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Disruptions in ZIC3 cause heterotaxy, a congenital anomaly of the left-right axis. ZIC3 encodes a nuclear
protein with a zinc finger (ZF) domain that contains five tandem C2H2 ZF motifs. Missense mutations in
the first ZF motif (ZF1) result in defective nuclear localization, which may underlie the pathogenesis of het-
erotaxy. Here we revealed the structural and functional basis of the nuclear localization signal (NLS) of
ZIC3 and investigated its relationship to the defect caused by ZF1 mutation. The ZIC3 NLS was located in
the ZF2 and ZF3 regions, rather than ZF1. Several basic residues interspersed throughout these regions
were responsible for the nuclear localization, but R320, K337 and R350 were particularly important. NMR
structure analysis revealed that ZF1-4 had a similar structure to GLI ZF, and the basic side chains of the
NLS clustered together in two regions on the protein surface, similar to classical bipartite NLSs. Among
the residues for the ZF1 mutations, C253 and H286 were positioned for the metal chelation, whereas W255
was positioned in the hydrophobic core formed by ZF1 and ZF2. Tryptophan 255 was a highly conserved
inter-finger connector and formed part of a structural motif (tandem CXW-C-H-H) that is shared with GLI,
Glis and some fungal ZF proteins. Furthermore, we found that knockdown of Karyopherin a1/a6 impaired
ZIC3 nuclear localization, and physical interactions between the NLS and the nuclear import adapter proteins
were disturbed by mutations in the NLS but not by W255G. These results indicate that ZIC3 is imported into
the cell nucleus by the Karyopherin (Importin) system and that the impaired nuclear localization by the ZF1
mutation is not due to a direct influence on the NLS.

INTRODUCTION

are five members of the Zic family that are involved in

The zinc finger domains (ZFDs) of the Zic family proteins have
been strongly conserved over the evolution of a broad range of
eumetazoan animals (1) and may provide the structural basis for
the essential roles of Zic family proteins in animal development
(reviewed in 2,3, and references therein). In humans, there

human congenital anomalies (reviewed in 4). One of them,
ZIC3, causes X-linked heterotaxy (HTX1), which is a left—
right axis disturbance that manifests as variable combinations
of heart malformation, altered lung lobation, splenic abnor-
mality and gastrointestinal malrotation (5,6).
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Zic3 was originally identified as a gene preferentially
expressed in mouse cerebellum (7) and is considered to be a
transcriptional regulator, based on its ability to bind DNA and
activate transcription (8). Zic3-deficient mice have a variety
of abnormalities that include not only heterotaxy, but also
neural tube defects, skeletal patterning defects, cerebellar hypo-
plasia and abnormal behavior (9—12). Xenopus Zic3 has also
been demonstrated to function in neural and left—right axis
development (13,14). Hemilateral expression of the Xenopus
Zic3 ZFD caused a left—right axis disturbance comparable to
the misexpression of full-length ZIC3 (14), suggesting that
the ZFD is critical for left—right axis determination.

Zic ZFDs are generally composed of five tandemly repeated
C2H2 zinc finger (ZF) motifs (reviewed in 2). Comparison of
amino acid sequences indicates that the Zic ZFD shows a sub-
stantial similarity to the ZF proteins of the Gli and Glis families,
whose biological importance in vertebrate and ecdysozoan
animals has been demonstrated. Zic, Gli and Glis—the three
distinct ZF protein families are considered to be derived from
a common ancestral gene (1,2). Although the ZFDs of Gli
and Glis are also composed of five ZFs, the N-terminal (Nt)
ZF (ZF1) of the Zic ZFD diverges from those of the Gli and
Glis proteins (2). Zic ZF1 is unique in that it possesses more
amino acid residues (6—38 amino acids) between the two
cysteine residues of the C2H2 motif than the Gli and Glis
ZF1s or any of the other ZFs (ZF2-5) in the Gli/Glis/Zic super-
family of proteins, which usually have 2—4 amino acids
between the cysteine residues. Although the amino acid
sequences between the two cysteine resides of Zic ZF1 are
not strongly conserved within Zic family proteins as a whole,
the second amino acid residue from the first cysteine is
always tryptophan.

In human ZIC3, a missense mutation in this tryptophan
residue (W255G) results in transposition of great artery
(TGA), a congenital heart defect that might be an expression
of a left—right laterality disturbance (15). ZIC3 W255G
shows abnormal extranuclear localization and impaired tran-
scriptional activation ability (15), indicating that W255 has an
essential role in the functional integrity of the Zic3 protein.
Mutations in cysteine 253 (C253S) or histidine 286 (H286R)
in ZIC3 ZF1, which are found in heterotaxy patients, also
result in extranuclear localization of the mutant ZIC3 protein
(6). Together, these results raise the possibility that mutations
in the evolutionarily conserved amino acid residues of ZF1 gen-
erally impair nuclear localization. However, the mechanism of
nuclear localization, including the identity of the nuclear local-
ization signal (NLS) in Zic family proteins, has not been inves-
tigated. This situation makes it difficult to clarify the role of
ZF1 in the regulation of their subcellular distribution.

Some molecular components required for the nuclear trans-
port of proteins have been identified (16,17). Macromolecules
cannot disperse through the nuclear pore complexes and are
actively transported into the nucleus by the importin system.
Cargo proteins containing a classical NLS are bound by
importin o, which is the adapter protein between the cargo
proteins and importin (3. The cargo protein—importin o—
importin B heterotrimeric complex formed in the cytoplasm
is targeted to the nuclear pore complexes and then is translo-
cated into the nucleus. Importin-« proteins are categorized
into three groups based on amino acid sequence identity.

The first group includes human IMPORTIN «l and mouse
Karyopherin a2 (Kpna2); the second group includes human
IMPORTIN «3 and «4, which are homologous to mouse
Kpna4 and Kpna3, respectively; and the last group contains
human IMPORTIN «5, a6 and a7 and mouse Kpnal and
Kpna6 (18) [Although it is confusing that the human and
mouse family numbers do not match, we used the name
‘Kpna’ and the corresponding number designations because
the Mouse Genome Informatics (MGI; http://www.informatics.
jax.org/) and National Center for Biotechnology Information
(NCBI; http://www.ncbi.nib/gov/) databases use this name].
There are five or six Kpna proteins that show overlapping but
differential modes of NLS recognition without recognizing a
clear consensus sequence. It would be interesting to see which
Kpnas are used for ZIC3 nuclear transport since subtype switch-
ing of Kpna may be involved in neural differentiation (19).

