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Ectopic lymphoid tissue, also known as tertiary lymphoid organs (TLO) develop adap-
tively within sites of chronic tissue inflammation, thereby allowing the host to efficiently
crossprime specific immune effector cells within sites of disease. Recent evidence sug-
gests that the presence ofTLO in the tumor microenvironment (TME) predicts better overall
survival. We will discuss the relevance of extranodal T cell priming within the TME as a
means to effectively promote anti-tumor immunity and the strategic use of dendritic cell
(DC)-based therapies to reinforce this clinically preferred process in the cancer-bearing host.
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INTRODUCTION
In the classical model of peripheral T cell activation, tissue-
resident dendritic cells (DCs) capture antigens (such as foreign
pathogens, tumor cell debris, etc.) in an inflammatory microen-
vironment, leading to the migration of antigen-laden CCR7+

DC to regional draining lymph nodes [LN; aka secondary lym-
phoid organs (SLO)], where activation of cognate T cells occurs
(1–3). After appropriate proliferative expansion and maturation,
T effector cells may then enter the blood circulation and be
recruited into tissue sites where they are competent to recog-
nize and react against relevant antigen-presenting cells, such as
virally infected host cells or tumor cells (4). Recent evidence
obtained in a range of translational and clinical models suggests,
however, that this classical/conventional paradigm may be oper-
ationally overly simplistic, and that extranodal (cross)priming
of antigen-specific T cells can occur in peripheral tissues, often
times in conditionally established tertiary lymphoid organs
(TLO) (5–9).

SLO/TLO DEVELOPMENT: NATURAL AND INDUCED
The developmental formation of SLO is believed to require the
interaction of so-called lymphoid tissue inducer cells (LTi) bear-
ing a CD3−CD4+CD45+IL-7R+c-Kit+ phenotype that produce
lymphotoxin α/β [LTα/β; Ref. (10, 11)] with LTβR+ stromal
“organizer” cell populations that may derive from adipocyte pre-
cursors (12), leading to corollary stromal cell elaboration of the
SLO homeostatic chemokines CCL19, CCL21, and CXCL13 (8, 9,
13–15). These chemokines sustain recruitment of LTi and other
lymphocytes into SLO, resulting in the development of a mature
lymphoid organ architecture [i.e., based on the formation of fol-
licular structures containing B cells and surrounding “cortical”
zones that are diffusely populated by CD4+ and CD8+ T cells,

antigen-presenting cells (including CD11c+ DC), and PNAd+

high-endothelial venules (HEV; (8, 15–19))].
Naive (CD62L+CCR7+) T cells enter SLO via interaction

with PNAd+ HEV which are “decorated” with the CCR7 ligand
chemokines CCL19 and CCL21 on their luminal surface, thereby
facilitating lymphocyte extravasation/directed motility from the
blood into the lymph node (20). Of these two chemokines, CCL21
may play the more dominant role in recruiting naïve lympho-
cytes into SLO, while CCL19 may be differentially cytoprotective
in sustaining nodal populations of lymphocytes (20–22). Pro-
longed CCR7-mediated signaling into recruited T cells, leads to
intrinsic upregulation of the sphingosine-1 phosphate receptor
1, EDG1 (23), which is involved in the ultimate departure of
primed T cell populations from SLO into the peripheral blood
circulation (24, 25).

While classical SLO are encapsulated structures that develop in
predictable locations as a consequence of normal immune system
development, under pathologic conditions, ectopic lymphoid tis-
sues (aka TLO) may develop in peripheral tissue sites of chronic
inflammation (13, 26). TLO formation has been reported within
inflamed organs of patients with rheumatoid arthritis (27–29),
psoriatic arthritis (30), diabetes mellitus (31–33), autoimmune
gastritis [AIG; Ref. (32)], juvenile dermatomyositis (34), and Sjö-
gren’s syndrome (35), among others. TLO formation has also been
identified in the lungs of influenza virus-infected mice (36), the
livers of hepatitis C virus (HCV)-infected patients (37) and in
the stomachs of patients infected with Helicobacter pylori (38).
“Dysfunctional” human lung allografts exhibiting chronic inflam-
matory responses have also been found to commonly contain
TLO (17).

