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Abstract

Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits,
their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that
performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery
as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the
background luminance diminished performance on visual working memory and imagery tasks, but not working memory for
number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general
working memory system. Individuals with poor imagery still performed above chance in the visual working memory task,
but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual
working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic
performance, while those with poor imagery rely on different strategies. These findings could help reconcile current
controversy regarding the mechanism and location of visual mnemonic storage.
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Introduction

The study of working memory has long been an area of interest

for researchers due to its ubiquity in daily life, its close links to

many high-level cognitive functions, psychopathologies [1] and the

large individual variability present in both performance and

capacity [2–4]. The storage mechanism and capacity limits of

visual working memory have been and remain controversial [2,5–

8]. Likewise, the neural correlates of visual working memory have

stirred up considerable debate, with some studies reporting

sustained activity in high-level neural structures [9–11] while

others, more recently, reporting early-level visual cortex [12,13].

Behavioural studies support the involvement of early visual cortex,

as they suggests that visual working memory can maintain visual

information at a resolution typically only observed in early visual

cortex [14–18].

There have been suggestions that visual working memory may

involve mental imagery [19,20], such propositions dovetail nicely

with the visual spatial sketchpad component of composite theories

of working memory [21,22]. Interestingly the neural correlates of

imagery have provoked a debate similar to the one in the visual

working memory literature. Some neuroimaging studies have

found no significant increase in neural activity in the early visual

areas during imagery tasks [23–28]. More recently however,

neuroimaging studies have found that early areas of the visual

cortex are activated during imagery tasks as well as later visual

areas [29–31]. Studies employing transcranial magnetic stimula-

tion over early visual cortex further show that disruption of visual

cortical activity can impair imagery tasks [32] and recent

behavioural work has provided strong evidence that visual imagery

is contingent on activity in early visual cortex [33,34]. Interference

style tasks also provide evidence that imagery may be involved in

maintaining visual information in memory with some studies

indicating that visual interference in the form of irrelevant pictures

and dynamic visual noise deteriorates performance on both visual

working memory and imagery tasks [20,35–40]. However other

work has failed to show these effects, with some studies finding no

effects of dynamic visual noise on either working memory and/or

imagery tasks [41–44].

Subjective reports of strategies employed during visual working

memory may also provide insight into the role of imagery during

visual working memory. Subjective reports from participants

performing visual working memory tasks sometimes suggest a

strategy that involves creating a detailed mental image to help

performance [13,45,46]. These reports suggest that some partic-

ipants may engage in the effortful generation of internal visual

representations of the remembered items. The participant’s

descriptions are synonymous with definitions of mental imagery,

potentially implicating imagery as a possible cognitive strategy

used to solve visual working memory tasks.

Since the time of Sir Francis Galton [47] it has been noted that

individuals differ in their self-reports of mental imagery ability.

Some people report that they experience very intense, vivid images

akin to actually seeing the item, whereas others report no ‘image’

per se, instead an individual’s mental information seems to take on

a more abstract, phonologically based feeling [48].

If large individual differences in both visual working memory

and mental imagery are common [3,29,47,49] and individuals

report using imagery-like strategies during visual working memory

tasks [13,45,46], and both involve activity in early visual cortex

[13,50], it follows that imagery may be an important cognitive

element in working memory tasks.

However, studies examining the role of visual imagery in visual

working memory tasks have produced mixed results [51]. Some
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studies have reported positive correlations [46,52–54] whilst others

have found no or negative relationships [51,55,56]. Despite this

work, the exact nature of the relationship between visual imagery

and working memory still remains unclear.

