
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Figure 7. Effects of cetuximab (C225) and ABT-888 are not due to cell cycle redistribution. Cell cycle distribution of (A) UM-SCC1 or (B)
UM-SCC6 cells following treatment with vehicle or C225. (C) Cell cycle distribution of UM-SCC1 cells following vehicle, C225, ABT-888, or combination
C225 and ABT-888. Cells were treated with vehicle or various doses of C225 for 16 hours and subsequently exposed to vehicle or 5 mM of ABT-888.
Forty-eight hours following PARP inhibition, cells were processed for cell cycle analysis by flow cytometry. Shown is the representative cell cycle
distribution (mean +/2 SEM) of at least 2 independent experiments performed in triplicate.
doi:10.1371/journal.pone.0024148.g007

Enhanced Cytotoxicity with Cetuximab and ABT-888
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involved C225-mediated attenuation of the two major DNA DSB

repair pathways, NHEJ and HR, which leads to the persistence of

DNA damage following PARPi and the subsequent activation of

the intrinsic pathway of apoptosis. Thus, the combination of C225

and the PARPi ABT-888 can be an innovative treatment strategy

to potentially improve outcomes in head and neck cancer patients.

This combination of C225 and ABT-888 may be particularly

exciting for regimens that include other DNA damaging agents

such as radiation.

The EGFR has been implicated in a number of cellular

processes, including cell proliferation and survival, angiogenesis,

and DNA damage response and repair. Specifically, with regards

to DNA damage response, EGFR has been shown to translocate to

the nucleus and interact with DNA-Pk to activate NHEJ

[13,26,27]. Activated EGFR can also increase Rad51 foci and

expression levels to regulate HR [35]. These actions by EGFR

have been attributed to resistance of EGFR amplified/mutated

tumors to DNA damaging agents and provide rationale for

targeted inhibition of EGFR.

In support of a role of EGFR in the DNA damage and repair

pathways, C225, which inhibits EGFR, attenuates the two major

DNA DSB repair pathways, HR and NHEJ, by altering Rad51

and DNA-Pk foci levels, respectively. C225 also inhibited DNA-Pk

phosphorylation. As PARPi has been shown to target HR-deficient

cells, the actions of C225 on HR-mediated repair provide

rationale for why the novel combination of C225 and PARPi

enhances cytotoxicity in head and neck cancer cells [8,9].

Additionally, PARP inhibited cells have been shown to be

sensitized to inhibitors of the NHEJ pathway, suggesting that

NHEJ may also be a backup pathway of unresolved SSBs [25].

This may also explain the dramatic cytotoxicity observed in C225

and PARPi treated cells. Furthermore, as C225 induces both a

NHEJ and HR repair deficiency, the combination of C225 with

PARPi leads to a high proportion of treated cells with persistent

DSBs. Given these observations, cells exposed to C225 and PARPi

should be exquisitely susceptible to other DNA damaging agents,

such as radiation. This is an area of active investigation in our

laboratory.

C225 and PARPi also enhanced apoptosis, which is consistent

with previous reports of PARPi-mediated cytotoxicity [8]. We

found that this apoptosis was a result of activation of the intrinsic

pathway. It is worth noting that the magnitude of regulation of

apoptosis does not reach the levels of cytotoxicity measured by

colony formation assays. Multiple pathways other than apoptosis

could affect the colony-forming abilities of cells, such as inhibition

of cell proliferation, cell cycle arrest, mitotic catastrophe, and

autophagy. This discrepancy may also be explained by the notion

that contrary to analysis of foci or immunoblotting, which

demonstrates the effect at a snap shot in time, the colony

formation assay reflects multiple mechanisms of cell death over a

period of 3 weeks. As multiple signaling pathways are involved in

regulation and determination of the fate of cell death or survival,

our data suggests that inhibition of EGFR may be one part of the

complicated cell signaling/DNA damage repair network, and may

contribute only partly to the overall effect of cell susceptibility to

DNA damage. It is, thus, likely that PARPi and EGFR inhibition

might regulate multiple cytotoxic pathways. For example, ABT-

888 in combination with radiation has also been shown to induce

autophagic cell death in lung cancer cells [36]. Thus, other

mechanisms of cell death, including autophagy, cannot be ruled

out.

Since PARP is a SSB DNA repair enzyme, treatment with the

PARPi ABT-888 is expected to inhibit SSB repair and thus

increase basal levels of SSBs. Addition of C225 results in further

DNA damage. The increased DNA damage observed at longer

time points may be due to persistent DSBs or the result of

additional DNA-cuts as a consequence of conversion of SSBs to

DSBs during attempted DNA repair or collapsed replication forks.