Furthermore, a burgeoning literature supports tumor-
associated TLO as important sites of extranodal T cell priming
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and epitope spreading in the responder T cell repertoire (13, 39).
TLO have been identified in a subset of human melanoma lesions,
in which mature DC were found to maintain intimate contact
with recruited T cell populations, consistent with the notion of
operational extranodal (cross)priming within the tumor microen-
vironment (TME) (40, 41). Similar results have been reported
for murine melanoma models (7, 8). In line with this model,
naïve lymphocytes have been identified in TLO within pulmonary
lesions of patients with lung cancer, making it likely that these
immune cells encounter their cognate antigen for the first time
and develop into antigen-specific T effector cells within the TME
in vivo (16, 42). TLO featuring DC/Type-1 T cell clusters proximal
to B cell “nests” have also been identified in human non-small-
cell lung cancer specimens (43). In such instances, the density of
mature DC found in TLO appeared to be associated with improved
long term survival (6, 43). In a subset of patients with breast can-
cer, HEV have been found in close proximity to LTβ+LAMP+

DC in association with profound B/T cell infiltrates in the TME
and a more favorable clinical outcome (44). Furthermore, Mulé
and colleagues have recently performed a metagene analysis on
human (Stage IV, non-locoregional) melanoma metastases and
identified a 12-chemokine gene signature (i.e., CCL2, CCL3,
CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10,
CXCL11, CXCL13) correlating with the presence of TLO (con-
taining CD20+ B cell follicles with prominent areas of CD4+ and
CD8+ T cells, but not FoxP3+ Treg cells), with better overall sur-
vival noted in the TLO+ subset of patients (41). In a similar vein,
Gu-Trantien et al. (45) have also recently observed that the pres-
ence of breast cancer infiltrating follicular CD4+ T helper cells
(Tfh; expressing CD200, FBLN7, ICOS, SGPP2, SH2D1A, TIGIT,
and PDCD1/PD-1, and producing the CXCL13 chemokine) may
be directly correlated with; (i) the degree of tumor-infiltrating
lymphocytes (TIL), (ii) the formation of TLO-like structures
in cancer tissue, and (iii) improved patient clinical response
to pre-operative chemotherapy and/or post-surgical disease-free
survival.

The conditional formation of TLO in peripheral tissues appears
to require the coordinate participation of a similar cast of cellular
participants, soluble mediators, and signaling pathways associ-
ated with the orchestration of SLO development (14, 15). Ectopic
delivery of LTα/β or LIGHT (aka TNFSF-14 or CD258) promotes
PNAd+HEV,CCL19/CCL21 production,massive naïve T cell infil-
tration, and (tumor-specific) cross-priming in the context of TLO
structures (9, 18, 36, 46–49). For example, targeted therapeutic
delivery of LTα into the TME via the administration of a fusion
protein encompassing the LTα molecule linked to an antibody
recognizing a tumor plasma membrane-associated disialoganglio-
side GD2 (i.e., ch14.18-LTα) resulted in slowed tumor progression
and the establishment of mature TLO structures within 9 days
of treatment initiation (8). The LTβR ligands LTα/β and LIGHT
appear to act directly on endothelial cells and DC in activating
NFκB and promoting the expression of adhesion molecules, such
as PNAd, VCAM-1, E-selectin, and ICAM-1 by HEV and IL-12p70
production from DC (50–52). In particular, LIGHT is essential
for DC-mediated cross-priming of antigen-specific Type-1 T cells
(53). Indeed, ectopic expression of LIGHT in the TME elicits
profound infiltration and cross-priming of naïve anti-tumor T

cells in concert with upregulated stromal cell production of TLO-
associated chemokines (CCL21, CXCL9, CXCL10, and CXCL13),
increased expression of vascular adhesion molecules (MAdCAM-
1, VCAM-1, PNAd), and the presence of mature DC within the
TME (9). Interestingly, DC, natural killer (NK) cells, and even
B cells can serve as LTα/β producers in pro-inflammatory envi-
ronments, allowing for the establishment of an autocrine feed-
forward loop promoting TLO development in peripheral tissues
(36, 54–59). Consistent with these findings noted for pro-TLO
immunobiology of LTβR ligands, blockade of the LTβR precludes
formation of TLO in vivo (60).