Here we capitalized on a new method to assess imagery, a visual

phenomenon called binocular rivalry. This phenomenon involves

presenting two different patterns, one to each eye, resulting in one

pattern reaching awareness while the other is suppressed. A study

by Pearson, Clifford & Tong (2008) found that when individuals

imagined one of two rivalry patterns, that pattern had a higher

probability of being dominant during a subsequent brief rivalry

presentation. In fact, longer periods of imagery led to stronger bias

effects, and these effects were highly specific to the orientation and

location of the imagined pattern. Interestingly, when imagery was

performed in the presence of a uniform illuminant background

these effects tended to be weaker as a function of the background

luminance [33,57]. A recent study by Pearson, Rademaker &

Tong (in press) has shown that subjective ratings of imagery

vividness on a trial-by-trial basis predict the subsequent perceptual

effect on binocular rivalry (but not on catch trials), while ratings of

effort do not. Likewise off-line questionnaire ratings of imagery

vividness tended to predict the strength of mental imagery as

measured with binocular rivalry. This finding is important for the

current work as it demonstrates that imagery as assessed using

binocular rivalry is both a measure of its low-level sensory

components and metacognitive sensations of vividness.

We utilized imagery’s bias effect on subsequent binocular rivalry

to investigate the role of imagery in different types of short-term

visual memory (i.e. visual working memory and iconic memory).

We show that individuals with strong imagery perform better in

visual working memory tasks than individuals with poor imagery.

However, imagery strength was unrelated to performance in iconic

memory. In addition, we capitalized on the known ability of

background luminance to interfere with imagery mechanisms to

show that good imagers, but not poor imagers, tend to use imagery

as a strategy for visual working memory tasks. This pattern only

held for visual working memory and not for working memory of

number strings, suggesting that luminance was attenuating

sensory-based imagery and not general working memory mech-

anisms. These results provide compelling new evidence that

imagery is a component of visual working memory for good

imagers, whereas poor imagers likely rely on a different strategy. A

dichotomy in cognitive strategies may help explain the diversity of

results in visual working memory studies.

Methods

Participants
Thirty five undergraduate students (twenty female, aged 18–35)

participated in the correlational study in exchange for course

credit. All participants had normal or corrected to normal vision.

All thirty participants completed each measure of memory and

imagery for the first experiment. Seventeen undergraduate

students (ten female, aged 18–44) participated in the causal

luminance disruption experiments in exchange for course credit.

Informed written consent was obtained from all participants,

and all experiments were approved by the UNSW Human

Research Ethics Advisory Panel (Psychology).

Apparatus
All of the tasks were performed in darkened rooms with black

walls, to increase testing efficiency experiments were run on

two calibrated computer monitors, one 19 inch Phillip

Brilliance 109P4 monitor and a 21 inch Dell Trinitron monitor,

both with a resolution of 12806960 pixels, and a refresh rate of

75 Hz, one driven by a Mac Mini and the other an Imac

computer. Experiments were run in Matlab, using Psychophys-

ics toolbox [58,59]. A fixed viewing distance of 57 cm for all

experiments was obtained using a chinrest and participants

were instructed to maintain fixation on the bull’s-eye (a fixation

point) at all times throughout the experiment, which acted as a

fusion lock in the rivalry conditions. For the binocular rivalry

experiment a mirror stereoscope was attached to the chin rest.

The mirrors were carefully aligned for each individual

participant so that the patterns from each eye overlapped to

form visual rivalry.

Stimuli
In the imagery conditions the binocular rivalry stimuli consisted

of red horizontal (CIE x = .277, y = 0.613) and green vertical (CIE

x = 0.601, y = 0.368) Gabor patterns, 1 cycle/u, Gaussian s = 3.5u
(see figure 1A). The mean luminance of both Gabor patterns was

7.8 cdm2 (candela per square metre). Both patterns were presented

in an annulus around a fixation spot. During the rapid serial visual

presentation task, lower case letters (Times New Roman, 0.6u in

height) were presented centrally. The background was black

throughout the entire task, unless otherwise stated. For all

luminance conditions the background ramped up to yellow (a

mix of the green and red colors used for the rivalry patterns, with

luminance at 7.8 cdm 2) during the imagery period. During this

period the background luminance was smoothly ramped up and

down to avoid visual transients (see figure 1A).