Here we investigated how Zic family proteins are localized
in the nucleus and the relationship of this mechanism to ZF1 in
the ZIC3 ZFD. We identify the NLS in ZF2 and ZF3 and
describe its spatial relationship to ZF1 and its interaction
with nuclear import receptor proteins Kpnal and Kpna6. In the
course of this study, we determined the three-dimensional (3D)
structure of the ZF1 to ZF4 region, providing the first result of
an NMR-based protein structure for a Zic family protein.

RESULTS

Mutations of the conserved residues in ZIC3 ZF1
disturb its subcellular localization

Mutations of the conserved residues W255, C253 and H286 in
ZF1 affect the subcellular distribution of ZIC3 (6,15). We first
tested whether mutations in the other conserved residues in
ZF1 also affect its subcellular distribution. For this purpose,
we prepared novel mutant ZIC3 proteins containing C268S
and H281R (mutations in the second cysteine and the first
histidine residues in the C2H2 motif, respectively; Fig. 1)
and compared their subcellular distribution to that of the wild-
type ZIC3 protein and W255G, which causes extranuclear
localization of ZIC3. Immunofluorescence staining of the
NIH3T3 transfectants indicated that H281R strongly and
C268S weakly increased the proportion of cells with extranuc-
lear ZIC3 protein. These results indicate that mutations in the
conserved C2H2 or tryptophan residues in ZF1 of ZIC3 gener-
ally inhibit the nuclear localization of ZIC3.

Influence of the ZF1 mutations on ZIC3 ZFD
secondary structure

Circular dichroism (CD) spectroscopy is a widely used method
for studying protein structures in solution (20,21). To investi-
gate the possible structural alterations caused by the ZF1
mutations, we measured the CD spectrum of ZIC3 ZF1-5.
The ZIC3 protein fragments were expressed in Escherichia
coli and purified for the analysis (Fig. 2A). The CD spectra
in the far UV range (200—250 nm) were measured in the
presence of Zn** (see Materials and Methods). C253S and
H286R showed a lower mean residue ellipticity (6) around
200 nm than wild-type ZFD (Fig. 2B). This reduction indicates
that the C253S and H286R ZFD contained more random coil
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Figure 1. Intracellular localization of ZIC3 with missense mutations in
evolutionarily conserved residues of ZF1. (A) ZF1 amino acid sequence of
vertebrate Zic3 ZF1. Human (hZIC3), mouse (mZic3) and frog (xZic3)
sequences are aligned. Cysteine and histidine residues in the C2H2 ZF
motif are shown in bold. Known missense mutations (C253S, W255G and
H286R) and newly generated ZF1 mutations (C268S and H281R) are indi-
cated. (B) Representative images of the intracellular localization of wild-type
and mutant ZIC3. Expression vectors for HA-ZIC3 or the HA-ZIC3 mutants
were transfected into NIH3T3 cells. ZIC3 was stained with an anti-HA anti-
body. Wild-type ZIC3 was localized in nuclei, but the mutations in ZIC3
ZF1 increased the percentage of cells with cytoplasmic localization. Scale
bar, 50 wm. (C) Nuclear localization percentages of each mutant. Photographs
were taken of randomly selected fields under the same conditions, and all cells
within each field were counted. All of the ZF1 mutants showed decreased
nuclear localization percentages.

than wild-type ZFD. In fact, the estimated random coil content
of the wild type was 48.2% (Fig. 2C), whereas C253S and
H286R had much higher percentages (57.0 and 57.8%,
respectively). Random coil also increased in wild-type
protein at zinc ion-free condition (53.0%). Reflecting this,
ZFD (C253S and H286R were ecasily aggregated during
protein refolding after denaturation by urea (data not
shown). The CD spectrum of W255G ZFD was similar to
that of wild-type ZFD. However, a positive peak at 230 nm
in the wild-type spectrum was not observed in the W255G
spectrum. It is likely that this difference reflects the absence
of the tryptophan residue, which has a peak absorbance
around 230 nm. The similarity of the spectrum between the
wild-type and W255G suggested that the secondary structure
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Figure 2. Circular dichroism (CD) spectroscopy analysis of ZIC3 ZF and its
ZF1 mutants. (A) Coomassie brilliant blue-stained SDS—PAGE gel indicates
the purity of the ZIC3 mutant proteins. (B) CD spectrum of ZF1 mutants.
The solid line indicates wild-type spectrum and broken lines indicate
mutants. The signal of C253S and H286R around 200 nm decreased, indicat-
ing that the amount of random coil had increased in the ZF1 mutants. The
asterisk indicates a change at 230 nm that is probably due to the absence of
the tryptophan indole side chain. (C) The relative proportions of the secondary
structures were estimated as previously described (44).

of the ZFD was not strongly affected by the W255G mutation.
The abnormal conformation of the C253S and H286R proteins
may have impaired their import into the nucleus after
translation; however, we needed to further investigate the
molecular pathogenesis of the W255G mutation.
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A nuclear export inhibitor does not affect the subcellular
localization of a ZIC3 ZF1 protein

We hypothesized that the extranuclear localization of the ZIC3
W255G was due to either acceleration of nuclear export or
inhibition of nuclear import. To test the former possibility,
we treated the ZIC3 transfectants with leptomycin B (LMB),
an inhibitor of the CRM-1-dependent nuclear export
pathway. LMB also causes the nuclear accumulation of
RanBP1, a cytoplasmic factor required for Ran-dependent
export pathways. Prolonged incubation of cells with LMB is
therefore expected to inhibit most Ran-dependent export
pathways (22). Consistent with this, LMB causes nucleocyto-
plasmic shuttling proteins such as Glil to accumulate in the
nucleus (23). GLI1 effectively accumulated in nuclei in our
experiments, but the subcellular localization of the W255G
mutant was not affected even after prolonged incubation
with LMB (Fig. 3). Therefore, nuclear export is probably
not markedly accelerated in the ZIC3 ZF1 mutant; rather,
impaired nuclear import is a more likely explanation for the
extranuclear localization of the ZIC3 ZF1 mutant.

Mapping of the NLS in the ZIC3 protein

We next postulated that W255G may inhibit an NLS in ZF1
itself or nearby. To test this hypothesis, we first mapped
the NLS in ZIC3 using a glutathione-S-transferase (GST)—
enhanced green fluorescence protein (EGFP) fusion protein
system. In this assay, the peptide fragments to be tested
were inserted between GST and EGFP. GST was added to
increase the total molecular mass of the fusion protein
because small-molecular-weight proteins passively diffuse
through the nuclear pores. Constructs containing various
parts of ZIC3 were prepared (Fig. 4A) and transfected into
NIH3T3 cells, and the subcellular localization of the EGFP
signal was evaluated. The GST-EGFP fusion protein without
any inserts (negative control) was localized in the nucleus in
<2% of cells, whereas more than 90% of the cells showed
nuclear localization when SV40-NLS or GLII-NLS was
inserted into the fusion proteins between GST and EGFP
(positive controls, Fig. 4A and B).