In a similar manner, induced expression or ectopic delivery of
LTβR downstream mediators,CCL19 or CCL21, in the TME results
in inhibition of tumor growth or complete rejection of established
tumors associated with increased infiltration by CD3+CCR7+

T cells and/or DCs in a range of cancer models (32, 61–70).
Interestingly, these interventional maneuvers may also reduce fre-
quencies of tumor-associated immunosuppressive Treg cells and
MDSC (61).

During the ontogeny of TLO in peripheral tissues, lymphatic
vessels (i.e., PNAd+, MAdCAM-1+, LYVE-1+, and/or Prox-1+

HEV) and disorganized clusters of APC and infiltrating lympho-
cytes appear in advance of canonical mature lymphoid organ
architecture characterized by B cell follicular regions (19, 71). Sig-
nals that instigate the diffuse-to-organized structural transition of
TLO may be provided by cognate T cell recognition of relevant tar-
get cell populations within nascent TLO (15, 72). It is important
to note, however, that immature TLO have been oft-associated
with locoregional immune sequelae including manifestations of
autoimmunity and anti-tumor efficacy (5, 32, 71). Hence, while
mature TLO may ultimately develop in the chronic disease setting,
clinical meaningful immunobiology occurs in advance of such
structural developments.

THERAPEUTIC PROMOTION OF TLO
If the formation of TLO allows for extranodal (cross)priming of
antigen-specific T cells that are linked to disease pathogenesis (i.e.,
autoimmunity) or resolution (i.e., infectious disease, cancer), then
means by which to prevent or enhance TLO development, respec-
tively, in affected tissues would be anticipated to impact clinical
outcome. Perhaps the most strategically simple means by which to
apply this paradigm in the cancer setting reflects the implantation
of SLO/TLO directly into the TME. Recently, scaffold-based lym-
phoid tissue engineering has been developed as a means to trans-
plant “intact” TLO directly into tumors in order to affect clinical
benefit (73). A previously mentioned alternative to this strategy is
clearly the delivery of the LTβR ligands LTα,LTβ, or LIGHT,agonist
anti-LTβR antibodies or downstream TLO-associated chemokines
(CCL19, CCL21, CXCL13) via protein-based or genetic therapy in
order to instigate the locoregional development of TLO in the
TME leading to inhibition of tumor growth in vivo and extended
overall survival (8, 9, 48, 74, 75).

USE OF DC-BASED THERAPY TO PROMOTE EXTRANODAL
PRIMING OF ANTI-TUMOR T CELLS
It also appears that the administration of appropriately acti-
vated/engineered DC is sufficient to nucleate and/or maintain the
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development of TLO in vivo (36, 72). For instance, mice vaccinated
sub-cutaneously with syngenic DC loaded with apoptotic/necrotic
B16 melanoma cell debris develop operational TLO [pseudocap-
sule; PNAd+ vascular endothelial cells (VEC), T cell/DC infil-
trates] at sites of injection, leading to the activation of protective
anti-tumor immunity (72). DC genetically engineered to secrete
high-levels of CCL21 (DC.CCL21) and injected directly into
B16 murine melanomas promote strong extranodal T cell cross-
priming/recruitment into the TME, even in LTα −/− mice that
lack SLO (8, 68). The superiority of DC.CCL21 in enhancing the
cross-priming of protective Type-1 anti-tumor T cell responses
has also been confirmed in alternate murine models (76, 77).