The stimuli in the visual working memory task (for the

correlational study) consisted of two Gabor patterns (1 cycle/u,
Gaussian s = 6u), 70% contrast (see figure 1B). The Gabor

patterns were presented centrally and tilted clockwise at either 25u
or 115u. The background throughout the entire task in the

correlational study was grey with a luminance of 22 cdm 22. The

luminance experiments used green (CIE x = 0.601, y = 0.368) and

red (CIE x = .277, y = 0.613) Gabor patterns, with all other pattern

parameters held constant. The background was black for the

duration of the experiment, with the exception of the retention

interval during the luminance condition.

In the iconic memory task, seven grey Gabor patterns (1 cycle/u,
Gaussian s = 3u), 50% contrast, were used as the stimuli (see

figure 1C). The seven Gabor patches evenly surrounded the bull’s-

eye fixation spot in a circular fashion, at a 10u diameter, so that they

were somewhat in the participants’ peripheral vision. Each of the

seven Gabor patches had a unique orientation (between 0u to 360u)
which was randomly selected for each trial. The background

throughout the entire task was grey with a luminance of 22 cdm 22.

All numbers in the number-string working memory experiment

were white, presented on a black background (Times New Roman;

0.6u in height). During the retention interval the background was

black for the no luminance condition and white in the luminance

condition.

Procedure
Binocular Rivalry. To control for individual differences in

eye-dominance, which can lead to a perceptual bias for one eye,

participants underwent an eye dominance test prior to the imagery

task, as documented previously [33,57].

During the imagery conditions observers were instructed to

maintain fixation throughout each block of trials. For both the

correlational and luminance condition, a central cue (‘‘G’’ or ‘‘R’’)

was presented at the beginning of each trial to indicate whether

participants should form a mental image of a green vertical grating

or a red horizontal grating (see Figure 1A). This cue was
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randomized on each trial and appeared an equal number of times.

Following the imagery period, participants underwent a distracter

task in which they indicated when a ‘‘C’’ or ‘‘V’’ was present in the

serial string of letters by pressing the corresponding keys (C or V)

on the keyboard. Each letter was displayed for 300 ms.

Participants then viewed the rivalry display for 750 ms and

reported on the dominant pattern. Rivalry dominance was

reported by pressing one of three assigned keys (1, 2 or 3) to

indicate: (1) green vertical, (3) red horizontal, or for an

approximately equal mixture of the two patterns (2) (due to

binocular combination or piecemeal rivalry). To minimize

potential response conflict, participants were required to use their

left hand to complete the distracter task and their right hand for

rivalry responses. Mixed mock rivalry trials were not used to

calculate the bias measure of imagery as in previous work [33]. In

the correlational study participants completed 40 binocular rivalry

trials. Participants in the luminance manipulation experiments

completed a total of 80 binocular rivalry trials, 40 with and 40

without a luminous background.

Iconic memory. Alpha-numeric figures are commonly used

to assess iconic memory [60]. To avoid possible confounds from

high-level cognitive information, the iconic memory task used

Gabor patterns, which are difficult to encode phonologically.

Hence, this should be a better measure of purely sensory visual

memory. Participants held fixation while seven Gabor patterns (see

figure 1C) were presented in the periphery in a circular fashion

surrounding the fixation point. Following an inter-stimulus interval

of 20 ms, 40 ms, or 400 ms a cue (line pointing to the previous

Gabor position) was then presented. The location of the cued

Gabor patch was randomized on each trial. A different Gabor

pattern subsequently appeared in the cued position. The

orientation of the Gabor patch was rotated either 20u clockwise

(for half of the trials) or anticlockwise (for half of the trials)

compared to the original Gabor pattern. Participants were asked

to indicate whether the Gabor patch had been rotated clockwise or

anticlockwise by pressing the right or left arrow key respectively. A

total of 84 trials were completed by each of the participants.