This is supported by the increased % of cells with c-H2AX foci at

later time points. Alternatively, activation of cell death processes

such as apoptosis could also induce markers of DNA damage.

Interestingly, the UM-SCC1 head and neck cancer cells exhibit

susceptibility to PARPi alone. These cells are not inherently DSB

repair deficient, as assessed by IR-induced Rad51 and DNA-Pk

foci. However, PARPi alone induces persistent c-H2AX foci,

suggestive of the presence of persistent DSBs. It is intriguing to

postulate that other molecular determinants of PARPi suscepti-

bility independent of inherent DNA repair defects must exist. One

of several possibilities is the recently reported increased occupancy

by repressive E2F4/p130 complexes of the BRCA1 and RAD51

promoters in the presence of PARPi, thus increasing cellular

susceptibility to oxidative damage by suppressing the backup DSB

repair pathways [37].

In the last several years, the association between human

papilloma virus (HPV) and head and neck cancer has been

solidified [38,39]. Interestingly, HPV associated head and neck

cancers exhibit a better prognosis and appear to respond better to

chemoradiation [40]. It is postulated that this is due to HPV

oncoproteins and alteration of the DNA damage/response

pathways [41,42]. Interestingly, E7 expression has been shown

to disrupt E2F4 and p130 repressive activity and prevented

PARPi-mediated downregulation of BRCA1 and Rad51 [37].

However, interaction between all the HPV-oncogenes and the

DNA damage response may result in different susceptibilities to

DNA damage. Thus, it would be interesting to assess the

susceptibility of HPV-associated tumors to PARPi.

Our study demonstrates that inhibition of EGFR with C225

enhances cytotoxicity with the PARPi ABT-888 in head and neck

cancer cells via C225-mediated disruption of the HR- and NHEJ-

mediated DSB repair pathways. These results warrant future

studies to compare efficacy versus traditional chemotherapy. More

importantly, as maintaining quality of life has become an area of

emphasis in oncology, the use of targeted agents such as C225 and

ABT-888 may further improve the therapeutic ratio. Lastly, this

strategy may also be feasible in other tumors with aberrant EGFR

signaling, such as brain and lung cancers.

Materials and Methods

Cell culture
The human head and neck squamous carcinoma cell lines UM-

SCC1 and UM-SCC6 were obtained courtesy of Dr. Thomas E

Carey (University of Michigan, Ann Arbor, MI). They were

maintained in DMEM (GIBCO, Invitrogen) supplemented with

10% fetal bovine serum (FBS, Atlanta Biologicals) and 1%

Penicillin/Streptomycin (Invitrogen). The human head and neck

squamous carcinoma cell line FaDu (HTB-43) was obtained from

ATCC (Manassas, VA) and was maintained in RPMI-1640

(GIBCO, Invitrogen) supplemented with 10% FBS. The PARP

inhibitor ABT-888 (Enzo Life Sciences) and cetuximab (C225,

Bristol Myers Squibb) were utilized in our study.

Cell Viability
Cell viability was measured using the ATP-lite 1 step

luminescence assay (Perkin Elmer) following the manufacturer’s

directions. Briefly, 1000 cells in exponential phase were seeded per

well in a 96 well plate and treated with cetuximab (C225, Bristol

Myers Squibb) or vehicle for 16 hours, after which the PARP

Enhanced Cytotoxicity with Cetuximab and ABT-888

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e24148



inhibitor ABT-888 (10 mM, Enzo Life Sciences) was added. Cells

were pretreated with C225 to mimic the loading dose of C225 that

is given as one standard regimen for head and neck cancer

therapy. Relative ATP levels were measured 24 hours later using

Perkin Elmer luminometer.

Clonogenic survival assay
Cell survival was evaluated by the colony formation assay in the

head and neck squamous cell carcinoma cell lines following

2.5 mg/mL C225 and various doses of ABT-888 (1 mM-20 mM) as

previously described [43]. Briefly, cells in exponential phase were

seeded and treated with either C225 or vehicle. Sixteen hours

following C225 treatment, the indicated doses of ABT 888 (or

vehicle) was added. 24 hours post the first dose of ABT-888, cells

were subjected to a second dose and plates were left undisturbed.

Three weeks following initial treatment, colonies were fixed with

70% ethanol, stained 1% methylene blue and number of positive

colonies were counted (.50 cells). Survival fraction was calculated

as follows: (number of colonies for treated cells/number of cells

plated)/(number of colonies for corresponding control/number of

cells plated). Experiments were performed in triplicate.