In our recent paper (5), we noted that DC engineered to express
the Type-1 transactivator protein T-bet (DC.Tbet) and injected
directly into sarcomas growing progressively in C57BL/6 mice,
led to the cross-priming of protective immunity that was inde-
pendent of host CD11c+ or BATF3+ DC or the ability of the
injected DC.Tbet to migrate to SLO. Instead, we detected the
rapid recruitment of NK cells and naïve T cells into the TME
within 48 h of DC.Tbet administration, and the differentiation of
these TIL into Type-1 effector cells in situ within the TME. As
shown in Figure 1, we observed a diffuse but interactive collec-
tion of CD11c+ DC and Tbet+ cells [including both T cells (5)
and B220+ B cells] within the TME of MCA205 sarcomas by 48 h
post-treatment with DC.Tbet, but not control DC. PNAd+ HEV
were not evident at this early time point, but were readily imaged in
proximity to large DC-Tbet+ lymphocyte clusters by 5 days post-
treatment with DC.Tbet (but not control DC). These data suggest
that extranodal priming of protective immunity using therapeutic
DC delivery occurs in advance of the formal adoption of clas-
sical TLO anatomic structures within the TME (Figure 2), and
that indeed, the development of such Type-1 cognate immunity

(and its pro-inflammatory signals) in the TME may be required for
subsequent evolution of mature TLO formatting, as described by
Schrama et al. (8). Interestingly, a gene array analysis of DC.Tbet
versus control DC did not reveal any striking differences in expres-
sion of LTA, LTB, LIGHT, CCL19, CCL21, or CXCL13 mRNA
transcripts, suggesting a potentially novel mechanism associated
with early TLO development triggered by this DC-based ther-
apy [(5) and Chen, unpublished data]. In this regard, we noted
a striking enhancement in DC.Tbet production of IL-36γ/IL-1F9
(>34-fold; Chen, unpublished data). IL-36γ is a novel IL-1 family
member cytokine that has been previously reported to be a potent
recruiter and activator of naïve T cells that develop strong Type-1
functional polarity (78, 79). As in the case of LTβR ligands, IL-
36 also triggers NFκB activation in IL-36R+ DC (79–82), which
may prove pivotal for autocrine potentiation of Type-1 DC func-
tion and a pro-TLO TME. Whether tumor-associated VEC express
IL-36R and activated NFκb in response to IL-36 remains an unan-
swered question. We are currently evaluating the impact of IL-36γ

knock-down in DC.Tbet in order to determine the direct relevance
of IL-36γ in the development of TLO and protective immunity
in the TME of mice treated with intratumoral administration of
DC.Tbet.

SUMMARY AND FUTURE PERSPECTIVES
In the cancer setting, the ability of the host to develop ectopic
lymphoid organs (TLO) within or proximal to sites of active
disease appears to represent a positive prognostic factor for over-
all patient survival. TLO represent a regional “factory” in which
naïve T cells (and B cells) may be cross-primed by tumor-resident
antigen-presenting cells, such as DC, leading to poly-specific adap-
tive immunity that may limit disease progression and conceivably
metastatic spread. By limiting the need for antigen-loaded DC to

FIGURE 1 | Intratumoral administration of dendritic cells engineered to
expressT-bet/TBX21 (DC.Tbet) promote the rapid infiltration of
Type-1-polarized lymphocytes and dendritic cells and the development of
PNAd+ endothelial cells (i.e., HEV). Tbet-ZsGreen Tg mice were injected
sub-cutaneously with syngenic MCA205 sarcoma cells and tumors allowed to
progressively grow for 7 days, at which time control DC (Control) or DC
engineered with recombinant adenovirus to express murine T-bet cDNA were
inoculated directly into tumors, as previously described (5). Two or 5 days after
DC injection, the mice were euthanized and tumor sections evaluated by