Visual working memory (VWM). The working memory

task used in this experiment was based on Harrison and Tong’s

(2009) working memory paradigm (see figure 1B). Participants

were presented with two Gabor patterns in a randomized

consecutive order. A cue was then presented - either the number

1 or 2- which prompted the participants to remember either the

first (cue number 1) or second (cue number 2) pattern. A retention

interval of six seconds followed. After this interval a test pattern

was presented rotated either +5u (for half of the trials) or -5u (for

half of the trials) as compared to the remembered pattern and

participants had to signal whether the test stimulus was rotated

clockwise or anticlockwise relative to the one held in memory, by

pressing the number 2 or 1 on the keypad respectively.

Participants in the correlational study completed 40 trials.

Participants in the luminance manipulation experiment

completed a total of 80 trials, 40 with and 40 without a

luminous background. It is worth noting that in this task test

stimuli of 30 and 120u the correct answer was always clockwise.

While for test stimuli of 20 and 110u the correct answer was always

counter-clockwise. Hence, such a task may not be ideal for studies

using larger number of total trials, as the test stimulus response

association may be learnt over time. As there were only a total of

10/20 trials for each of the test stimuli in the current study

(depending on the experiment), without any performance

feedback, in a randomized order, the likelihood that participants

were learning 4 specific orientations and their associated response

is very low. In addition, Performance on the visual working

memory task the individuals with strong mental imagery are

disrupted by a luminance change that only occurs during the

retention period, eg. during the test stimulus there is no luminance

change. Hence, for individuals with strong mental imagery,

performance on the visual working memory task has to be

contingent on a process during the retention period.

Number string working memory (NWM). The timing

here was identical to the visual working memory task (see

Figure 1B), however instead the Gabor pattern two strings of

five numbers were presented sequentially. A cue was then

presented, either the number 1 or 2, which prompted the

participants to remember either the first (cue number 1) or

second (cue number 2) number string. At the test phase

participants were shown a 5 digit number string and were then

Figure 1. Experimental timelines and stimuli. (A). During the imagery task participants were cued to imagine a red or green Gabor pattern for
10 sec. Next they performed a letter discrimination task, followed by the binocular rivalry display. Luminance profile shows the background
luminance dynamics during the imagery period in experiment 2. (B). For the visual working memory task participants were presented with two Gabor
patterns sequentially, and were then cued to remember only one. Following a retention period a test pattern was presented and participants were
required to indicate its orientation in relation to the pattern held in memory. (C). During the iconic memory task participants were presented with
seven Gabor patterns, and after the inter-stimulus interval (ISI) cued to remember only one of the seven. In the test phase a rotated Gabor pattern
was displayed in the cued location and participants had to indicate its orientation in relation to the pattern held in memory.
doi:10.1371/journal.pone.0029221.g001
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asked to indicate whether the number was the same or different to

the number they were cued to remember by pressing the number 1

or 2 on the keypad, respectively. Participants in the luminance

manipulation experiment completed a total of 80 trials, 40 in the

luminance condition and 40 in the no luminance condition.

Results

Figure 2A shows a scatter plot for visual working memory and

mental imagery (as measured with binocular rivalry: see methods),

each dot represents an individual participant (N = 35). There is a

significant positive correlation between visual working memory

and visual mental imagery, r(34) = .56, p,.001. That is,

participants whose imagery had a strong bias effect on perceptual

rivalry also tended to have more accurate visual working memory.

A letter discrimination task was added as part of the imagery

procedure, after the imagery period and before the rivalry

presentation. This task was included to prevent participants from

continuing to imagine during the actual rivalry presentation, as

concurrent imagery and perception could induce possible

confounds of visual attention [61]. In addition, this task can be

used to insure the pattern of data in the imagery task was not due

to complacency or lack of effort. There was no significant

relationship between the letter task performance and imagery

ability (r(34) = . 07, p = .76). These results, taken together with

previous studies using catch trials [33,34], suggest that poor scores

on the imagery task reflect a deficiency in imagery abilities and not

complacent participants.