Analysis of apoptosis
86104 cells were seeded in each well of a 6-well plate and

treated with C225 or vehicle control. Sixteen hours post C225

treatment, 10 mM ABT-888 or vehicle was added. Forty hours

post-C225 treatment both attached and floating cells were

collected in 12675 mm culture tubes. Annexin V-FITC Apoptosis

Detection kit (BioVison Research Products; catalog # K101-400)

was used according to manufacturer’s instructions to measure

percentage of apoptotic cells by FACScan using CellQuest.

Control samples included 16 Binding Buffer only, Annexin V-

FITC only, and propidium iodide (PI) only. Experiments were

performed in triplicate.

Immunofluorescence
To evaluate DSB repair capacity, head and neck cell lines were

cultured and seeded on sterile cover slips, exposed to various doses

of C225 for sixteen hours. To assay DNA Pk and Rad51 activity,

cells were subsequently treated with mock or 4 Gy c-IR using an

X-ray irradiator (Kimtron Inc., Woodbury, CT). Following the

treatment period, cells were fixed at the indicated time points. The

same procedure was followed to assay the effect of C225 on DNA

damage as measured by the formation of c-H2AX foci, except that

no radiation treatment was utilized. To measure the effect of C225

and PARPi combination on DNA damage, sixteen hours following

C225 treatment, cells were exposed to various doses of ABT-888

and fixed at the indicated time points and immunohistochemistry

was performed as previously described [44] with slight modifica-

tion. Briefly, cells were rinsed in phosphate buffered saline (PBS)

and incubated for 5 minutes at 4uC in ice-cold cytoskeleton buffer

(10 mM Hepes/KOH, pH 7.4, 300 mM sucrose, 100 mM NaCl,

3 mM MgCl2) supplemented with 1 mM PMSF, 0.5 mM sodium

vandate and proteasome inhibitor (Sigma, 1:100 dilution) followed

by fixation in 70% ethanol for 15 minutes. The cells were blocked

and incubated with primary antibodies [1:500 dilution, DNA Pkcs

phospho T2609, Genetex, catalog # GTX-24194; Rad 51 (H-92),

Santa Cruz Biotechnology, catalog # sc-8349, phospho H2AX

Ser139, Millipore, catalog # MI-07-164]. Secondary antibodies

include anti-mouse Alexa Fluor 488–conjugated antibody (1:2000;

Invitrogen) or anti-rabbit Alexa Fluor 594–conjugated antibody

(1:2000 dilution; Invitrogen). DAPI (Invitrogen, catalog #
D21490) was used for nuclear staining. The cover slips were

subsequently mounted onto slides with mounting media (Aqua

poly mount, Polysciences, Inc. catalog # 18606) and analyzed via

fluorescence microscopy (Carl Zeiss, Thornwood, NY). Positive

and negative controls were included on all experiments. A total of

500 cells were assessed. For foci quantification, cells with greater

than 10 foci were counted as positive according to the standard

procedure.

Immunoblotting
Cell lysates were prepared using radioimmunoprecipitation lysis

buffer (150 mM NaCl, 50 mM Tris, pH 8.0, 5 mM EDTA, 0.5%

sodium deoxycholate, 0.1% SDS, 1.0% Nonidet P-40) with

protease and phosphatase inhibitor cocktails (Sigma) and subjected

to SDS-PAGE analysis. The following antibodies were used at

dilutions recommended by the manufacturer: cleaved caspase 3

(Asp 175) (Cell Signalling Technology, catalog # 9664), total

caspase 3 (Cell Signalling Technology, catalog # 9662), cleaved

caspase 9 (Asp 330) (Cell Signalling Technology, catalog # 9501),

total caspase 9 (Cell Signalling Technology, catalog # 9502),

phospho H2AX Ser139 (Millipore, catalog # MI-07-164), DNA

Pkcs (Santa Cruz Biotechnology, catalog # sc-1552), DNA Pkcs

phospho T2609 (Genetex, catalog # GTX-24194). b-Actin (Santa

Cruz Biotechnology, catalog # sc47778) or tubulin (Santa Cruz

Biotechnology, catalog # sc-53646) levels were also analyzed as

loading control.

Cell cycle analysis
Cell cycle distribution was measured as previously described

[45]. 26105 cells were seeded in 100 mm2 dishes and treated with

2.5 mg/mL C225 or vehicle. 16 hours post-C225 treatment,

10 mM ABT 888 or vehicle was added. Cells were collected and

fixed at different time points, treated with RNAse (Sigma, catalog

# R-4875), stained with propidium iodide (PI), and read on

FACSCalibur using CellQuest. Data was analyzed using ModFit

LT by Verity Software Inc.

Statistical analysis
The data were analyzed via analysis of variance (ANOVA)

followed by a Bonferroni post test using GraphPad Prism version

4.02 (GraphPad Software, San Diego, CA). Data presented as

average +/2 standard error of mean.
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