In this assay system, neither the ZIC3 Nt nor the C-terminal
(Ct) fragment showed any NLS activity. However, the
GST-EGFP fusion protein containing the whole ZFD was
located in cell nuclei in 73% of the cells (Fig. 4B). This per-
centage was less than that of SV40 or GLII-NLS, but was
comparable to that of full-length ZIC3 (70%, Fig. 1C). Start-
ing with this construct, we generated serial deletion mutants
to map the NLS in ZIC3 ZFD. ZF2 4 3 was the minimal
unit that had nuclear localization activity (74%) comparable
to the whole ZFD. Further division of ZF2 + 3 into single
ZF units (ZF2 and ZF3) severely lowered the nuclear localiz-
ation frequencies (Fig. 4B). ZF4 +5 showed weak nuclear
localization (21%), whereas the other deletion mutants did
not show substantial nuclear localization (Fig. 4B). We also
confirmed that ZF2 + 3 has major NLS activity in HeLa
cells and in the multipotent neural stem cell line MNS-70 by
using the same NLS mapping analysis (Supplementary
Material, Fig. S1). These results suggest that the ZF2 + 3
domain is widely utilized as an NLS in mammalian cells.

GLI1-NLS is composed of bipartite basic residue clusters
located in ZF5 and its Ct flanking region (23,24). This
region also showed a strong NLS activity in our assay
system (GLI1-NLS, Fig. 4B, Supplementary Material,
Fig. S1). However, the corresponding Ct region in ZIC3 did
not show clear NLS activity (ZF5 + Ct, Fig. 4B, Supplemen-
tary Material, Fig. S1). Conversely, when we assayed the NLS
activity of GLI1 ZF2 + 3, only 4% of cells showed nuclear
localization, suggesting that the location of the NLS is differ-
ent between the ZIC3 and GLI1 ZFDs.

The basic amino acid residues lysine and arginine are
important for NLS activity. Although basic amino acid resi-
dues were abundantly contained in the ZF2 and ZF3 region
(13 of 65 residues), there were no basic amino acid residue
clusters. We therefore sequentially replaced each lysine and
arginine in ZF2 and ZF3 with alanine to investigate which
amino acid residues are essential for the ZIC3 NLS. GST-
ZF123—EGFP was chosen as the backbone construct for the
substitution analysis (Fig. 5A), because a ZFl mutation
affects the nuclear localization. When the substitution
mutants were produced in NIH3T3 cells, most showed
greater or lesser decrements in their nuclear localization fre-
quencies. However, only the R320A, K337A and R350A
mutants of ZF123 showed a reduction to less than half of
the wild-type nuclear localization frequency (Fig. 5B). This
result was reproduced in MNS-70 and HeLa cells (Supplemen-
tary Material, Fig. S2).

To investigate the necessity of these basic residues for the
nuclear localization of intact ZIC3 protein, we generated
ZIC3 mutants containing R320A, K337A, R341A, K346A,
K349A and R350A mutations (ANLS23), or R320A, K337A
and R350A mutations (ANLS23’) and compared their NLS
activity with those of the wild-type ZIC3 and the ZIC3
‘ANLS45’ mutant (identical to ANLS in ref. 25) in which
four lysine/arginine residues in the ZF4 +5 region mutant
are mutated. ANLS23, ANLS23" and ANLS45 decreased the
ratio of nuclear localization to 13, 19 and 53%, respectively,
whereas 70% of wild-type ZIC3 was localized in the nucleus
(Fig. 5C and D). LMB treatment did not significantly increase
the nuclear localization of ANLS23 in NIH3T3 cells (Fig. 3),
in agreement with the predicted impairment in the nuclear
import process. Furthermore, the CD spectrum of ANLS23
ZFD was very similar to that of the wild-type ZFD (Sup-
plementary Material, Fig. S3), indicating that the secondary
structure was not strongly affected by the substitution
mutations. These results collectively indicate that ZF2 + 3 is
a major NLS for ZIC3.

Solution structure of ZIC3 ZF1-4

Having mapped the major NLS in ZIC3 to the ZF2 + 3 region,
we investigated the relative positioning of ZF1 and the NLS by
determining the solution structure of the ZIC3 ZF1-4 region
(Fig. 6). The corresponding peptide was prepared using a cell-
free protein synthesis system, and the structure was deter-
mined using NMR. The statistics on experimental constraints
and structure quality as determined by PROCHECK-NMR
(26) are summarized in Table 1. A total of 2108 NOE distance
restraints and 96 user restraints for zinc fixation were used as
the CYANA calculation input. Based on the values of the
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Figure 3. ZIC3 localization in LMB-treated cells. (A) Representative images
of the intracellular localization of each protein. GLI1 was used as a control
protein whose nuclear accumulation is enhanced by the LMB treatment.
Scale bar, 50 wm. Et-OH, vehicle control. (B) Nuclear localization percen-
tages. W255G did not accumulate in nuclei even with LMB treatment. The
NLS-deficient mutant ANLS23 (described later) accumulated slightly in
nuclei.

target function, and the Ramachandran plot (Table 1), we
concluded that the structures are well-defined.

A global view of the structure (Fig. 6A) indicated that each
ZF has a typical C2H2 ZF structure in which the two cysteines
are in a (-sheet region and the two histidines are in an
a-helical region, and together they are tetrahedrally coordi-
nated to the zinc ion (27,28). ZF1 and ZF2 were folded into
a single structural unit, whereas ZF3 and ZF4 existed as inde-
pendent units. No domain—domain interaction was detected
between ZF12 and ZF3, but a weak interaction of hydrophobic
residues occurred between ZF3 and ZF4, as indicated by
several interresidual NOEs between F332 in ZF3 and P357
in ZF4 (Supplementary Material, Fig. S4A). The soluble struc-
ture of the ZF12 single unit, ZF3 and ZF4 had fixed structures
(Fig. 6B-E).