The relationship between imagery and iconic memory was then

examined to assess whether imagery might be related to different

types of visual memory. To assess iconic memory we used a

circular array consisting of seven Gabor patterns (Figure 1C). In

the iconic memory literature there are often variations in the

different inter stimulus intervals used, likewise estimates of the

longevity of iconic memory range from 20 to 500 ms (Sperling,

1960; Coltheart, 1980; Graziano & Sigman). For this reasons we

used both short (20 ms and 40 ms) and long (400 ms) ISI

durations. Across the long and short ISIs there were no significant

correlations between iconic memory and mental imagery or

between iconic memory and working memory ability. The left

panels of Figures 2B, C and D show a non-significant correlation

for the same participants between mental imagery and the iconic

memory at 20, 40 and 400 ms (r(34) = .17, p = .34; r(34) = .13,

p = .46; r(34) = .08, p = .67, respectively). These r values were all

significantly different from the r value for visual working memory

and imagery strength (Williams, t-test between non-independent

Rs for: 20 ms t(31) = 2.07, p,0.05; 40 ms t(31) = 1.98, p,0.05;

400 ms t(31) = 2.42, p,0.05). Here, individuals with strong

imagery tended to perform no better on the iconic memory task

than individuals with poor mental imagery.

In addition, the relationship between visual working memory

and iconic memory was examined to assess whether participants

who performed well on one measure of visual memory also

performed well on another. The right panels of figures 2B, C and

D show non-significant relationships between iconic memory at

20, 40 and 400 ms and visual working memory (r(34) = .23,

p = .19, r(34) = .04, p = .84, r(34) = .15, p = .41). All 3 r values were

significantly different from the r value for visual working memory

and imagery strength (Williams, t-test between non-independent

Rs, all Ps,.05). This indicates that participants’ performance on

visual working memory is not indicative of their performance on

iconic memory.

To further investigate the role of mental imagery in visual

working memory we manipulated the luminance of the back-

ground during both the working memory and imagery tasks (see

Figures 1A & B). Previous studies have demonstrated that greater

levels of background luminance lead to an attenuation of imagery

[33] and this is not due to dark adaptation [57]. It follows that if all

our participants were using imagery to solve the visual working

memory task, altering background luminance should attenuate the

imagery mechanism and hence also affect visual working memory

performance. However, if only some participants were adopting a

strategy that utilized imagery to solve the visual working memory

task, we might expect a decline in memory performance in only a

subset of participants. To assess whether luminance signals might

attenuate not only imagery processes but also general mechanisms

of working memory, we included a non-spatial ‘higher-level’

working memory task in which participants were required to

remember a number string instead of a visual pattern (see

methods).

Figure 3A displays the mean scores for all participants for both

the luminance and no luminance conditions. There is a weak trend

for luminance to attenuate imagery and visual working memory

performance. However, this effect did not reach significance for

either imagery or visual working memory (t(16) = 2.75, p = .47;

t(16) = 2.98, p = .34; respectively). Surprisingly the presence of

luminance tended to facilitate performance on the number-string

working memory task, with participants performing better in the

luminance condition (79%) than in the no luminance condition

(76%). However, this difference was also not significant,

t(16) = 1.29, p = .22

We hypothesized that perhaps only a subset of participants

might be using a strategy that involved imagery. Perhaps

individuals with strong imagery were more likely to use mental

images to boost mnemonic performance. To test this we split the

data into two groups (a median split at ,60% in the imagery task)

based on each participant’s individual imagery score (the ‘good’

imagers group had significantly more perceptual bias in the no

luminance condition than the ‘poor’ imagers, t(15) = 4.18,

p = 0.001). This resulted in 10 individuals being placed in the

poor imagery group and 7 in the good imagery group.