fluorescence microscopy for expression of Tbet-ZsGreen protein, CD11c (a
marker of DC), B220 (a B cell marker), and PNAd (i.e., Peripheral lymph Node
Addressin; a high endothelial venule (HEV) cell marker). PNAd+ HEV were not
observed by 2 days post-treatment, but became prevalent by 5 days
post-injection of DC.Tbet cells. B, T, and NK cell infiltrates into DC.Tbet [Figure
1 and (5)] exhibited a diffuse distribution pattern in day 2 and day 5
DC.Tbet-treated tumors. Type-1 polarity in infiltrating cells is denoted by
nuclear expression of Tbet-ZsGreen. Data are representative of images
obtained in three independent experiments performed.
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FIGURE 2 | Hypothetical paradigm for extranodal priming ofT cells
after intratumoral administration of DC.Tbet cells. Injection of DC.Tbet
(but not control DC) into the TME leads to the conditioning of
tumor-associated stromal cells and vascular endothelial cells (VEC),
resulting in stromal cell production of chemokines recruiting naïve
leukocytes (B, T, NK cells) and VEC expression of adhesion molecules, such
as VCAM-1, as early as day 2 post-treatment [Figure 1 and (5)]. Recruited
lymphocytes are assembled in diffuse patterns around CD11c+ (both
injected and host) DC and have already acquired Type-1 functional
polarization, based on expression of the Tbet reporter protein
(Tbet-ZsGreen) in vivo. PNAd+ HEV are not formally required for early

recruitment of naïve T cells into the TME since these structures do not
become discernible until later time points [i.e., day 5; Figure 1 and (5)].
B220+ B cells recruited into the TME as a consequence of treatment with
DC.Tbet cells are not organized into follicle-like structures during the day
2–5 time period, but may become organized in this manner at even later
time points (i.e.,≥day 9 post-therapy), based on previous reports employing
alternate immunotherapeutic interventions, such as ch14.18-LTα (8). While
therapeutic benefits in our model were largely T cell-dependent and
detectable prior to the establishment of formal TLO structures (based on
the development of B cell follicles), the presence of “mature” TLO in
human tumors has been associated with better clinical prognosis.

migrate to tumor-draining SLO, and the corollary requirement
of SLO-primed T cells to be recruited back into tumor sites,
TLO may operationally increase the efficiency of anti-tumor T
cell cross-priming and the therapeutic action of such T effec-
tor cells in the TME. Translational studies clearly suggest that
TLO formation in the TME may be therapeutically fostered by
the directed delivery of LTβR ligands in both protein- and gene-
based formats. At present, LTβR agonist-based therapies are in
their infancy with only rhLTα thus far evaluated in phase I clinical
trials, where minimal anti-tumor efficacy was observed in patients
with melanoma or renal cell carcinoma (83). The inability to focus
this potent TLO induction agent in appropriate sites of disease in
order to most effectively recruit and activate protective immunity
in treated patients must be considered a possible limitation to
the current treatment strategy. The ligation of rhLTα to a cancer-
specific antibody or the intratumoral administration of this agent
could improve anti-tumor efficacy and coordinately reduce cur-
rent off-target toxicities [i.e., grade III chill, grade III fever, and
grade III dyspnea; Ref. (83)].

Improved targeted delivery of LTβR ligand or downstream
chemokine gene therapies is conceptually attractive given

pre-clinical results in murine tumor models. To date, however,
only a recombinant adenovirus encoding hCCL21 has been devel-
oped for phase I clinical application, with the intent to deliver
rAd.CCL21-infected patient DC directly into tumors in patients
with late stage human lung cancer (84) or in vaccine formulations
applied to patients with melanoma (85). Although this approach
requires further optimization of the clinical vector based on low
levels of CCL21 produced by engineered DC, melanoma patients
treated at the lowest dose tier of DC.CCL21 did develop lymph
node-like structures based on immunohistochemical analysis of
vaccination site biopsies (James Mulé, personal communication).
Our own pre-clinical data would support the clinical application
of DC.Tbet directly into accessible tumor lesions as a means to
drive TLO development and protective immunity in the TME.
Motivation for the development of prospective phase I trials using
DC.Tbet cells will be intensified when the underlying mechanism
of action for this treatment modality has been defined.

Finally, in a related note, antagonists of LTβR ligands (such as
BTLA and CD160) have been shown to be immunosuppressive
molecules in inhibiting DC homeostasis as well as the protective
effector functions mediated by T cells and NK cells (74, 86–90).
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It is therefore conceivable that endogenous levels of TLO devel-
opment and corollary anti-tumor immunity may be bolstered
therapeutically as a consequence of administering agents (i.e.,
antagonist antibodies or DC genetically engineered to produce
specific inhibitors locoregionally in the TME) that are capable of
blocking the action of BTLA or CD160 in vivo.
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