In the structural unit composed of ZF1 and ZF2, the second-
ary structure elements in the polypeptide were two helices
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Figure 4. Mapping of ZIC3 NLS. (A) Scheme of the ZIC3 domain structure
and the GST-EGFP fusion proteins used for the NLS mapping. The
SV40-NLS and GLII-NLS were used as positive controls. ZF123 contains
28 amino acids flanking the N-terminal side of ZF1 because this region was
required to maintain the fusion protein stability (H.M. and J.A., unpublished
data). (B) Nuclear localization percentages. ZIC3 ZF5 + C, a region analo-
gous to the GLII-NLS, did not show NLS activity. The whole ZF, ZF123
and ZF2 + 3 had strong NLS activity, and ZF345 and ZF4 45 showed
weak NLS activity. ZF2 and ZF3 each showed low NLS activities when sep-
arated; ZF2 + 3 was therefore considered to be the minimal functional domain
for NLS activity. ZOC, Zic Opa Conserved motif.

(helix 1, amino acids 276—286; helix 2, amino acids 313—
322) and a two-stranded antiparallel (-sheet (amino acids
251-255 and 268-272). These secondary structure elements
were packed against each other by zinc coordination and by
hydrophobic interactions among a group of hydrophobic resi-
dues: L278, V279 and V282 in helix 1; L315, V316 and 1319
in helix 2; and W255, Y298 and W299 (Fig. 7A). W255 was
situated in the center of the hydrophobic core formed by these
residues. The NOEs between W255 and hydrophobic core-
forming residues are shown in Supplementary Material,
Figure S4B. This structural unit is similar to GLI1 (PDBID:
2GLI) ZF1 and ZF2 (Fig. 6F and G).
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Figure 6. Three-dimensional structure of ZIC3 ZF1 to ZF4 (amino acids 238—386). (A) A stereo view of ZF1 to ZF4 (ribbon model). Magenta balls are zinc
atoms. The top is the C-terminus and the bottom is the N-terminus. (B—E) Superimposition of the 20 models. (B), (C), (D) and (E) are aligned to maximize the
overlap of the overall, ZF12, ZF3 and ZF4 structures, respectively. (F and G) Superimposition of GLI1 and ZIC3 ZFs. The red ribbon model is ZIC3, and the
yellow ribbon represents GLI1 ZF structures from PDBID 2GLI. The red and yellow balls are zinc atoms of ZIC3 and GLI1. ZF1-2 (F) and ZF3 (G) structures are
shown. Right models indicate horizontal 90° rotation of left models. The side chain of ZIC3 NLS forming lysine and arginine are shown in red. Green indicates

the ZIC3 NLS-forming residues that are not conserved in GLI1 ZF.

We next examined the spatial relationship of the basic resi-
dues essential for the NLS. When the basic residues were
mapped on a surface model (Fig. 7B), the NLS-forming
lysine and arginine residues were located close to each other
in each ZF, and many of their side chains were exposed on
the molecular surface facing the same side.

ZIC3 NLS was bound by Kpnal and Kpna6

Some NLSs are bound by the nuclear import adaptor protein
Kpna (Importin o). To test whether the ZIC3 NLS is bound
by Kpna, we assessed the physical interaction between in vitro-
translated ZIC3 and the GST-Kpna fusion protein with a GST
pull-down assay. Mouse Kpna2, Kpna4 and Kpna6 were
chosen as representatives of each of the three groups of the
Kpna family. Purified GST-Kpna proteins produced in E. coli
(Fig. 8A) or cell lysates of 293T-expressed GST-Kpna proteins
were used in these experiments. Among the three Kpna pro-
teins, Kpna6 efficiently co-precipitated ZIC3 (Fig. 8B). Next
we examined the physical interactions between Kpna6 and
the ZIC3 NLS mutants ANLS23 (ZF2 4+ 3) and ANLS45

(ZF4 +5) (Fig. 8C). In a binding assay using GST-Kpna
expressed in 293T, Kpna6 precipitated wild-type ZIC3, but
did not precipitate either ANLS23 or ANLS45 mutant. Kpnal,
which belongs to the same group as Kpna6, showed a similar
binding preference except that it weakly bound ANLS45.

To reveal the functional significance of the Kpna/ZIC3
interaction, we performed Kpna knockdown experiments by
means of RNA interference (RNAi) for Kpnal and Kpna6.
Kpnal and Kpna6 are strongly expressed in the NIH3T3
cells and in developing neural tissue, where mouse Zic3 is
also expressed (19, M.H. and J.A., data not shown). The
amount of Kpnal/6 proteins in siRNA-transfected NIH3T3
cells was ~35% of that in cells transfected with the control
pSilencer vector (Fig. 8D), as quantified from immunofluores-
cence staining. The results indicate that the knockdown was
effective in the NIH3T3 cells.

Kpna knockdown using this experimental system impaired
the nuclear localization of ZIC3 (Fig. 8E). The reduction in
the ZIC3 nuclear localization ratio was not markedly reversed
by the cotransfection of a Kpnal or Kpna6 expression vector
that contains the siRNA target sequence but was reversed by
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Table 1. Structural statistics of ZIC3 ZF1 to ZF4 region (amino acids
245-286) based on 20 structures

NOE upper distance restraints

Short-range (|i — j| = 0) 668

Medium-range (1 < |i — j| <4) 1070

Long-range (|i — j| > 4) 370

Total . 2108

CYANA target function value (A%) 0.40 + 0.035
Number of restraint violations .

Distance restraint violations (>0.20 A) 0

Dihedral angle restraint violations 0

(>5.0°)
Rmsd from the averaged coodinates for each regions Ay

Backbone Heavy atoms

atoms
ZF12 0.66 + 0.14 1.44 +0.15
ZF3 0.50 + 0.17 1.17 £ 0.18
ZF4 0.28 + 0.08 1.354+0.19
Ramachandran plot for ordered region (%)

Residues in most favored regions 84.1
Residues in additional allowed regions 15.8
Residues in generously allowed regions 1.1
Residues in disallowed regions 0.0

Data were analyzed by PROCHECK-NMR (26).
“Rmsd values were calculated by best fitted to the corresponding region.

a modified Kpna expression vector that lacks the siRNA target
sequence (AsiRNAseq). These results eliminate the possibility
that the RNAI had off-target effects and indicate that Kpnal
and Kpna6 are necessary for the ZIC3 nuclear transport.
Finally, we tested whether Kpnal/6 bind the ZIC3 ZF1
mutant W255G in the GST pull-down assay. W255G bound
Kpnal and Kpna6 as efficiently as wild-type ZIC3 (Fig. 8F),
suggesting that the ZIC3 ZF1 mutation does not directly
inhibit the interaction between the NLS and Kpna proteins.