Figure 3B shows the mean scores for the poor imagery group on

the left and the good imagery group on the right. Interestingly, on

average poor imagers performed slightly better in the presence of

luminance for all tasks. However this trend was not significant for

visual working memory (t(9) = .50), number-string (t(9) = 2.46,

p = .66), or imagery (t(9) = 1.0).

The right side of figure 3B shows data from the good imagers

for the three conditions, with and without luminance. The

presence of luminance attenuated both visual working memory

and imagery performance, with participants performing signifi-

cantly better in the no luminance condition in comparison to the

luminance condition for both visual working memory and

imagery, t(6) = 23.79, p = .009, and t(6) = 24.77 p = .003,

respectively. For good imagers we found that performance in the

number-string task was slightly better in the luminance condition,

however this trend was not significant (t(6) = 1.73 p = .13).

Discussion

Our study indicates a positive correlation between imagery and

visual working memory performance. No such relationships were

found between imagery and iconic memory, or iconic memory

and visual working memory. For individuals with strong mental

imagery, luminance attenuated performance in visual working

memory and imagery tasks, but did not affect memory for

number-strings. This suggests that those who have strong imagery

may utilise it to aid performance in visual working memory tasks.

Mental Imagery and Visual Working Memory
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Figure 2. Correlational Results. (A). Imagery ability was predictive of visual working memory performance. Each dot shows an individual
participant. The trend line shows a linear fit to the data. (B). There was no significant relationship between imagery strength and iconic memory
performance for the 20 ms iconic memory ISI (left panel). Likewise, there was no significant correlation between visual working memory and iconic
memory at 20 ms (right panel) (C). Similarly there was no significant relationship between imagery strength and iconic memory performance at an ISI
of 40 ms (left panel) or between iconic memory (40 ms) and visual working memory (right panel). (D). There were no significant correlations between
imagery strength (left panel) or visual working memory (right panel) for the iconic memory ISI of 400 ms. (For all correlations N = 34). Assumptions of
normality, kurtosis, skewness and homoscadacity were met for all variables.
doi:10.1371/journal.pone.0029221.g002
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We have demonstrated that having strong mental imagery is an

asset in regards to solving visual working memory tasks, however

being a good imager does not seem to have any bearing on

performance on other forms of visual memory, such as iconic

memory.

Our results suggest that individuals might use different cognitive

strategies to solve the same visual memory task. More specifically

good imagers might use imagery to solve the memory task. Poor

imagers on the other hand do not, or are not able to create visual

images to a useful degree. However, individuals with poor imagery

still performed well in both working memory tasks. This suggests

that poor imagers likely rely on a non-imagery based strategy

perhaps a more ‘language like’ verbal workspace to complete the

task, using semantic propositional information from the mnemonic

stimuli, much like the strategy employed to store the number-

string information [48].

The current work also suggests that irrelevant visual stimuli can

interfere with the visio-spatial sketchpad, however this interference

might only occur when participants use imagery as a strategy in

solving visual working memory tasks. Current studies investigating

the effects of irrelevant visual stimuli on visual working memory

tasks have been working under the assumption that all people

process and manipulate visual stimuli in the same manner.

However, if, as our results suggest, only good imagers use visual

imagery to solve visual working memory tasks it might not come as

a surprise that some studies have found interfering effects from

visual distractors and others have not.

Despite the correlation between visual working memory and

mental imagery in experiment 1, participants with poor imagery

could still perform the visual working memory task (e.g. fig. 3B). In

other words, individuals with perhaps almost no functional mental

imagery could still perform well above chance in the visual

working memory task. This suggests that individuals were not

utilizing visual working memory skills to perform mental imagery,

but the other way around. If subjects were using visual working

memory mechanisms to perform imagery, we might expect the

degree of poor imagery to be limited by working memory

performance, however we demonstrate that imagery can almost be

functionally non-existent (according to our measure), while visual

working memory performance remains reasonable. Hence, we

propose that imagery might be an element in a compound working

memory system, such as the proposed visual spatial sketchpad

[21,62].