DISCUSSION
NLS in ZIC3

In the course of this study, a paper dealing with the ZIC3 NLS
was published (25). It seems beneficial to consider the NLS in
ZIC3 by discussing their results with ours. We mapped signifi-
cant NLS activities in ZF2 + 3 region and ZF4 +5 region
using a GST-EGFP mapping system. The NLS activity of
the ZF2 + 3 region was greater than that of ZF4 45.
Bedard et al. (25) used an EGFP-(test fragment)-LacZ con-
struct and mapped the minimal NLS-containing region
within amino acids 290-420, which contains the ZF2 + 3
region (amino acids292—356). In their subsequent analysis,
Bedard er al. (25) focused on two subregions within the
ZF4 + 5 region, 367-382 and 403-412, based on the pre-
sence of the multiple positively charged amino acid residues.
Together with our comparative analysis using ANLS23 and
ANLS45 mutants, we may conclude that these regions are
cooperatively acting as the NLS for ZIC3 nuclear localization.
This idea is also supported by our result that the disruption of
the NLS in either ZF2 + 3 or ZF4 45 was sufficient to disturb
the interaction between ZIC3 and Kpnal/6.

Recently, an NLS was identified in Glis3 that, like the ZIC3
NLS, has a five-C2H2-type ZFD (29). The Glis3 NLS was

determined to be located in its ZF4 because a mutant
lacking the tetrahedral configuration of ZF4 also lacked
nuclear localization. An NLS is also located in the ZF3 of
PacC, a fungus transcription factor that contains a three-
C2H2-type ZFD similar to ZF1-3 of the Gli/Glis/Zic ZFDs.
When we aligned the NLSs of ZIC3 (ZF2 + ZF3), Glis3
(ZF3 + ZF4) and PacC (ZF2 + ZF3), we could see that
the three basic residues that are critical for the ZIC3 nuclear
localization (R320, K337 and R350) are conserved among
these sequences (Fig. 9). In addition, F339 and T351 are con-
served in ZIC3, Glis3 and PacC in addition to the ZF core-
forming Cys/His and the sequence generally conserved in
Gli-Kriippel superfamily proteins (TGEKP). The results
suggest that the NLSs in these three proteins are conserved
to some extent.

On the other hand, in Cubitus interruptus, a fly homolog of
Gli, the NLS was mapped to ZF5 and the region flanking the
C-terminus of the ZFD (23,24) that is not conserved in ZIC3.
In our assay system, GLI1 (ZF2 + ZF3) does not possess NLS
activity despite the apparent sequence similarity to ZIC3
(Fig. 4). Because the NLS in ZFD does not solely depend
on the sequence similarity, we compared 3D structure
models of ZIC3 and GLI1 ZF2-ZF3, focusing on the basic
residues in this region. By the superimposition of their 3D
structures (Fig. 6F and G), it is clear that some residues that
contribute to ZIC3 nuclear localization are not conserved in
the GLI ZFD. These residues may partly account for the
differences in the NLSs of ZIC3 and GLII proteins. Further-
more, some residues adjacent to the critical residues (R320,
K337 and R350) are conserved in the ZIC1/ZIC2/ZIC3/
Glis3/PacC group, but not in GLI1 (closed circles in Fig. 9).
They can also modulate the binding to the nuclear import
adaptor proteins.

The ZIC3 NLS can be categorized as an interspersed-type
NLS, different from the classic NLS that contains a short
stretch or bipartite cluster(s) of basic residues (reviewed in
30,31). The interspersed-type NLS has also been found in
other ZF proteins (32). However, so far as we know, there
have been little detailed analyses of the interspersed NLSs
in ZFD. This is probably due to technical difficulties,
because many amino acids residues cooperatively and redun-
dantly participate in the nuclear localization activity of the
interspersed NLS (33-35). The results of this study may
help to deepen our understanding of the structural basis of
the NLS despite such difficulty.

In previous studies, the structure of the NLS—Karyopherin
o complexes have been described for NLSs of the classic
single-basic-cluster type [e.g. SV40 T antigen (36); androgen
receptor (37)] and bipartite-cluster type NLS [e.g. Nucleoplas-
min (38,39)]. There are two NLS binding sites in Kpna. The
N-terminus of a bipartite NLS binds to the minor site and
the C-terminus binds to the major site (36,38,40,41). When
we compare the solution structure of ZIC3 and that of the
Xenopus nucleoplasmin NLS (PDBID: 1EJY; 38,39), five
out of the twenty ZIC3 solution structure models largely fit
the nucleoplasmin structure in terms of its basic residue posi-
tioning (Fig. 10A). In our fitting, ZIC3 K310, K312, K337,
K349 and R350 were positioned close to the nucleoplasmin
K155, R156, K168, K169 and K170, respectively (root mean
square between the backbone atoms of these residues was
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Figure 7. (A) Hydrophobic core of ZF1 and ZF2 (stereo view). Side chains of hydrophobic core-forming residues are shown in orange, and W255 is shown in
red. (B) Surface model showing ZIC3 NLS. A corresponding ribbon model is drawn at the right side. NLS core residues (R320, K337 and R350) are indicated by

red, and the other basic residues in ZF2 and ZF3 are in blue.

3.66 + 0.32 A). Based on this result, we further overlaid ZIC3
ZF1-3 structures with Kpnal that has been co-crystallized
with nucleoplasmin NLS (Fig. 10B). In this superimposition,
ZIC3 NLS was assumed to be in the same position as that
of the nucleoplasmin NLS in its binding to Kpna. The result
suggested that the ZIC3 ZF1-3 structures fit the Kpnal
surface groove that forms the NLS binding sites in this posi-
tioning. There was no acute steric exclusion in the presump-
tive ZIC3 NLS—Kpnal interaction. It was surprising that an
interspersed-type NLS as in ZIC3 ZF can be fitted into the
classical bipartite NLS. Although this fitting needs to be exam-
ined further, it might be a clue to consider nuclear import of
many nuclear proteins that do not have classical NLS with
one or two clusters of basic residues.

ZIC3 W255 as a novel inter-finger connector

This study provided the first solution structure of a ZFD in any
Zic family protein. The four Nt ZFs possess typical globular
ZF structures with a zinc ion at the core. Among the four
ZFs analyzed, ZF1 and ZF2 are juxtaposed and together
form a hydrophobic core. The structure predicts that not
only W255 but also W299 and Y298 are constituents of this
hydrophobic core. In a recent study (1), W255 and W299
were absolutely conserved among 45 Zic proteins covering a
broad range of eumetazoan animals. The structural motif can

be summarized as CXW-C-H-H-CXW-C—-H-H. Here-
after, we call this structure a ‘tandem CWCH2’.