There is now strong evidence that early visual areas are

recruited and used during mental imagery tasks [33,63]. If early

visual areas are required to create detailed mental images [64]

and, as our results suggest, only good imagers use a mental

imagery strategy when solving visual working memory tasks, it is

possible that poor and good imagers recruit different neural

substrates when performing visual working memory tasks. If a

propositional or ‘language like’ strategy was employed, high-level

semantic and symbolic brain regions might be recruited as

opposed to early visual areas. Conversely, if an imagery strategy

were used, we would expect to see activation in early visual areas.

If there is such a dichotomy in strategies, our results may help

explain the current inconsistency in the literature in regards to the

neural correlates of visual working memory [9–13,65,66]. Some

previous studies have failed to take into account individual

differences in either imagery or working memory performance. If

individuals do use different cognitive strategies to solve visual

working memory tasks, which in turn use different neural

structures, this might explain why some studies have found

increased BOLD in early visual areas, while others have not. The

investigation of such individual differences may therefore provide

a valuable contribution to theoretical models of working memory.

The use of different cognitive strategies to complete visual

working memory tasks may also provide some insight into current

theories of working memory capacity. There are two primary

theories concerning the capacity and storage mechanisms of visual

working memory: the discrete resource model [7,67,68] and the

flexible resource model [5,69]. The discrete resource model

proposes that there is a limited number of ‘slots’ in memory that

can each be occupied with a single item, whereas the flexible

resource model posits that a finite memory resource can be spread

out over many sensory items at differing degrees of precision

[2,7,69]. Substantial evidence for and against both models exists.

However, neither theory is largely influenced by individual

differences in memory capacity, even though such individual

differences are well documented [2,3,49]. With individual

differences in visual working memory capacity ranging from 1

item to 7 items [2,7,49,66,70,71], it is somewhat surprising that

current models do not factor in potential causes behind such

Figure 3. Luminance manipulation experiments. Luminance attenuates working memory and imagery, but only for good imagers. (A). The
graph shows the mean performance for all participants in the luminance and no luminance conditions. There is no significant effect of luminance.
Error bars show 6 SEMs (N = 17). (B). Data separated by imagery ability using a median split. The leftmost graph shows the data for poor imagers
(N = 10), graph on the right for good imagers (N = 7), error bars show 6 SEM. Good imagers show an effect of background luminance. It should be
noted that separating participants by imagery ability using a mean split resulted in the same patterns with no differences in performance for poor
imagers and attenuation effects for good imagers when in the luminance condition for visual working memory and luminance respectively,
t(5) = 26.19, p = .002, and t(5) = 24.21 p = .008.
doi:10.1371/journal.pone.0029221.g003
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differences. If stronger imagery does in fact boost performance

accuracy in visual working memory tasks, it may similarly have a

modulatory effect on capacity limits. If this is the case, one may

expect to find large individual differences in capacity limits that

parallel the documented individual differences in imagery

strength.

Behavioural work has shown that imagery can alter sensory

perception [33,57,72,73]. If imagery is in fact utilized during visual

working memory then one might expect the contents of visual

working memory to likewise alter sensory perception. This is

exactly what has recently been found [15]. Here the authors report

that the content of visual working memory directly changed

perception of a separate visual stimulus.

It will be interesting for future studies to assess the impact of

individual differences and even to incorporate the known

characteristics of imagery into theoretical models of visual working

memory. Our results suggest that individuals with strong imagery

will utilize it during visual working memory tasks and that this may

give them a competitive edge, allowing for greater mnemonic

accuracy. Future work should shed light on the physiological basis

of stronger and more vivid imagery, while unlocking the intricate

relationship between imagery and many cognitive and sensory

functions.
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