The tandem CWCH2 motif can be found in the ZF1 and
ZF2 of both GLI and GLIS protein families despite the appar-
ent sequence divergence of the amino acids between the two
cysteine residues. Pavletich and Pabo (27) determined the
crystal structure of the GLI-DNA complex. They found that
GLI ZF1 makes extensive protein—protein contacts with
ZF2. In their structure (PDBID: 2GLI), the two tryptophan
residues in ZF1 and ZF2 are wedged between the two ZF seg-
ments, and GLI ZF1 and ZF2 also form a united fold structure,
similar to ZIC3. Although there are no reports concerning the
GLIS ZF structure, Gli/Glis/Zic superfamily proteins could
share the common feature that the ZF1 and ZF2 domains
form a unified fold.

In fact, the tandem CWCH2 structure is not limited to Gli/
Glis/Zic superfamily proteins. Aspergillus PacC, possesses a
tandem CWCH2 structure in the ZFD that contains three
C2H2 ZFs. Missense mutations in either tryptophan residue in
PacC result in a partial loss-of-function phenotype (42). In
addition, Zapl, a yeast zinc-sensing transcription factor, also
possesses a tandem CWCH2 structure in its zinc-responsive
domain, where the interaction between the two ZF is required
for the high affinity binding of the zinc ion (43). The solution
structure of Zapl indicated that the two tryptophan residues
provides numerous non-helical inter-finger contacts (PDBID:
1ZW38). Thus, the functional importance of the tandem
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Figure 8. Physical interaction between Kpna and ZIC3. (A) Coomassie brilliant blue-stained SDS—PAGE gel indicates the purity of the GST-Kpna recombinant
proteins. (B) GST pull-down analysis using recombinant GST-Kpna and in vitro-translated Myc-ZIC3. The pulled-down ZIC3 was detected with an anti-Myc-tag
antibody (9E10). ZIC3 was co-precipitated with Kpna6. (C) GST pull-down assay using GST-Kpna expressed in 293T cells. In vitro-translated wild-type ZIC3
(Wt), a ZF4 +5 NLS mutant (ANLS45), and a ZF 2 4+ 3 NLS mutant (ANLS23) were used in this assay. Wild-type ZIC3 co-precipitated with Kpnal and Kpna6.
ANLS23 had little affinity for Kpnal or Kpna6. ANLS45 showed slight binding to Kpnal, but little to Kpna6. (D) Kpnal and Kpna6 protein amount in NIH3T3
cells. Kpnal and/or Kpna6 siRNA expression vector or its empty vector was transfected into NIH3T3 and quantified by immunofluorescence staining as in
Materials and Methods. Kpnal siRNA significantly reduced the protein amount. (UNIT = signal intensity/background signal) *P < 0.05 (#-test) (E) Effects
of Kpnal and Kpna6 double knockdown on ZIC3 nuclear localization. HA-ZIC3 was co-transfected into NIH3T3 with Kpnal siRNA, FLAG-Kpnal,
siRNA-resistant Kpnal mutant (KpnalAsiRNAseq), FLAG-Kpna6, siRNA-resistant Kpna6 (Kpna6AsiRNAseq) or parental empty vectors. Gray bar, Kpnal
siRNA vector; open bar, empty vector. (F) GST pull-down assay using GST-Kpna expressed in 293T cells. In vitro-translated ZIC3 and ZIC3 W255G were
used for this assay. W255G bound to both Kpnal and Kpna6 with affinity comparable to that of wild-type ZIC3. ANLS23 was used as negative control.
#P < 5 x 107% ns, not significant (P = 0.31) (x* test).

CWCH2 structure is supported by the analysis of these two
fungus proteins as well as the ZIC3 W255G mutation. Further
investigation of its distribution and biological significance
may be beneficial for understanding protein structure—function
relationships.

Nuclear import of ZIC3 and its impairment
in the ZF1 mutant

This study revealed that all of the evolutionarily conserved resi-
dues in ZF1—C253, W255, C268, H281 and H286 (1)—are

required for nuclear localization, but ZF1 is not itself the
NLS. Zinc ion has an important role in ZF protein folding.
Addition of zinc ion increases a helix and decreases random
coil content in ZIC3 ZF (Fig. 2C), and these changes were con-
sistent with other C2H2 ZFs (44—47). In our result, C253S and
H286R similarly increased the random coil and decreased the
turn content, suggesting that they are actually required to pre-
serve structural integrity by chelating zinc ion. Bedard et al.
(25) reported that H286R was not sensitive to LMB. Together,
these findings may suggest that the ZF1 mutants missing the
zinc-chelating residue are recognized as misfolded proteins



ZIC1
ZIC2
ZIC3
Glis3 (ZF34)
PacC

consensus
GLI1

Human Molecular Genetics, 2008, Vol. 17, No. 22 3469

CFWEECPREGKPFKAKYKLVNHIRVHTGEKPFPCPFPGCGKVFARSENLKIHKRTH
CFWEECPREGKPFKAKYKLVNHIRVHTGEKPFPCPFPGCGKVFARSENLKIHKRTH
CYWEECPREGKSFKAKYKLVNHIRVHTGEKPFPCPFPGCGKIFARSENLKIHKRTH
CTFEGCKKAFS---RLENLKIHLRSHTGEKPYLCOHPGCQOKAFSNSSDRAKHORTH

COWGSCR-TTT--VKRDHITSHIRVHVPLKPHKCDF - -CGKAFKRPQDLKKHVKTH
@ € % HER H Kp £ C KVF

H RTH
K

A
CHWGGCSRELRPFKAQYMLVVHMRRHTGEKPHKCTFEGCRKSYSRLENLKTHLRSH

Figure 9. Amino acid sequence alignment of the NLS-containing regions of the selected ZF proteins. The ZF2 and ZF3 amino acid sequences of human ZICI,
ZIC2, ZIC3 and PacC and the mouse Glis3 ZF3 and ZF4 sequence are aligned. Core C2H2 residues are indicated with gray boxes. NLS core residues in ZIC3
(R320, K337 and R350) are indicated with asterisks over the top line. Consensus residues are indicated at the bottom.

and trapped by a molecular chaperone or degradation system
(48,49).

In the ZIC3 W255G mutant, derangement of the CD spec-
trum was not obvious in comparison to the C253S and
H286R mutants, indicating that the W255G mutation causes
little change in the secondary structure. Furthermore, the inter-
actions between the NLS and Kpnal/Kpna6 were not affected
by the W255G substitution, excluding the possibility of a
direct impairment of the NLS—Kpnal/Kpna6 interaction.
However, the possibility remains that the mutation may
cause a structural change that cannot be uncovered by a CD
analysis. Such a structural alteration may result in the trapping
of the protein by molecular chaperones or degradation
systems, or the impairment of processes after the Kpna-
binding such as interactions with Karyopherin 3 (Importin
B) and the nucleopore complex. This idea is supported by
the facts that LMB treatment did not cause significant
nuclear accumulation of W255G (Fig. 3) and W255G lowers
the stability of the ZIC3 protein (15). Although the conse-
quences of the W255G mutation are not known in detail at
this point, it is clear that it is a pathogenic mutation that
occurs in the newly identified inter-finger connector residue.

MATERIALS AND METHODS
Plasmid construction

The human ZIC3 c¢cDNA and C253S, W255G and H268R
mutants were previously described (15). ZIC3 C268S and
H281R were generated by using an LA PCR in vitro mutagen-
esis kit (TakaraBIO) with appropriate primers. cDNAs encod-
ing the wild-type and mutant ZIC3 were inserted into the
pcDNA3.1 vector (Invitrogen), which contains an HA-epitope
tag (15), or the pCS2+Myc tag (MT) vector (50). For NLS
mapping, a pCS2+ vector (50) expressing GST— EGFP was
constructed by inserting GST- and EGFP-encoding DNA frag-
ments from pGEX4T1 (GE Healthcare) and pEGFP (Invitro-
gen), respectively, into pCS24-. The GST and EGFP coding
regions were connected by a linker sequence (5'-CAT GGA
TAT CGC A-3'). The SV40 NLS from pCS2+NLS MT, the
GLII open reading frame (ORF) (51) and ZIC3 ORF frag-
ments were also inserted into this vector. For the CD spectrum
analysis, we generated cDNA fragments containing a wild-
type or mutant ZF domain by PCR amplifying the wild-type
and mutant ZIC3 F239-S427 region using the primers
5'-CCGGATCCTTCTTCCGTTATATG-3" and 5-CCGTCG
ACGATTCATAGCCTGAAC-3. The PCR fragments were
digested with restriction enzymes and inserted into the

BamHI- and Sall-cut pET29a+ vector (Novagen). To adjust
the reading frame to the Ct His-tag, the Nofl site in the
vector was filled with the Klenow enzyme.

Mouse Kpna cDNA clones were obtained from Riken
FANTOM clones (http://www.gsc.riken.go.jp/e/FANTOM/;
52). We used the mouse cDNAs because human and mouse
Kpna amino acid sequences are highly conserved (Supplemen-
tary Material, Fig. S5). The clone IDs of Kpnal, -2, -3, -4 and
-6 are 3010020J22, 1920184H24, C330037N10, A130074P15
and D230009G09, respectively. The Kpna ORFs were
cloned into the BamHI site of the pCMV-Tag 2B expression
vector (Stratagene), pCS2+ expression vector or pGEX 4T1
using following PCR primers:

Kpnal

5'-GGA TCC ATG TCC ACA CCA GG-3'
5'-GGA TCC TCA AAG CTG GAA AC-3

Kpna2

5'-GGA TCC ATG TCC ACG AAC GAG-3'
5'-GGA TCC TTA GAA GTT AAA GG-3'

Kpna3

5'-GGA TCC ATG GCC GAG AAC CCC-¥
5'-GGA TCC TTA GAA ATT AAA TTC-3'

Kpna4

5'-GGA TCC ATG GCG GAC AAC GAG-3’
5'-GGA TCC CTA AAA CTG GAA CCC C-¥

Kpna6

5'-GGA TCC ATG GAG ACC ATG GC-3'
5'-GGA TCC TTA TAG CTG GAA GCC C-3'

A control vector that generates an siRNA-resistant
Kpnal and Kpna6 mRNA through additional site-directed
mutagenesis of Kpnal (pCMV-Kpnalmut) and Kpna6
(pCMV-Kpnabmut) were prepared by introducing five
synonymous mutations into the siRNA-targeted sequence.
The following primers were used for site-directed mutagenesis
with an LA PCR in vitro mutagenesis kit (Takara-BIO).

Kpnalmut

5-TGAGCGCGGTTACCAGCTG-3’
5'-CCACCGCTAGTAGCATTTGTG-3’

Kpnabmut
5'-AAAGATCGTACAGGTAGCCCTCAATG-3’
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Figure 10. Structural comparison of ZIC3 NLS with reference proteins. (A)
Comparison with a bipartite NLS from nucleoplasmin. Five of the 20 ZIC3
NMR structures fitted the nucleoplasmin structure (stereo view). Side chains
of the some ZIC3 NLS-forming basic residues overlapped with those of
nucleoplasmin. Corresponding side chains are drawn as red sticks (ZIC3) or
green sticks (nucleoplasmin). Green ribbon model, nucleoplasmin; red wire
model, ZIC3. (B) Presumptive superimposition of Kpna—nucleoplasmin
crystal structure and ZIC3 ZF1-3 (stereo view). Gray surface model, Kpna;
green ribbon model, nucleoplasmin; red tube model, ZIC3 ZF1-3.

Cell culture and transfection

NIH3T3, HeLa and MNS-70 cells were maintained in
Dulbecco’s modified Eagle’s medium with 10% fetal bovine
serum and a 1% antibiotics—antimycotics cocktail (Invitro-
gen). Lipofectamine 2000 (Invitrogen) was used for transfec-
tion according to the manufacturer’s protocols. MNS-70 is
the cell line established from rat neural stem cell (53).

Analysis of subcellular localization

NIH3T3 cells were seeded into 3.5-cm-diameter glass-bottom
dishes (1 x 10° cells/dish). At 24—30 h after transfection, the

cells were washed twice with phosphate-buffered saline
(PBS), fixed with 4% paraformaldehyde in 0.1 M sodium phos-
phate buffer (pH 7.5) for 30 min, and immersed in a blocking
buffer (1% bovine serum albumin, 0.1% Triton X-100 in PBS)
for 1 h at room temperature. For immunofluorescence staining,
the cells were incubated with an anti-HA antibody (3F10,
Roche) at a dilution of 1:1000 in the blocking buffer for 1 h
at room temperature. The cells were washed with the blocking
buffer three times and incubated for 1h with an Alexa
488-conjugated anti-rat IgG polyclonal antibody (Molecular
Probes, Eugene, OR, USA). After three washes with PBS,
the cells were mounted with Vectashield with DAPI (Vector
Laboratories). The cells transfected with the GST-EGFP
construct were observed after fixation and mounting with
DAPI without immunostaining. The fluorescence images
were obtained by confocal microscope and CCD camera
(Olympus FV1000). The images were analyzed by using
PhotoshopCS software (Adobe) to calculate the translocation
score (54). More than 100 cells were counted in at least
three independent experiments.

CD spectrum analysis

BL21 E. coli cells were transformed with the pET29a+
ZIC3-ZF vectors. His-tagged proteins were prepared accord-
ing to the method of Sakai-Kato et al. (44). Purified proteins
were dialyzed with 150 mm NaCl, 20 mm phosphate buffer
(pH 7.0), 5mm DTT and 0.03 mm ZnCl,. Measurement of
the CD spectrum was described previously (44).

LMB treatment

At 20—24 h after transfection, 1 ng/ml LMB (Alexis biochemi-
cals, San Diego, CA, USA) or vehicle (0.1 pl/ml ethanol) was
added to the medium. Cells were fixed 6 h after treatment and
immunostained. The human GLII expression vector (55) was
used as a positive control in this experiment.

RNA interference

The siRNA expression vectors against mouse Kpnal [NPI-1
1104 and NPI-1 1221 (19)] were gifts from Dr Y. Yoneda
(Osaka University). The Kpna6 siRNA expression vector was
designed using the Ambion web site (http://www.ambion.
com/techlib/misc/siRNA_finder.html). We chose 5-AAATTG
TGCAAGTGGCCCTCA-3' as the target sequence for Kpna6
(Kpna6 1307). The vectors and the control parental vector
(pSilencer, Ambion) were co-transfected with ZIC3 and the
pCMV-Tag2B, pCMV-Kpnal, pCMV-Kpnalmut, pCMV-
Kpna6 or pCMV-Kpna6bmut vector (siRNA:ZIC3:Kpna =
3:6:1) using Lipofectamine 2000 (Invitrogen). The siRNA
expression vectors NPI-1 1104, NPI-1 1221 and Kpna6 1307
were mixed 1:1:1. The cells were fixed 48 h later and subjected
to the ZIC3 localization analysis. Endogenous Kpnal/6
expression was detected with immunofluorescence staining
with the monoclonal rat antibody 2D9 (MBL, Nagoya; 1:100)
and an anti-rat IgG Alexa 594-conjugated secondary antibody
(1:1000). The 2D9 monoclonal antibody recognizes Kpnal/6
specifically, with low cross-reactivity against Kpna2 and 4
(data not shown). The fluorescence images were taken with a



confocal microscope (FV-1000, Olympus) and were analyzed
with Image-J software. The quantified fluorescence signals
were normalized to negative controls without the primary
antibody.

Sample preparation for NMR analysis

A ZIC3 cDNA encoding ZF1, ZF2, ZF3 and ZF4 and their
flanking regions (amino acids 245-386) was subcloned into
the expression vector pCR2.1 (Invitrogen) as a fusion with
an Nt His6 affinity tag and a tobacco etch virus (TEV) pro-
tease cleavage site. The actual construct contains seven extra
residues (GSSGSSG) after the TEV cleavage site and six
extra residues at the C-terminus (SGPSSG) that are derived
from the expression vector. The '*C/'°N-labeled protein was
expressed using a large-scale, cell-free system (56,57) and
was purified using a chelating column, as described elsewhere
(58). The purified protein was concentrated to 0.57 mM in
20 mm d-Tris/HC1 (pH 7.0), 100 mm NaCl, 1 mm 1,4-pL-
dithiothreitol-d;(, 0.02% NaNj3, 50 um ZnCl,, 1 mm IDA and
10% D,O0.

NMR measurements, resonance assignment
and structural calculations

For chemical shift assignment, '’N-HSQC, *C-HSQC, HNCO,
HNCACO, HNCA, HNCOCA, HNCACB, CBCACONH,
HHBHACONH, CCCONNH, HCCH-COSY, HCCH-TOCSY,
CCH-TOCSY, HNHB and HNCOHB spectra were recorded
on a Brucker AVANCE 600 spectrometer with a CryoProbe
at 296 K. For structure determination, '°N-edited Nuclear
Overhauser Enhancement Spectroscopy (NOESY) and
3C-edited NOESY spectra with 150 ms mixing times were
recorded on a Brucker AVANCE 900 spectrometer at 296 K.
Sequence-specific backbone chemical shifts were assigned
using standard triple-resonance experiments (59). Side-chain
chemical shift assignments were obtained from HBHACONH,
CCCONNH and HCCH-TOCSY spectra (60—63). The distance
restraints were obtained from '°N-edited NOESY and
3C-edited NOESY spectra.

All spectra were processed using NMRPipe (64), and the
programs KUJIRA (65) and NMRView (66,67) were used to
visualize the NMR spectra and chemical shift assignments.
Automated NOE assignments and structure calculations with
torsion angle dynamics were performed with the program
CYANA 2.1 (68—71). A total of 100 structures were indepen-
dently calculated and 20 conformers with the lowest target-
function values were finally selected. The structure quality
was evaluated with PROCHECK-NMR (26). The structural
coordinates have been deposited in the RCSB Protein Data
Bank under the accession code 2RPC.

GST pull-down assay

A GST pull-down assay was performed according to the
methods of Kelly et al. (72), with modification. The
GST-Kpna recombinant protein was purified from E. coli
BL21 that were transformed by pGEX-4T1 derivatives or
293T cells that were transfected with a pCS2+ expression
vector by using Lipofectamine 2000. The ZIC3 protein was
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prepared with an in vitro translation kit (Retic Lysate
IVI™  Ambion). The capped mRNA used as a template
was described in a previous study (15). GST fusion proteins
were immobilized on glutathione-Sepharose 4B beads (GE
Healthcare) and applied to in vitro-translated ZIC3 that had
been pre-absorbed by free glutathione-Sepharose 4B beads
in 1x transport buffer (20 mm HEPES-KOH, pH 7.3,
11 mm KAc, 5 mm NaAc, 2 mm MgAc, | mm EDTA, 1 mm
DTT, 0.01% BSA and 0.1% NP-40). After overnight incu-
bation at 4°C, the beads were washed three times with 1x
transport buffer and resuspended in 1x SDS sample-loading
buffer. The dissociated proteins were separated by SDS—
PAGE and immunoblotted with an anti-Myc-tag antibody
(9E10, Sigma).
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